
Support Vector Machines and

Kernel Methods

Geoff Gordon
ggordon@cs.cmu.edu

June 15, 2004



Support vector machines

The SVM is a machine learning algorithm which

• solves classification problems

• uses a flexible representation of the class boundaries

• implements automatic complexity control to reduce overfitting

• has a single global minimum which can be found in polynomial
time

It is popular because

• it can be easy to use

• it often has good generalization performance

• the same algorithm solves a variety of problems with little tuning



SVM concepts

Perceptrons

Convex programming and duality

Using maximum margin to control complexity

Representing nonlinear boundaries with feature expansion

The “kernel trick” for efficient optimization



Outline

• Classification problems

• Perceptrons and convex programs

• From perceptrons to SVMs

• Advanced topics



Classification example—Fisher’s irises
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Iris data

Three species of iris

Measurements of petal length, width

Iris setosa is linearly separable from I. versicolor and I. virginica



Example—Boston housing data
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A good linear classifier
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Example—NIST digits
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28 × 28 = 784 features in [0,1]



Class means
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A linear separator
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Sometimes a nonlinear classifier is better
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Sometimes a nonlinear classifier is better
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Classification problem

X y

...
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Data points X = [x1;x2;x3; . . .] with xi ∈ Rn

Labels y = [y1; y2; y3; . . .] with yi ∈ {−1,1}

Solution is a subset of Rn, the “classifier”

Often represented as a test f(x, learnable parameters) ≥ 0

Define: decision surface, linear separator, linearly separable



What is goal?

Classify new data with fewest possible mistakes

Proxy: minimize some function on training data

min
w

∑

i

l(yif(xi;w)) + l0(w)

That’s l(f(x)) for +ve examples, l(−f(x)) for -ve
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piecewise linear loss logistic loss



Getting fancy

Text? Hyperlinks? Relational database records?

• difficult to featurize w/ reasonable number of features

• but what if we could handle large or infinite feature sets?



Outline

• Classification problems

• Perceptrons and convex programs

• From perceptrons to SVMs

• Advanced topics



Perceptrons
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Weight vector w, bias c

Classification rule: sign(f(x)) where f(x) = x · w + c

Penalty for mispredicting: l(yf(x)) = [yf(x)]−

This penalty is convex in w, so all minima are global

Note: unit-length x vectors



Training perceptrons

Perceptron learning rule: on mistake,

w += yx

c += y

That is, gradient descent on l(yf(x)), since

∇w [y(x · w + c)]− =

{

−yx if y(x · w + c) ≤ 0
0 otherwise



Perceptron demo
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Perceptrons as linear inequalities

Linear inequalities (for separable case):

y(x · w + c) > 0

That’s

x · w + c > 0 for positive examples
x · w + c < 0 for negative examples

i.e., ensure correct classification of training examples

Note > not ≥



Version space

x · w + c = 0

As a fn of x: hyperplane w/ normal w at distance c/‖w‖ from origin

As a fn of w: hyperplane w/ normal x at distance c/‖x‖ from origin



Convex programs

Convex program:

min f(x) subject to

gi(x) ≤ 0 i = 1 . . . m

where f and gi are convex functions

Perceptron is almost a convex program (> vs. ≥)

Trick: write

y(x · w + c) ≥ 1



Slack variables
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If not linearly separable, add slack variable s ≥ 0

y(x · w + c) + s ≥ 1

Then
∑

i si is total amount by which constraints are violated

So try to make
∑

i si as small as possible



Perceptron as convex program

The final convex program for the perceptron is:

min
∑

i si subject to

(yixi) · w + yic + si ≥ 1

si ≥ 0

We will try to understand this program using convex duality



Duality

To every convex program corresponds a dual

Solving original (primal) is equivalent to solving dual

Dual often provides insight

Can derive dual by using Lagrange multipliers to eliminate con-
straints



Lagrange Multipliers

Way to phrase constrained optimization problem as a game

maxx f(x) subject to g(x) ≥ 0

(assume f, g are convex downward)

maxx mina≥0 f(x) + ag(x)

If x plays g(x) < 0, then a wins: playing big numbers makes payoff
approach −∞

If x plays g(x) ≥ 0, then a must play 0



Lagrange Multipliers: the picture
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Lagrange Multipliers: the caption

Problem: maximize

f(x, y) = 6x + 8y

subject to

g(x, y) = x2 + y2 − 1 ≥ 0

Using a Lagrange multiplier a,

max
xy

min
a≥0

f(x, y) + ag(x, y)

At optimum,

0 = ∇f(x, y) + a∇g(x, y) =

(

6
8

)

+ 2a

(

x
y

)



Duality for the perceptron

Notation: zi = yixi and Z = [z1; z2; . . .], so that:

mins,w,c
∑

i si subject to

Zw + cy + s ≥ 1

s ≥ 0

Using a Lagrange multiplier vector a ≥ 0,

mins,w,c maxa
∑

i si − aT(Zw + cy + s − 1)

subject to s ≥ 0 a ≥ 0



Duality cont’d

From last slide:

mins,w,c maxa
∑

i si − aT(Zw + cy + s − 1)

subject to s ≥ 0 a ≥ 0

Minimize wrt w, c explicitly by setting gradient to 0:

0 = aTZ

0 = aTy

Minimizing wrt s yields inequality:

0 ≤ 1 − a



Duality cont’d

Final form of dual program for perceptron:

maxa 1Ta subject to

0 = aTZ

0 = aTy

0 ≤ a ≤ 1



Problems with perceptrons
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Vulnerable to overfitting when many input features

Not very expressive (XOR)
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Modernizing the perceptron

Three extensions:

• Margins

• Feature expansion

• Kernel trick

Result is called a Support Vector Machine (reason given below)



Margins

Margin is the signed ⊥ distance from an example to the decision
boundary

+ve margin points are correctly classified, -ve margin means error



SVMs are maximum margin

Maximize minimum distance from data to separator

“Ball center” of version space (caveats)

Other centers: analytic center, center of mass, Bayes point

Note: if not linearly separable, must trade margin vs. errors



Why do margins help?

If our hypothesis is near the boundary of decision space, we don’t
necessarily learn much from our mistakes

If we’re far away from any boundary, a mistake has to eliminate a
large volume from version space



Why margins help, explanation 2

Occam’s razor: “simple” classifiers are likely to do better in practice

Why? There are fewer simple classifiers than complicated ones, so
we are less likely to be able to fool ourselves by finding a really good
fit by accident.

What does “simple” mean? Anything, as long as you tell me before
you see the data.



Explanation 2 cont’d

“Simple” can mean:

• Low-dimensional

• Large margin

• Short description length

For this lecture we are interested in large margins and compact de-
scriptions

By contrast, many classical complexity control methods (AIC, BIC)
rely on low dimensionality alone



Why margins help, explanation 3

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Margin loss is an upper bound on number of mistakes



Why margins help, explanation 4



Optimizing the margin

Most common method: convex quadratic program

Efficient algorithms exist (essentially the same as some interior point
LP algorithms)

Because QP is strictly∗ convex, unique global optimum

Next few slides derive the QP. Notation:

• Assume w.l.o.g. ‖xi‖2 = 1

• Ignore slack variables for now (i.e., assume linearly separable)

∗if you ignore the intercept term



Optimizing the margin, cont’d

Margin M is ⊥ distance to decision surface: for pos example,

(x − Mw/‖w‖) · w + c = 0

x · w + c = Mw · w/‖w‖ = M‖w‖

SVM maximizes M > 0 such that all margins are ≥ M :

maxM>0,w,c M subject to

(yixi) · w + yic ≥ M‖w‖

Notation: zi = yixi and Z = [z1; z2; . . .], so that:

Zw + yc ≥ M‖w‖

Note λw, λc is a solution if w, c is



Optimizing the margin, cont’d

Divide by M‖w‖ to get (Zw + yc)/M‖w‖ ≥ 1

Define v = w
M‖w‖ and d = c

M‖w‖, so that ‖v‖ =
‖w‖

M‖w‖ = 1
M

maxv,d 1/‖v‖ subject to

Zv + yd ≥ 1

Maximizing 1/‖v‖ is minimizing ‖v‖ is minimizing ‖v‖2

minv,d ‖v‖2 subject to

Zv + yd ≥ 1

Add slack variables to handle non-separable case:

mins≥0,v,d ‖v‖2 + C
∑

i si subject to

Zv + yd + s ≥ 1



Modernizing the perceptron

Three extensions:

• Margins

• Feature expansion

• Kernel trick



Feature expansion

Given an example x = [a b ...]

Could add new features like a2, ab, a7b3, sin(b), ...

Same optimization as before, but with longer x vectors and so longer
w vector

Classifier: “is 3a + 2b + a2 + 3ab − a7b3 + 4sin(b) ≥ 2.6?”

This classifier is nonlinear in original features, but linear in expanded
feature space

We have replaced x by φ(x) for some nonlinear φ, so decision
boundary is nonlinear surface w · φ(x) + c = 0



Feature expansion example
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Some popular feature sets

Polynomials of degree k

1, a, a2, b, b2, ab

Neural nets (sigmoids)

tanh(3a + 2b − 1), tanh(5a − 4), . . .

RBFs of radius σ

exp

(

− 1

σ2
((a − a0)

2 + (b − b0)
2)

)



Feature expansion problems

Feature expansion techniques yield lots of features

E.g. polynomial of degree k on n original features yields O(nk)

expanded features

E.g. RBFs yield infinitely many expanded features!

Inefficient (for i = 1 to infinity do ...)

Overfitting (VC-dimension argument)



How to fix feature expansion

We have already shown we can handle the overfitting problem: even
if we have lots of parameters, large margins make simple classifiers

“All” that’s left is efficiency

Solution: kernel trick



Modernizing the perceptron

Three extensions:

• Margins

• Feature expansion

• Kernel trick



Kernel trick

Way to make optimization efficient when there are lots of features

Compute one Lagrange multiplier per training example instead of
one weight per feature (part I)

Use kernel function to avoid representing w ever (part II)

Will mean we can handle infinitely many features!



Kernel trick, part I

minw,c |w|2/2 subject to Zw + yc ≥ 1

minw,c maxa≥0 wTw/2 + a · (1 − Zw − yc)

Minimize wrt w, c by setting derivatives to 0

0 = w − ZTa 0 = a · y

Substitute back in for w, c

maxa≥0 a · 1 − aTZZTa/2 subject to a · y = 0

Note: to allow slacks, add an upper bound a ≤ C



What did we just do?

max0≤a≤C a · 1 − aTZZTa/2 subject to a · y = 0

Now we have a QP in a instead of w, c

Once we solve for a, we can find w = ZTa to use for classification

We also need c which we can get from complementarity:

yixi · w + yic = 1 ⇔ ai > 0

or as dual variable for a · y = 0



Representation of w

Optimal w = ZTa is a linear combination of rows of Z

I.e., w is a linear combination of (signed) training examples

I.e., w has a finite representation even if there are infinitely many
features



Support vectors

Examples with ai > 0 are called support vectors

“Support vector machine” = learning algorithm (“machine”) based
on support vectors

Often many fewer than number of training examples (a is sparse)

This is the “short description” of an SVM mentioned above



Intuition for support vectors
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Partway through optimization

Suppose we have 5 positive support vectors and 5 negative, all with
equal weights

Best w so far is ZTa: diff between mean of +ve SVs, mean of -ve

Averaging xi · w + c = yi for all SVs yields

c = −x̄ · w

That is,

• Compute mean of +ve SVs, mean of -ve SVs

• Draw the line between means, and its perpendicular bisector

• This bisector is current classifier



At end of optimization

Gradient wrt ai is 1 − yi(xi · w + c)

Increase ai if (scaled) margin < 1, decrease if margin > 1

Stable iff (ai = 0 AND margin ≥ 1) OR margin = 1



How to avoid writing down weights

Suppose number of features is really big or even infinite?

Can’t write down X, so how do we solve the QP?

Can’t even write down w, so how do we classify new examples?



Solving the QP

max0≤a≤C a · 1 − aTZZTa/2 subject to a · y = 0

Write G = ZZT (called Gram matrix)

That is, Gij = yiyjxi · xj

max0≤a≤C a · 1 − aTGa/2 subject to a · y = 0

With m training examples, G is m × m — (often) small enough for
us to solve the QP even if we can’t write down X

Can we compute G directly, without computing X?



Kernel trick, part II

Yes, we can compute G directly—sometimes!

Recall that xi was the result of applying a nonlinear feature expan-
sion function φ to some shorter vector (say qi)

Define K(qi,qj) = φ(qi) · φ(qj)



Mercer kernels

K is called a (Mercer) kernel function

Satisfies Mercer condition: K(q,q′) ≥ 0

Mercer condition for a function K is analogous to nonnegative defi-
niteness for a matrix

In many cases there is a simple expression for K even if there isn’t
one for φ

In fact, it sometimes happens that we know K without knowing φ



Example kernels

Polynomial (typical component of φ might be 17q2
1q32q4)

K(q,q′) = (1 + q · q′)k

Sigmoid (typical component tanh(q1 + 3q2))

K(q,q′) = tanh(aq · q′ + b)

Gaussian RBF (typical component exp(−1
2(q1 − 5)2))

K(q,q′) = exp(−‖q − q′‖2/σ2)



Detail: polynomial kernel

Suppose x =







1√
2q

q2







Then x′ · x = 1 + 2qq′ + q2(q′)2

From previous slide,

K(q, q′) = (1 + qq′)2 = 1 + 2qq′ + q2(q′)2

Dot product + addition + exponentiation vs. O(nk) terms



The new decision rule

Recall original decision rule: sign(x · w + c)

Use representation in terms of support vectors:

sign(x·ZTa+c) = sign





∑

i

x · xiyiai + c



 = sign





∑

i

K(q,qi)yiai + c





Since there are usually not too many support vectors, this is a rea-
sonably fast calculation



Summary of SVM algorithm

Training:

• Compute Gram matrix Gij = yiyjK(qi,qj)

• Solve QP to get a

• Compute intercept c by using complementarity or duality

Classification:

• Compute ki = K(q,qi) for support vectors qi

• Compute f = c +
∑

i aikiyi

• Test sign(f)
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Advanced kernels

All problems so far: each example is a list of numbers

What about text, relational DBs, . . . ?

Insight: K(x, y) can be defined when x and y are not fixed length

Examples:

• String kernels

• Path kernels

• Tree kernels

• Graph kernels



String kernels

Pick λ ∈ (0,1)

cat 7→ c, a, t, λ ca, λ at, λ2 ct, λ2 cat

Strings are similar if they share lots of nearly-contiguous substrings

Works for words in phrases too: “man bites dog” similar to “man
bites hot dog,” less similar to “dog bites man”

There is an efficient dynamic-programming algorithm to evaluate
this kernel (Lodhi et al, 2002)



Combining kernels

Suppose K(x, y) and K ′(x, y) are kernels

Then so are

• K + K ′

• αK for α > 0

Given a set of kernels K1, K2, . . ., can search for best

K = α1K1 + α2K2 + . . .

using cross-validation, etc.



“Kernel X”

Kernel trick isn’t limited to SVDs

Works whenever we can express an algorithm using only sums, dot
products of training examples

Examples:

• kernel Fisher discriminant

• kernel logistic regression

• kernel linear and ridge regression

• kernel SVD or PCA

• 1-class learning / density estimation



Summary

Perceptrons are a simple, popular way to learn a classifier

They suffer from inefficient use of data, overfitting, and lack of ex-
pressiveness

SVMs fix these problems using margins and feature expansion

In order to make feature expansion computationally feasible, we
need the kernel trick

Kernel trick avoids writing out high-dimensional feature vectors by
use of Lagrange multipliers and representer theorem

SVMs are popular classifiers because they usually achieve good
error rates and can handle unusual types of data
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