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Abstract We address the basic problem of coordinating the actions of multiple robots
that are working toward a common goal. This kind of problem is NP-hard,
because in order to coordinate a system of n robots, it is in principle necessary
to generate and evaluate a number of actions or plans that is exponential in n

(assuming P 6= NP ). However, we suggest that many instances of coordination
problems, despite the NP-hardness of the overall class of problems, do not in
practice require exponential computation in order to arrive at good solutions. In
such problems, it is not necessary to consider all possible actions of the n robots;
instead an algorithm may restrict its attention to interactions within small teams,
and still produce high-quality solutions.

We use this insight in the development of a novel coordination algorithm that
we call parallel stochastic hill-climbing with small teams, or Parish. This algo-
rithm is designed specifically for use in multi-robot systems: it can run off-line
or on-line, is easily distributed across multiple machines, and is efficient with
regard to communication. We state and analyze the Parish algorithm present
results from the implementation and application of the algorithm for a con-
crete problem: multi-robot pursuit-evasion. In this demanding domain, a team
of robots must coordinate their actions so as to guarantee location of a skilled
evader.
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1. Introduction

Multi-robot systems have the potential to be far more useful than single
robots: multiple robots may perform a given task more efficiently than a single
robot, multiple robots may be more robust to failure than a single robot, and
multiple robots may be able to achieve tasks that are impossible for a single
robot. However, reaching that potential can be extremely difficult, especially
in the case where multiple robots make task achievement possible, rather than
simply better. The difficulty arises primarily from the combinatorial possi-
bilities inherent in the problem of coordinating the actions of multiple robots,
which is in general NP -hard (Garey and Johnson, 1979). Given a system of
n robots and a common goal, it may be necessary to generate and evaluate a
number of actions or plans that is exponential in n (assuming that P 6= NP ).

One common way to attack such a problem is brute-force search in the joint
state/action space. That is, treat the multi-robot system as one many-bodied
robot and look through the exponentially many possibilities until the right an-
swer is found. Though this approach will produce an optimal solution, it is only
viable on simple problems, as the necessary computation quickly becomes in-
tractable as the number of robots and/or the complexity of the problem grows.
This fact contradicts the intuition that having more robots available should
make a task easier, rather than harder, to solve. Additionally, this approach
is undesirable for most robotic applications, because it requires a centralized
planner / executive, which precludes local control decisions at the level of an
individual robot.

Another, more popular, approach is to treat the multi-robot system as a
collection of independent single robots and allow each one to make individ-
ual control decisions, irrespective of the other robots’ actions. This approach
scales very well, as it requires each robot to consider only its own possible
actions, the number of which remains constant as the number of robots grows.
Unfortunately, this technique will not necessarily produce a good solution. In
fact, if the actions of the robots must be coordinated in order to achieve a task,
then allowing them to simply make individual choices without considering or
consulting each other is unlikely to lead to any solution at all.

We believe that between these two extremes lies fertile ground for the devel-
opment of heuristic multi-robot coordination algorithms that produce good so-
lutions yet scale well with the number of robots. In particular, we suggest that
many multi-robot problems can be solved quickly and effectively by allowing
the formation of and planning for small teams over short time horizons. That
is, rather than considering the possible actions of all n robots or of just 1 robot,
consider groups of up to t robots, where 1 ≤ t ≤ n, but prefer smaller groups,
because they are computationally cheaper to coordinate. In this paper we in-
troduce an algorithm, parallel stochastic hill-climbing with small teams, or
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Parish, which combines the idea of small teams with the use of heuristics and
stochastic action selection. In addition to scaling well and tending to produce
good solutions to coordination problems, Parish is easily distributable, and can
be executed either on-line or off-line, both of which are desirable properties
for multi-robot algorithms.

We have implemented Parish for the problem of multi-robot pursuit-evasion,
in which a group of robots must work together to search a given environment
so as to guarantee location of a skilled mobile evader. This is a difficult prob-
lem that clearly requires coordination among the robots (a single robot is only
capable of clearing environments that are topologically equivalent to a single
hallway). And, unlike more weakly interactive tasks, like foraging, pursuit-
evasion occasionally requires very tight coordination between robots in order
to make any progress at all. We provide results from tests in simulation of
search strategies produced by Parish.

2. Background and related work

The first rigorous formulation of the pursuit-evasion problem is due to Par-
sons, who restricted his study to the case in which the environment is a discrete
graph (Parsons, 1976). Nothing is known about the location or motion of the
evader, who is assumed to be able to move arbitrarily fast through the graph.
The evader can occupy any edge in the graph; to find the evader, a searcher
must walk along the edge occupied by the evader and “touch” the evader. The
entire graph is initially contaminated, which means that the evader could be
anywhere. As the search progresses, an edge is cleared when it is no longer
possible for the evader to occupy that edge. Should it later happen that the
evader could have moved back to a previously clear edge, that edge is said to
be recontaminated. Using this terminology, the goal of the problem can be
restated as follows: find a trajectory for each searcher such that the an initially
contaminated graph is cleared.

More recently, a visibility-based version of the pursuit-evasion problem was
introduced (Suzuki and Yamashita, 1992), which changed the domain from
discrete graphs to continuous polygonal free spaces. Complete algorithms
have been described for searchers having either 1 or 2 “flashlights” (Lee et al.,
2002), omnidirectional vision (Guibas et al., 1999), and limited field-of-view
vision (Gerkey et al., 2004). Randomized pursuit algorithms have also been
studied, in both discrete graphs (Adler et al., 2003) and polygonal free spaces
(Isler et al., 2003).

3. Algorithm

The Parish algorithm coordinates a multi-robot system in a scalable manner
by considering the possible actions of not only single robots, but also small
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teams of robots. The general form of the algorithm can be summarized as
follows:

Algorithm Parish: Parallel stochastic hill-climbing with small teams
Input: n robots; multi-robot problem M ; maximum team size t ≤ n; value heuristic v(q);

probability distribution P (q), P (qj) > P (qi)⇔ v(qj) ≥ v(qi)
1. while M not done
2. do parallel for each robot s

3. do for l← 1 to t

4. do Ql ← {q : q is a feasible l-searcher plan involving s}
⋃
{∅}

5. Sample q̂l from Ql according to P (q)
6. if q̂l 6= ∅
7. then Execute q̂l

8. break

The value heuristic v(q) has two components: a benefit heuristic b(q) and
a cost function c(q). The benefit heuristic b estimates the (possibly negative)
marginal benefit (i.e., progress that would be made toward solution) of a given
plan. In other words, b estimates the optimal value function, which is un-
known (computing the optimal value function is equivalent to solving the orig-
inal NP -hard problem). If a plan q involves any robots that are currently part
of other teams that are engaged in other plans, then b(q) includes an estimate
of the (probably negative) benefit that will result from disbanding those teams
and halting the execution of those other plans. The function c calculates, in the
same units as b, the cost of executing a given plan. This cost can be any salient
aspect of the domain that is external to progress, such as distance moved. The
value of a plan q is then v(q) = b(q) − c(q).

Because the heuristic b is only an estimate of the true benefit of a given plan,
we cannot always select the highest-valued plan. Such a strategy will, in all
but the simplest problems, lead to local maxima of progress from which the
system will not escape. Thus we employ a stochastic selection rule: rather
than greedily selecting the apparently best plan, we sample a plan q̂l from
the set Ql of available plans, according to a probability distribution P (q) that
prefers higher-valued plans but sometimes selects an apparently worse plan.
This technique is commonly used in optimization to escape from local extrema
and is in reinforcement learning to balance exploration against exploitation.
So robots executing Parish are collectively hill-climbing according to local
progress gradients, but stochastically make lateral or downward moves to help
the system escape from local maxima.

The exact nature of the selection rule can be adjusted according to the accu-
racy of the benefit heuristic. If b is known to be a very accurate estimate of the
optimal value function, then the highest-valued plan should be selected with
accordingly high probability, and vice versa if b is known to be less accurate
(of course, if b is very inaccurate, then progress will be slow, and more effort
should likely be put toward designing a better heuristic).
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Since the robots make plans individually, the computation of the algorithm
can easily be distributed across multiple machines, with communication re-
quired only to update the state of the problem and to form (or break up) teams.
If a good model of the environment is available, then Parish can run off-line,
with the robots interacting with this model to produce a plan for later execu-
tion. If no good model is available, or if the environment is dynamic, then
Parish can run on-line, with the robots interacting with the environment di-
rectly. Also, robots will tend select and execute single-robot plans, if good
ones can be found, because they do not require breaking up other teams. Thus
they will make individual progress as long as possible, until such time as team
formation is more beneficial.

3.1 Economic interpretation

As is the case with many multi-agent search algorithms, there is an obvious
economic interpretation of Parish. The multi-robot system can be seen as a
synthetic economy, in which individual robots can buy the services of other
robots. A robot receives (possibly negative) “reward” for making (possibly
backward) progress toward the goal. Each robot then selfishly tries to “earn”
as much reward as possible. The value, v = b − c, that a robot attaches to a
plan that it has formulated is the “price” that that robot will “pay” in order to
form the team that will help in executing the plan (the robot may offer a price
slightly less than v, in order to retain some positive profit). A robot only joins a
team when it is offered a sufficiently high price to take it away from its current
team, if any. Stochastic plan selection then corresponds to a robot occasionally
making a choice that does not maximize its reward, to account for the fact that,
because of inaccuracies in prices (i.e., values), strict reward-maximization will
not necessarily lead to a solution.

Although this economic interpretation relates our algorithm to previous work
in economically-inspired multi-robot coordination approaches (e.g., Gerkey
and Matarić, 2002; Dias and Stentz, 2003), we do not find it particularly help-
ful. Coordination algorithms such as Parish can be understood and clearly
stated as instances of distributed search or optimization; economic interpreta-
tions can unnecessarily cloud the discussion by introducing misleading analo-
gies between synthetic markets as used by robots and real markets as used by
humans.

3.2 Application to multi-robot pursuit-evasion

We now make Parish concrete by explaining how we apply it to the prob-
lem of multi-robot pursuit-evasion and stating the resulting algorithm. In the
multi-robot pursuit-evasion problem, a team of n robots is required to search
an environment (of which a map is provided) so as to guarantee location of a
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Figure 1. The Botrics Obot mobile robot, equipped with a SICK scanning laser range-finder,
which has a 180◦ sensor field.
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Figure 2. An office-like environment, decomposed into convex regions (a) and then trans-
formed into a discrete graph (b).

skilled mobile evader. The only information available about the evader is its
size and maximum speed; no model of its initial position or subsequent tra-
jectory is given. For our purposes, a robot “finds” the evader if the evader is
detected within the robot’s sensor field. Our robots are each equipped with
a scanning laser range-finder that provides a 180◦ field of view and reliable
detection range of approximately 8 meters (Figure 1).

We first transform our problem to an instance of Parsons’s discrete graph
search problem (Parsons, 1976). This transformation involves decomposing
the free space in the given map into finitely many regions such that a single
robot can clear a region by standing anywhere on and perpendicular to the re-
gion border, while looking into the region. Furthermore, we want to guarantee
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that a differential-drive robot with a 180◦ field of view can move from one bor-
der of a region to any other border of the same region and keep the destination
border in view along the way. Two necessary and sufficient conditions for the
regions are that they each: (i) be convex, and (ii) have no dimension greater
than the maximum sensor range (8 meters). For the work presented in this
paper, the decomposition was performed manually, but the process could be
automated according to visibility constraints (e.g., Guibas et al., 1999; Gerkey
et al., 2004). Given such a region decomposition, we construct an undirected
graph G = (V, E), where the vertices V are the regions, and the edges E are
the borders where adjacent regions meet. An example decomposition and the
resulting graph are shown in Figure 2.

We can then apply Parish, stated below, to the graph G, and transform the
resulting solution back to the robots’ control space, with each move in the
graph becoming a move to a region border in the physical environment.

Preliminaries:

Searcher positions and edge contamination states are stored as labels in the graph.

The graph, the list of teams, and the list of plans are shared data structures: each searcher
has an identical copy of each structure, and a mutual exclusion mechanism is used to
ensure consistency when making changes.

Si denotes searcher i.

Given a list L, L[i] denotes the ith element of L.

A plan q specifies a sequence of moves for one or more searchers.

The null plan, denoted ∅, makes no moves.

Given a plan q, q.members() returns the set of searchers required to execute q.

G′ ← G+ q denotes the application of plan q to graph G to produce the resulting graph
G′.

Given a team T with n members, to disband T is to separate the members of T into n

singleton teams, one individual per team.

Algorithm Parish for multi-robot pursuit-evasion
Input: Connected, undirected graph G; n searchers placed in G (if initial placement is not

given, place them randomly); maximum team size t; value heuristic v(G, q); probability
distribution P (q), P (qj) > P (qi)⇔ v(qj) ≥ v(qi)

1. T ← [ ] (∗ List of teams ∗)
2. A← [ ] (∗ List of plans ∗)
3. for i← 1 to n

4. do (∗ Start with singleton teams and no plans ∗)
5. T .append({Si})
6. A.append(∅)
7. while not done
8. do (∗ Each team decides what to do, in parallel ∗)
9. parallel for i← 1 to len(T )
10. do if A[i] = ∅
11. then (∗ No plan, so this team has only one member; call it s ∗)
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12. s← s : s ∈ T [j]
13. (∗ Consider teams of increasing size, up to t ∗)
14. for l← 1 to t

15. do (∗Make some l-searcher plans, but also consider the null plan ∗)
16. Ql ← {q : q is a feasible l-searcher plan involving s}

⋃
{∅}

17. Sample q̂l from Ql according to P (q)
18. if q̂l = ∅
19. then (∗We chose the null plan; keep looking ∗)
20. continue
21. else (∗Assemble the team, maybe disbanding other teams ∗)
22. for j ← 1 to len(T ), j 6= i

23. do for r ∈ q̂l.members()
24. do if r ∈ T [j]
25. then Disband T [j]
26. T [i] = T [i]

⋃
r

27. (∗ Store the chosen plan and begin executing it ∗)
28. A[i]← q̂l

29. G← G + first step of A[i]
30. (∗We have a satisfactory plan; stop looking ∗)
31. break
32. else (∗We already have a plan, so keep executing it ∗)
33. G← G + next step of A[i]
34. if just executed last step of A[i]
35. then (∗ This team has finished its plan; disband it ∗)
36. Disband T [i]

4. Results

We implemented Parish as stated in the previous section and tested it on
several environments. The tests were carried out using Stage, a sensor-based
multi-robot simulator; experience has shown that results in Stage can be reli-
ably replicated with with physical (indoor, planar) robots (Gerkey et al., 2003).
Animations can be found at: http://ai.stanford.edu/∼gerkey/research/pe/.

The benefit heuristic b is the (possibly negative) number of regions that
would be cleared by executing a given plan. The cost function c is propor-
tional to distance traveled during a given plan, calculated as number of regions
traversed. The maximum team size is t = 2, and the robots are restricted to
making plans that move each team member once. Specifically, each robot Si

only considers plans of the following form:

(team size 1) Move Si to an adjacent region.

(team size 2) Move another robot Sj (i 6= j) to cover the region currently
covered by Si, then move Si into an adjacent region.

The stochastic selection rule is ε-greedy, in which the highest-valued plan is
selected with probability (1 − ε), and otherwise one of the remaining options
is chosen with uniform probability. For the results presented here, ε = 0.1. We
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Figure 3. (In color where available). Two robots searching an office-like environment.
Black circles represent robots; blue areas are clear; red areas are in view; and purple areas are
contaminated (i.e., the evader may be hiding there).

assume the environment is static, and so are free to run Parish off-line, then
execute the resulting plan with the simulated robots.

Interestingly, adding just this limited and myopic coordination is sufficient
to produce good solutions. For example, shown in Figure 3 are snapshots from
a run with 2 robots in an office-like environment. As can be seen in that figure,
the robots cooperate to clear the environment quite efficiently, without allowing
recontamination. In fact, Parish reliably produces solutions for this and similar
environments that are optimal in the total path length. (we compute optimal
solutions using brute-force A* search in the joint action/state space of all the
robots).

The effect of small-team coordination can be clearly seen in Figure 4, taken
from a simulation run in which 5 robots work together to clear one floor of
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Figure 4. (In color where available). An example of small-team coordination taken from
a test in which 5 robots cleared a large building. As part of a 2-robot plan, the robot that is
initially in the lower right corner moves up and left to block the central open area so the robot
that another robot can move left and keep searching.

an office building, using a sensor-based map. In this sequence, a 2-robot plan
calls for the robot initially at the lower right to move up and block the central
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Figure 5. Comparison of Parish and A* in planning pursuit strategies in various environ-
ments. Shown in (a) is the number of nodes expanded during the search, and in (b) is the length
of the solution found (smaller is better in both cases). Results for Parish, which is stochastic,
show the experimental mean and standard deviation, computed from 100 runs in each environ-
ment.

open area so that another robot can move left and keep searching. Without such
interactions, the robots are not capable of clearing this complex environment.

5. Summary and future work

We introduced the Parish algorithm, which allows for scalable and efficient
coordination in multi-robot systems. The key insight of the algorithm is that the
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combination of small teams, simple heuristics, and stochastic action selection
can be extremely effective in solving otherwise difficult multi-robot problems.
Our algorithm is easily distributable and can run on-line or off-line, making
it especially suitable for use in physical robots systems. We presented results
from simulation that demonstrate the efficacy of Parish in coordinating robots
engaged in a pursuit-evasion task.

Our current work on this algorithm follows 3 paths. First, we are moving to
physical robots, where Parish will run on-line, and fully distributed. Second,
we are rigorously analyzing Parish and comparing it to competitor algorithms,
such as non-cooperative greedy, and centralized A*. It will be important to
establish the average-case and worst-case performance of Parish, in terms of
solution quality and computational requirements (i.e., amount of the search
space that is actually explored), as compared to existing alternatives (Figure 5).
Finally, we are applying Parish to other multi-robot coordination problems.

References

Adler, M., Räcke, H., Sivadasan, N., Sohler, C., and Vöcking, B. (2003). Randomized Pursuit-
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