
15-780: Graduate Artificial
Intelligence

Neural networks

Schedule note
• Project proposals due this week
• Midterm
 - Open book, notes
 - 8 (short) questions
 - 1.5 hours, in class
 - Review sessions
 1. Monday, 11/12, 7-9pm, WeH 4625
 2. Thursday, 11/13, 7-9pm, WeH 4625
 - email us if you have specific questions

Midterm: Topics
• Search (A*, BFS, DFS, iterative deepening)
• Path planning (A*, RRTs, c-space, discretization/partitioning)
• Propositional and first-order logic (syntax, semantics/models, transformation

rules, normal forms, theorem provers, resolution, unification)
• SAT and CSPs (walksat, DPLL, constraint propagation, NP, reductions, phase

transitions)
• Planning (languages like STRIPS, linear planning, POP, GraphPlan)
• Optimization (LP, ILP/MILP, branch & bound, simplex)
• Duality (lagrange multipliers, cutting planes)
• Game tree search (minimax, alpha-beta)
• Normal form games (equilibria, dominated strategies, bargaining)
• Probabilistic reasoning
• Bayesian networks
• Density estimation
• HMMs
• Decision trees
• Nueral networks
• MDPs
• Reinforcement learning

Mimicking the brain
• In the early days of AI there was a lot of interest in

developing models that can mimic human thinking.
• While no one knew exactly how the brain works (and,

even though there was a lot of progress since, there is
still little known), some of the basic computational units
were known

• A key component of these units is the neuron.

The Neuron
• A cell in the brain
• Highly connected to other

neurons
• Thought to perform

computations by integrating
signals from other neurons

• Outputs of these
computation may be
transmitted to one or more
neurons

What can we do with NN?
• Classification
 - We already mentioned many useful applications
• Regression
 - A new concept:
 Input: Real valued variables
 Output: One or more real values
• Examples:
 - Predict the price of Googles stock from Microsofts stock
 - Predict distance to obstacle from various sensors

Linear regression
• Given an input x we would

like to compute an output y
• In linear regression we

assume that y and x are
related with the following
equation:

 y = wx+ε
 where w is a parameter

and ε represents
measurement or other
noise

X

Y

• Our goal is to estimate w from a training
data of <xi,yi> pairs

• This could be done using a least squares
approach

• Why least squares?

 - minimizes squared distance between
measurements and predicted line

 - has a nice probabilistic interpretation

 - easy to compute

Linear regression

! "
i

iiw
wxy

2)(minarg
X

Y !+= wxy

If the noise is Gaussian
with mean 0 then least
squares is also the
maximum likelihood
estimate of w

Solving linear regression

• You should be familiar with this by now …

• We just take the derivative w.r.t. to w and set to 0:

!

!

! !

!

!!

=

"=

"=#

"##=#
$

$

i

i

i

ii

i i

iii

i

iii

i

iii

i

ii

x

yx

w

wxyx

wxyx

wxyxwxy
w

2

2

2

0)(2

)(2)(

Regression example
• Generated: w=2
• Recovered: w=2.03
• Noise: std=1

Regression example
• Generated: w=2
• Recovered: w=2.05
• Noise: std=2

Regression example
• Generated: w=2
• Recovered: w=2.08
• Noise: std=4

Affine regression
• So far we assumed that the

line passes through the origin
• What if the line does not?
• No problem, simply change the

model to
 y = w0 + w1x+ε

• Can use least squares to
determine w0 , w1

n

xwy

w i

ii! "

=
1

0

X

Y

w0

!

! "

=

i

i

i

ii

x

wyx

w
2

0

1

)(

Affine regression
• So far we assumed that the

line passes through the origin
• What if the line does not?
• No problem, simply change the

model to
 y = w0 + w1x+ε

• Can use least squares to
determine w0 , w1

n

xwy

w i

ii! "

=
1

0

X

Y

w0

!

! "

=

i

i

i

ii

x

wyx

w
2

0

1

)(

Just a second, we will soon
give a simpler solution

Multivariate regression
• What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the

Google prediction task
• This becomes a multivariate regression problem
• Again, its easy to model:
 y = w0 + w1x1+ … + wkxk + ε

Notations:

Lower case: variable or parameter (w0)

Lower case bold: vector (w)

Upper case bold: matrix (X)

Multivariate regression: Least
squares

• We are now interested in a vector wT = [w0, w1 ,… , wk]
• It would be useful to represent this in matrix notations:

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

=

nkkk

nnT

xxx

xxxXX
X

L

MLMM

L

L

MMM

MMM

L

MMM

21

121111

111

!
!
!
!

"

#

$
$
$
$

%

&

=

n
y

y

y

M

2

1

y

• We can thus re-write our model as y = wTX+ε

• The solution turns out to be: w = (XTX)-1XTy

• This is an instance of a larger set of computational solutions which
are usually referred to as ‘generalized least squares’

Multivariate regression: Least
squares

• We can re-write our model as y = wTX

• The solution turns out to be: w = (XTX)-1XTy

• The is an instance of a larger set of computational solutions which
are usually referred to as ‘generalized least squares’

• XTX is a k by k matrix

• XTy is a vector with k entries

Why is (XTX)-1XTy the right solution?

Hint: Multiply both sides of the original equation by (XTX)-1XT

Multivariate regression: Least
squares

• We can re-write our model as y = wTX

• The solution turns out to be: w = (XTX)-1XTy

We need to invert a k by k matrix

• This takes O(k3)

• Depending on k this can be rather slow

Where we are
• Linear regression – solved!
• But
 - Solution may be slow
 - Does not address general regression problems of the

form
 y = f(wTx)

Back to NN: Preceptron
• The basic processing unit of a neural net

y=f(∑wixi)

w0

w1

w2

wk

x1

x2

xk

1

Linear regression
• Lets start by setting f(∑wixi)=∑wixi

• We are back to linear regression
• Unlike our original linear regression

solution, for perceptrons we will use a
different strategy

• Why?
 - We will discuss this later, for now lets

focus on the solution …

y=wixi

w0

w1

w2

wk

x1

x2

xk

1

Gradient descent

z=(f(w)-y)2

w

Slope = ∂z/ ∂w

Δz

Δw

• Going in the opposite direction to the slope will lead to
a smaller z

• But not too much, otherwise we would go beyond the
optimal w

Gradient descent
• Going in the opposite direction to the slope will lead to
a smaller z

• But not too much, otherwise we would go beyond the
optimal w

• We thus update the weights by setting:

 where λ is small constant which is intended to prevent
us from passing the optimal w

w

z
ww

!

!
"# $

Example when choosing the ‘right’
λ

• We get a monotonically decreasing error as we perform
more updates

Gradient descent for linear
regression

• We compute the gradient w.r.t. to each wi

• And if we have n measurements then

 where xj,i is the i’th value of the j’th input vector

)(2

2

!! ""=#
$

%
&
'

(
"

)

)

k

kki

k

kk

i

xwyxxwy
w

!!
==

"=
#

n

j

j

T

jij

n

j

j

T

j

i

yxy
w 1

,

1

2)(2)(xw-xw-

Gradient descent for linear
regression

• If we have n measurements then

• Set

• Then our update rule can be written as

!!
==

"=
#

n

j

j

T

jij

n

j

j

T

j

i

yxy
w 1

,

1

2)(2)(xw-xw-

)(j

T

jj y xw-=!

!
=

+"
n

j

jijii
xww

1

,
2 #$

Gradient descent algorithm for
linear regression

1.Chose λ
2.Start with a guess for w
3.Compute δj for all j
4.For all i set

5. If no improvement for

stop. Otherwise go to step 3

!
=

+"
n

j

jijii
xww

1

,
2 #$

!
=

n

j

j

T

jy
1

2)(xw-

Example
• W = 2

Gradient descent vs. matrix
inversion

• Advantages of matrix inversion
 - No iterations
 - No need to specify parameters
 - Closed form solution in a predictable time
• Advantages of gradient descent
 - Applicable regardless of the number of parameters
 - General, applies to other forms of regression

Perceptrons for classification
• So far we discussed regression
• However, perceptrons can also be used for classification
• For example, output 1 is wTx > 0 and -1 otherwise
• Problem?

Perceptrons for classification
• So far we discussed regression
• However, perceptrons can also be used for classification
• Outputs either 0 or 1
• We predict 1if wTx > 1/2 and 0 otherwise
• Problem?

y

x

Best least squares fit

Best classifier

The sigmoid function
• To classify using a perceptron we

replace the linear function with the
sigmoid function:

• Using the sigmoid we would minimize

• Where yj is either 0 or 1 depending on
the class

he
hg

!
+

=
1

1
)(

!
=

"
n

j

j

T

j gy
1

2))((xw

Gradient descent with sigmoid
• Once we defined our target function, we can minimize it using

gradient descent
• This involves some math, and relies on the following derivation*:

• So,

))(1)(()(' hghghg !=

*I have included a derivation of this at the end of
the lecture notes

ijj

T

j

T
n

j

j

T

j

j

T

i

j

T
n

j

j

T

j

j

T
n

j

j

i

j

T

j

n

j

j

T

j

i

xgggy

w
ggy

gy
w

gygy
w

,

1

1

11

2

))(1)(())((2

)('))((2

))(())((2))((

xwxwxw

xwxwxw

xwxwxw

!!!=

"

"
!!=

!
"

"
!=!

"

"

#

#

##

=

=

==

Gradient descent with sigmoid

)(j

T

jj gy xw!=")(j

T

j gg xw=

ijj

T

j

T
n

j

j

T

j

n

j

j

T

j

i

xgggygy
w

,

11

2))(1)(())((2))((xwxwxwxw !!!=!
"

"
##
==

Set

ijj

n

j

jj

n

j

j

T

j

i

xgggy
w

,

11

2)1(2))((!!=!
"

"
##
==

$xw

ijj

n

j

jjii
xggww ,

1

)1(2 !+" #
=

$%

So our update rule is:

Revised algorithm for sigmoid
regression

1.Chose λ
2.Start with a guess for w
3.Compute δj for all j
4.For all i set

5. If no improvement for

stop. Otherwise go to step 3

!
=

n

j

j

T

j gy
1

2))(x(w-

ijj

n

j

jjii
xggww ,

1

)1(2 !+" #
=

$%

Multilayer neural networks
• So far we discussed networks with one layer.
• But these networks can be extended to combine several

layers, increasing the set of functions that can be
represented using a NN

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Often called the ‘hidden layer’

Learning the parameters for
multilayer networks

• Gradient descent works by connecting the output to the
inputs.

• But how do we use it for a multilayer network?
• We need to account for both, the output weights and the

hidden layer weights

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Learning the parameters for
multilayer networks

• Its easy to compute the update rule for the output weights
w1 and w2:

 where

ijj

n

j

jjii
vggww ,

1

)1(2 !+" #
=

$%

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

)(j

T

jj gy vw!="

Learning the parameters for
multilayer networks

• Its easy to compute the update rule for the output weights
w1 and w2:

 where

ijj

n

j

jjii
vggww ,

1

)1(2 !+" #
=

$%

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

)(j

T

jj gy vw!="

But what is the error associated with each of the
hidden layer states?

Backpropagation
• A method for distributing the error among hidden layer states
• Using the error for each of these states we can employ gradient

descent to update them
• Set

!

" j,i = wi# j (1$ g j)g j

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

output error

weight

Backpropagation
• A method for distributing the error among hidden layer states
• Using the error for each of these states we can employ gradient

descent to update them
• Set

• Our update rule changes to:

!

" j,i = wi# j (1$ g j)g j

kjij

n

j

ijijikik xggww ,,

1

,,,,)1(2 !"+# $
=

%

Backpropagation

kjij

n

j

ijijikik xggww ,,

1

,,,,)1(2 !"+# $
=

%

The correct error term for each hidden state can be
determined by taking the partial derivative for each
of the weight parameters of the hidden layer w.r.t.
the global error function*:

2))(((xww
T

i

T

jj ggyErr !=

*See RN book for details (pages 746-747)

Revised algorithm for multilayered
neural network

1.Chose λ
2.Start with a guess for w, wi
3.Compute values vi,j for all hidden layer states i and inputs j
4.Compute δj for all j:
5.Compute Δj,I
6.For all i set

7. For all k and i set

8. If no improvement for stop. Otherwise go to
step 3

)(j

T

jj gy vw!="

ijj

n

j

jjii
vggww ,

1

)1(2 !+" #
=

$%

kjij

n

j

ijijikik xggww ,,

1

,,,,)1(2 !"+# $
=

%

!!
==

"+
s

i

ij

n

j

j

1

2

,

1

2#

Examples

Figure 1: Feedforward ANN designed and tested
for prediction of tactical air combat maneuvers.

What you should know
• Linear regression
 - Solving a linear regression problem
• Gradient descent
• Perceptrons
 - Sigmoid functions for classification
• Multilayered neural networks
 - Backpropagation

Deriving g’(x)
• Recall that g(x) is the sigmoid function so

• The derivation of g’(x) is below

x
e

xg
!

+
=
1

1
)(

