
15-780 Homework 2
Deadline: 10:30 am on February 17 (Tuesday)
There are 240 total points: point values are listed with each question.

1) Suppose we are given a search problem whose search space is a tree T with branching factor b and
total depth m. Assume that the shallowest goal g has depth d, and that no other goals have depth
d. Also assume that g is the last node of depth d added to the search queue by both Breadth First
Search (BFS) and Iterative Deepening Search (IDS). Please justify your answers to the following
questions, evaluating all summations (70 pts total: 10 pts each part).

a) For i ∈ [0, m] how many nodes are there in T of depth i?

b) How much space does BFS require in this search problem?

c) How much space does IDS require in this search problem?

d) How many nodes does BFS visit before finding the first goal?

e) How many nodes does IDS visit at iteration i (where iteration 0 is the iteration where we remove
the start node from the queue for the first time)?

f) How many total nodes does IDS visit before finding the first goal?

g) Which algorithm visits more nodes—BFS or IDS? What are the asymptotic running times (i.e.,
in big O notation) of the two algorithms, treating b, d, and m as parameters? Please justify your
answers using the prior parts of this question—do not just cite results from lecture.

2) Consider the map k-coloring problem discussed in class: we are given a map, represented as a
list of regions R = {ri} and a list of pairs of adjacent regions A = {(ri, rj)}, and must assign one
of k colors to each region without ever assigning the same color to two adjacent regions. In this
question you will describe how to set this problem up as a formal search problem in two distinct
ways. Interestingly, while both formulations are quite different, it is not clear which one is better,
and each formulation appears to outperform the other on a subset of the problem instances (70 pts
total: 5 pts each part).

We will provide informal English-language descriptions of the two formulations. Note that there
may be more than one way to translate our descriptions into more-formal pseudocode. Your answers
to each part will depend on the exact details of your particular translation. We will therefore
weight your justifications and internal consistency more heavily than whether you got the same
final numbers we did.

Recall that a search problem consists of the following elements: a data structure node, a function
initialNode(), a function getSuccessors(node), and a function testGoal(node).

In the first formulation, a node will represent a partial coloring of the map, and we will color the
entire map by successively coloring one additional region.

1



a) Describe the node data structure for this formulation. How many total nodes are there?

b) Give pseudocode for the initialNode() function of this formulation.

c) Give pseudocode for the getSuccessors(node) function of this formulation. What is the maximal
number of successors of a node?

d) Give pseudocode for the testGoal(node) function of this formulation.

e) What is the branching factor of the search tree T induced by the search problem?

f) What is the total depth of T?

g) What can you conclude about the depth of the shallowest goal in T?

In the second formulation, a node will represent a complete coloring of the map, and we will color
the entire map by repeatedly changing one of the regions to be a new color.

h) Describe the node data structure for this formulation. How many total nodes are there?

i) Give pseudocode for the initialNode() function of this formulation.

j) Give pseudocode for the getSuccessors(node) function of this formulation. What is the maximal
number of successors of a node?

k) Give pseudocode for the testGoal(node) function of this formulation.

l) What is the branching factor of the search tree T induced by the search problem?

m) What is the total depth of T?

n) What can you conclude about the depth of the shallowest goal in T?

3) (100 pts total) In this question you will implement a boolean satisfiability (SAT) solver that
takes a set of variables and constraints in conjunctive normal form (CNF) and returns either a
satisfying assignment or determines that no satisfying assignment is possible.

In class we discussed the Davis-Putnam-Logemann-Loveland (DPLL) algorithm, which, after al-
most 50 years, is still the basis for some of the world’s fastest SAT solvers. Although SAT is an
NP-complete problem, DPLL is able to efficiently exploit CNF clause structure with heuristic tech-
niques like backtracking and unit propagation to solve problems with thousands of variables (see
the lecture notes for details). As we will see later in the semester, many NP-complete problems are
easily translated into SAT problems, so developing efficient SAT solvers has long been an active
area of research with SAT dedicated conferences and annual competitions.

Satisfiability problems are often written in a standard text format called “DIMACS CNF” format
which the program that you are about to write will have to be able to parse. The format is defined

2



as follows:

• Each line that begins with a ’c’ is a comment.

• The first non-comment line must be of the form: ‘p cnf numberOfVariables numberOfClauses’

• Each of the non-comment lines after the first line defines a clause. These lines are space
separated lists of variables with a positive value indicating the variable and a negative value
indicating the negation of the variable. The line is always terminated with a space followed
by a ‘0’.

For example, the first few lines of this .cnf file

c SAT07-Contest Parameters: unif k=3 r=4.2 v=19000 c=79800 seed=49237390
c Uniform UNKNOWN KSAT Instance k=3, nbc=79800, nbv=19000, seed=49237390
p cnf 19000 79800
1987 452 3709 0
-9366 -9214 -1319 0
-17825 8919 4446 0
-16248 11524 -13331 0
4850 -908 -7624 0

indicate that this is a 19,000 variable SAT problem with 79,800 clauses. The first clause is
(x1987 ∨ x452 ∨ x3709), the second clause is (¬x9366 ∨ ¬x9214 ∨ ¬x1319), etc.

The SAT problems required for the following questions can be downloaded from:
http://www.cs.cmu.edu/∼sandholm/www/cs15-780S09/hws.html
under Homework 2. The archive also contains a verifier in C that will allow you to check your
solutions for each SAT problem.

a) (60 pts) Implement DPLL. When solving SAT problems, speed is paramount and you will be
graded on program correctness and speed of execution. You should use the heuristics discussed in
class to make your implementation as fast as possible. These include:

• Backtracking.

• Unit propagation.

• Variable ordering heuristics.

• Value ordering heuristics.

• No branching on variables that only occur in Horn clauses.

You should not implement clause learning or conflict-directed backjumping. You will get to imple-
ment those in a future assignment.

Your implementation should be in either Java or C/C++. Note, however, that if you choose Java
you will need to find creative ways to speed up your program in order to compete with programs
that are written in C/C++. If you are writing your program in C or C++, be sure to compile with
level 3 optimization (e.g. gcc -O3 satsolver.c -o satsolver).

3



Do not attach your code to your writeup. Instead, email your source code to Byron by the due
date and time.

b) (10 pts) Run your program on each of the following satisfiable SAT problems:

problem1.cnf
problem2.cnf
problem3.cnf
problem4.cnf
problem5.cnf

The solutions to each sat problem should be recorded in separate solution files, each named
problem NUMBER.sol. Each line of the .sol format contains a variable name followed by a space
and the Boolean assignment. For example:

1 1
2 0
3 0
4 0

Please send your solution files by email to Byron by the due date and time.

c) (10 pts) For each of the following SAT problems, use your SAT solver to determine whether each
problem is satisfiable or unsatisfiable. You do not have to report the actual satisfying assignments
for this part.

problem6.cnf
problem7.cnf
problem8.cnf
problem9.cnf
problem10.cnf
problem11.cnf
problem12.cnf

d) (20 pts) Each of the problems in part c was generated from the same random CNF generator, but
with different numbers of variables and clauses and different ratios of clauses to variables. Report
the amount of time that it takes to solve each SAT problem in part c.

Do these times make sense? Specifically: How does the time it takes to solve each problem increase
as the number of variables increases (with the same ratio of variables to clauses)? How does the
changing the ratio of variables to clauses change the time it takes to solve these randomly generated
problems?

Will these timing results hold for real-world SAT problems? What other factors might influence
the time it takes DPLL to solve a SAT problem?

4


