
Support Vector Machines and

Kernel Methods

Geoff Gordon
ggordon@cs.cmu.edu

July 10, 2003

Overview

Why do people care about SVMs?

• Classification problems

• SVMs often produce good results over a wide range of prob-
lems

• SVMs can be easy to use

What are SVMs?

• Perceptrons

• Margins

• Feature expansion

• The “kernel trick”

Summary

Example—Boston housing data

40 50 60 70 80 90 100 110 120 130
60

65

70

75

80

85

90

95

100

Industry & Pollution

%
 M

id
dl

e
&

 U
pp

er
 C

la
ss

A good linear classifier

40 50 60 70 80 90 100 110 120 130
60

65

70

75

80

85

90

95

100

Industry & Pollution

%
 M

id
dl

e
&

 U
pp

er
 C

la
ss

Sometimes a nonlinear classifier is better

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Getting fancy

More features (tax level, units per building)

Lots more features (sine of tax level, hyperbolic tangent of sum of
income and units)

Text? Hyperlinks? Relational database records?

• difficult to featurize w/ reasonable number of features

• but what if we could handle large or infinite feature sets?

Classification problem

X y

...

40 50 60 70 80 90 100 110 120 130
60

65

70

75

80

85

90

95

100

Industry & Pollution

%
 M

id
dl

e
&

 U
pp

er
 C

la
ss

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Data points X = [x1;x2;x3; . . .] with xi ∈ Rn

Labels y = [y1; y2; y3; . . .] with yi ∈ {−1,1}

Solution is a subset of Rn, the “classifier”

Often represented as a test f(x, learnable parameters) ≥ 0

Define: decision surface, linear separator, linearly separable

What is goal?

Classify new data with fewest possible mistakes

Proxy: minimize some function on training data

min
w

∑

i

l(yif(xi;w)) + l0(w)

That’s l(f(x)) for +ve examples, l(−f(x)) for -ve

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

piecewise linear loss logistic loss

Perceptrons

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Weight vector w, bias c

Classification rule: sign(f(x)) where f(x) = x · w + c

Penalty for mispredicting: l(yf(x)) = [yf(x)]−

This penalty is convex in w, so all minima are global

Note: unit-length x vectors

Training perceptrons

Perceptron learning rule: on mistake,

w += yx

c += y

That is, gradient descent on l(yf(x)), since

∇w [y(x · w + c)]− =

{

−yx if y(x · w + c) < 0
0 otherwise

Training perceptrons, cont’d

Solve linear inequalities (for separable case):

y(x · w + c) ≥ 0

That’s

x · w + c ≥ 0 for positive examples
x · w + c ≤ 0 for negative examples

i.e., ensure correct classification of training examples

Linear program (for general case):

mins≥0,w,c
∑

i si subject to

(yixi) · w + yic + si ≥ 0

Version space

x · w + c = 0

As a fn of x: hyperplane w/ normal w at distance c/‖w‖ from origin

As a fn of w: hyperplane w/ normal x at distance c/‖x‖ from origin

Problems with perceptrons

Slow learning (data inefficient)

Vulnerable to overfitting (especially when many input features)

Not very expressive (XOR)

Modernizing the perceptron

Three extensions:

• Margins

• Feature expansion

• Kernel trick

Result is called a Support Vector Machine (reason given below)

Margins

Margin is the signed ⊥ distance from an example to the decision
boundary

+ve margin points are correctly classified, -ve margin means error

SVMs are maximum margin

Maximize minimum distance from data to separator

“Ball center” of version space (caveats)

Other centers: analytic center, center of mass, Bayes point

Note: if not linearly separable, must trade margin vs. errors

Why do margins help?

If our hypothesis is near the boundary of decision space, we don’t
necessarily learn much from our mistakes

If we’re far away from any boundary, a mistake has to eliminate a
large volume from version space

Why margins help, explanation 2

Occam’s razor: “simple” classifiers are likely to do better in practice

Why? There are fewer simple classifiers than complicated ones, so
we are less likely to be able to fool ourselves by finding a really good
fit by accident.

What does “simple” mean? Anything, as long as you tell me before
you see the data.

Explanation 2 cont’d

“Simple” can mean:

• Low-dimensional

• Large margin

• Short description length

For this lecture we are interested in large margins and compact de-
scriptions

By contrast, many classical complexity control methods (AIC, BIC)
rely on low dimensionality alone

Why margins help, explanation 3

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Margin loss is an upper bound on number of mistakes

Why margins help, explanation 4

Optimizing the margin

Most common method: convex quadratic program

Efficient algorithms exist (essentially the same as some interior point
LP algorithms)

Because QP is strictly∗ convex, unique global optimum

Next few slides derive the QP. Notation:

• Assume w.l.o.g. ‖xi‖2 = 1

• Ignore slack variables for now (i.e., assume linearly separable)

∗if you ignore the intercept term

Optimizing the margin, cont’d

Margin M is ⊥ distance to decision surface:

y((x − Mw/‖w‖) · w + c) = 0

y(x · w + c) = Mw · w/‖w‖ = M‖w‖

SVM maximizes M > 0 such that all margins are ≥ M :

maxM>0,w,c M subject to

(yixi) · w + yic ≥ M‖w‖

Notation: zi = yixi and Z = [z1; z2; . . .], so that:

Zw + yc ≥ M‖w‖

Note λw, λc is a solution if w, c is

Optimizing the margin, cont’d

Divide by M‖w‖ to get (Zw + yc)/M‖w‖ ≥ 1

Define v = w

M‖w‖ and d = c
M‖w‖, so that ‖v‖ =

‖w‖
M‖w‖ = 1

M

maxv,d 1/‖v‖ subject to

Zv + yd ≥ 1

Maximizing 1/‖v‖ is minimizing ‖v‖ is minimizing ‖v‖2

minv,d ‖v‖2 subject to

Zv + yd ≥ 1

Add slack variables to handle non-separable case:

mins≥0,v,d ‖v‖2 + C
∑

i si subject to

Zv + yd + s ≥ 1

Feature expansion

Given an example x = [a b ...]

Could add new features like a2, ab, a7b3, sin(b), ...

Same optimization as before, but with longer x vectors and so longer
w vector

Classifier: “is 3a + 2b + a2 + 3ab − a7b3 + 4sin(b) ≥ 2.6?”

This classifier is nonlinear in original features, but linear in expanded
feature space

We have replaced x by φ(x) for some nonlinear φ, so decision
boundary is nonlinear surface w · φ(x) + c = 0

Feature expansion example

Some popular feature sets

Polynomials of degree k

1, a, a2, b, b2, ab

Neural nets (sigmoids)

tanh(3a + 2b − 1), tanh(5a − 4), . . .

RBFs of radius σ

exp

(

− 1

σ2
((a − a0)

2 + (b − b0)
2)

)

Feature expansion problems

Feature expansion techniques yield lots of features

E.g. polynomial of degree k on n original features yields O(nk)

expanded features

E.g. RBFs yield infinitely many expanded features!

Inefficient (for i = 1 to infinity do ...)

Overfitting (VC-dimension argument)

How to fix feature expansion

We have already shown we can handle the overfitting problem: even
if we have lots of parameters, large margins make simple classifiers

“All” that’s left is efficiency

Lagrange multipliers, then kernel trick

Lagrange Multipliers

Way to phrase constrained optimization problem as a game

maxx f(x) subject to g(x) ≥ 0

maxx mina≥0 f(x) + ag(x)

If x plays g(x) < 0, then a wins: playing big numbers makes payoff
approach −∞

If x plays g(x) ≥ 0, then a must play 0

Lagrange Multipliers: the picture

Lagrange Multipliers: the caption

Problem: maximize

f(x, y) = 6x + 8y

subject to

g(x, y) = x2 + y2 − 1 ≥ 0

Using a Lagrange multiplier a,

max
xy

min
a≥0

f(x, y) + ag(x, y)

At optimum,

0 = ∇f(x, y) + a∇g(x, y) =

(

6
8

)

+ 2a

(

x
y

)

Kernel trick

Way to make optimization efficient when there are lots of features

Compute one Lagrange multiplier per training example instead of
one weight per feature (part I)

Use kernel function to avoid representing w ever (part II)

Will mean we can handle infinitely many features!

Kernel trick, part I

minw,c |w|2/2 subject to Zw + yc ≥ 1

minw,c maxa≥0 w
T
w/2 + a · (1 − Zw − yc)

Minimize wrt w, c by setting derivatives to 0

0 = w − ZT
a 0 = a · y

Substitute back in for w, c

maxa≥0 a · 1 − a
TZZT

a/2 subject to a · y = 0

Note: to allow slacks, add an upper bound a ≤ C

What did we just do?

max0≤a≤C a · 1 − a
TZZT

a/2 subject to a · y = 0

Now we have a QP in a instead of w, c

Once we solve for a, we can find w = ZT
a to use for classification

We also need c which we can get from complementarity:

yixi · w + yic = 1 ⇔ ai > 0

or as dual variable for a · y = 0

Representer theorem

Optimal w = ZT
a is a linear combination of rows of Z

I.e., w is a linear combination of (signed) training examples

I.e., w has a finite representation even if there are infinitely many
features

Surprising and useful fact; consequence of the Representer Theo-
rem

Support vectors

Examples with ai > 0 are called support vectors

“Support vector machine” = learning algorithm (“machine”) based
on support vectors

Often many fewer than number of training examples (a is sparse)

This is the “short description” of an SVM mentioned above

Intuition for support vectors

40 50 60 70 80 90 100 110 120
60

70

80

90

100

110

120

Partway through optimization

Suppose we have 5 positive support vectors and 5 negative, all with
equal weights

Best w so far is ZT
a: diff between mean of +ve SVs, mean of -ve

Averaging xi · w + c = yi for all SVs yields

c = −x̄ · w

That is,

• Compute mean of +ve SVs, mean of -ve SVs

• Draw the line between means, and its perpendicular bisector

• This bisector is current classifier

At end of optimization

Gradient wrt ai is 1 − yi(xi · w + c)

Increase ai if (scaled) margin < 1, decrease if margin > 1

Stable iff (ai = 0 AND margin ≥ 1) OR margin = 1

How to avoid writing down weights

Suppose number of features is really big or even infinite?

Can’t write down X, so how do we solve the QP?

Can’t even write down w, so how do we classify new examples?

Solving the QP

max0≤a≤C a · 1 − a
TZZT

a/2 subject to a · y = 0

Write G = ZZT (called Gram matrix)

That is, Gij = yiyjxi · xj

max0≤a≤C a · 1 − a
TGa/2 subject to a · y = 0

With m training examples, G is m × m — (often) small enough for
us to solve the QP even if we can’t write down X

Can we compute G directly, without computing X?

Kernel trick, part II

Yes, we can compute G directly—sometimes!

Recall that xi was the result of applying a nonlinear feature expan-
sion function φ to some shorter vector (say qi)

Define K(qi,qj) = φ(qi) · φ(qj)

Mercer kernels

K is called a (Mercer) kernel function

Satisfies Mercer condition: K(q,q′) ≥ 0

Mercer condition for a function K is analogous to nonnegative defi-
niteness for a matrix

In many cases there is a simple expression for K even if there isn’t
one for φ

In fact, it sometimes happens that we know K without knowing φ

Example kernels

Polynomial (typical component of φ might be 17q2
1q32q4)

K(q,q′) = (1 + q · q′)k

Sigmoid (typical component tanh(q1 + 3q2))

K(q,q′) = tanh(aq · q′ + b)

Gaussian RBF (typical component exp(−1
2(q1 − 5)2))

K(q,q′) = exp(−‖q − q
′‖2/σ2)

Detail: polynomial kernel

Suppose x =

1√
2q

q2

Then x
′ · x = 1 + 2qq′ + q2(q′)2

From previous slide,

K(q, q′) = (1 + qq′)2 = 1 + 2qq′ + q2(q′)2

Dot product + addition + exponentiation vs. O(nk) terms

The new decision rule

Recall original decision rule: sign(x · w + c)

Use representation in terms of support vectors:

sign(x·ZT
a+c) = sign

∑

i

x · xiyiai + c

 = sign

∑

i

K(q,qi)yiai + c

Since there are usually not too many support vectors, this is a rea-
sonably fast calculation

Summary of SVM algorithm

Training:

• Compute Gram matrix Gij = yiyjK(qi,qj)

• Solve QP to get a

• Compute intercept c by using complementarity or duality

Classification:

• Compute ki = K(q,qi) for support vectors qi

• Compute f = c +
∑

i aikiyi

• Test sign(f)

Advanced kernels

String kernels

Path kernels

Tree kernels

Graph kernels

String kernels

Pick λ ∈ (0,1)

cat 7→ c, a, t, λ ca, λ at, λ2 ct, λ2 cat

Strings are similar if they share lots of nearly-contiguous substrings

Works for words in phrases too: “man bites dog” similar to “man
bites hot dog,” less similar to “dog bites man”

There is an efficient dynamic-programming algorithm to evaluate
this kernel (Lodhi et al, 2002)

Summary

Perceptrons are a simple, popular way to learn a classifier

They suffer from inefficient use of data, overfitting, and lack of ex-
pressiveness

SVMs fix these problems using margins and feature expansion

In order to make feature expansion computationally feasible, we
need the kernel trick

Kernel trick avoids writing out high-dimensional feature vectors by
use of Lagrange multipliers and representer theorem

SVMs are popular classifiers because they usually achieve good
error rates and can handle unusual types of data

References

http://www.cs.cmu.edu/~ggordon/SVMs

these slides, together with code

http://svm.research.bell-labs.com/SVMdoc.html

Burges’s SVM tutorial

http://citeseer.nj.nec.com/burges98tutorial.html

Burges’s paper “A Tutorial on Support Vector Machines for Pattern
Recognition” (1998)

References

Huma Lodhi, Craig Saunders, Nello Cristianini, John Shawe-Taylor,
Chris Watkins. “Text Classification using String Kernels.” 2002.

http://www.cs.rhbnc.ac.uk/research/compint/areas/

comp_learn/sv/pub/slide1.ps

Slides by Stitson & Weston

http://oregonstate.edu/dept/math/CalculusQuestStudyGuides/

vcalc/lagrang/lagrang.html

Lagrange Multipliers

http://svm.research.bell-labs.com/SVT/SVMsvt.html

on-line SVM applet

