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Sequences of Observations
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Latent State
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Dynamics
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Dynamical Systems

O—O—O—  —O

e |TISystems (Kalman Filter)
e (I-O) Hidden Markov Models

e Predictive State Representations
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Learning a Dynamical System
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Sense

earn Spectral Learning for Dynamical Systems

o | T|Systems (Kalman Filter)

Commurications and

e Hidden Markov Models

» Spectral learning of HMMs [Andersson, Ryden, 2008]
» Spectral learning of HMMs [Hsu, Kakade, Zhang, 2009]
» Spectral learning of RR-HMMs [Siddiqi, Boots, Gordon, 2009]

e Predictive State Representations

» Spectral learning of PSRs [Boots, Siddiqgi, Gordon, 2010]

» Online spectral learning of PSRs [Boots, Gordon, 2011]
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Why Spectral Methods?

There are many ways to learn a dynamical system
* Maximum Likelihood via Expectation Maximization, Gradient Descent, ...

e Bayesian inference via Gibbs, Metropolis Hastings, ...
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Why Spectral Methods?

There are many ways to learn a dynamical system
* Maximum Likelihood via Expectation Maximization, Gradient Descent, ...

e Bayesian inference via Gibbs, Metropolis Hastings, ...

In contrast to these methods, spectral learning algorithms give

* No local optima:
» Huge gain in computational efficiency
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Sense

earn The focus of this part of the tutorial

* A spectral learning algorithm for Kalman filters

* A spectral learning algorithm for HMMs
* Relation to PSRs
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Kalman Filters

O—O—@— O

ri11 = Axy + noise

o, = C'xy + noise

observation matrix: transition matrix:
n
n

e Assume for simplicity that m > n
and that A and C are full rank

We can relax both assumptions in practice
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Kalman Filters

e Assume for simplicity that m > n
and that A and C are full rank
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Kalman Filters

For k>1, 2 =K [0t+k0;r] =K [E [0t+k0;sr | wt“

e Assume for simplicity that m > n
and that A and C are full rank
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Kalman Filters

For k>1, 2 =K [0t+k0;r] =K [E [0t+k0;sr | wt“
=E [E [or4r | 2:]E[o] | z¢]]

e Assume for simplicity that m > n
and that A and C are full rank
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Kalman Filters

For k>1, 2 =E [OH—kOI] =E|E [0t+k0;sr | 2]
=E [E [ot1& | z]E[o] | 2]
=K

e Assume for simplicity that m > n
and that A and C are full rank
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Kalman Filters

Sk = E (0440 | = E[E 01110, | 2]
= K E [Ot—l—k ’ xt]E[O;ﬁr ‘ xt“

—E |(CAFz,) (Cmt)q
= CA"E[z2]|CT

e Assume for simplicity that m > n
and that A and C are full rank
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Kalman Filters

E [or4x0; | 2]

:IE [0t+k | xt]E[otT | :I:tH
(CAF,) (Cay)T

= CAFE[zz]]CT

e Assume for simplicity that m > n
and that A and C are full rank
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

A = UTZQ(U—I_Zl)Jr
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S(U'S)T
U'caA?pc(U'"cApPC")!
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S(U'S)!
U'CA*PC" (U'CAPC")T
U'cA*(U'cA)~NUu'capc(U'cAPC )T
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S(U'S)T

U'CA*PC" (U'CAPC")T
U'cA*(U'cA)~NUu'capc(U'cAPC )T
(UTCAAU'CA)™
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S (U8

U'cA*pc' (U'cAPC™)T
U'CcA*(U'cA) (U ''cAPCT(U'CAPC )T
(UTCAAU'CA)™

SAS~1  similarity transform of A
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S (U8

U'cA*pc' (U'cAPC™)T
U'CcA*(U'cA) (U ''cAPCT(U'CAPC )T
(UTCAAU'CA)™

SAS~1  similarity transform of A

UA™!
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S (U8

U'cA*pc' (U'cAPC™)T
U'CcA*(U'cA) (U ''cAPCT(U'CAPC )T
(UTCAAU'CA)™

SAS~1  similarity transform of A

UA™!
USA-1s—1
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S(U'S)T
U'caA?pc(U'"cApPC")!

U'CcA*(U'cA) (U ''cAPCT(U'CAPC )T
(UTCAAU'CA)™
SAS~1  similarity transform of A

UA!
USA~ 151
UU'CAA LS
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Kalman Filters

S = E [op10] | = CA*PCT

Let Ube the left n singular vectors of >4,

U'S (U8

U'cA*pc' (U'cAPC™)T
U'CcA*(U'cA) (U ''cAPCT(U'CAPC )T
(UTCAAU'CA)™

SAS~1  similarity transform of A

UA!
USA~ 151
UU'CAA LS

Ccs1 linear transform of C
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Kalman Filters

Spectral Learning Algorithm:

e Estimate X1 and X2, from data
e Find U by SVD
* Plug in for AandC

Learning is Consistent:
e Law of Large numbers for >;and X,

e Continuity of formulas for Aand C
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Sense
learn  Variations on Spectral Learning for

Kalman Filters

act

Use arbitrary features of past and future observations
» work from covariance of past, future features

» good features make a big difference in practice

Use different spectral decompositions to find state space: CCA, RRR
Impose constraints on learned model (e.g., stability)

Learn Kalman filters with control inputs

Byron Boots — Spectral Algorithms for Latent Variable Models: Dynamical Systems
Tuesday, June 26, 2012




Example: Video Textures

works well for learning models of video textures
observations = raw pixels (vector of reals over time)

simulations from learned models
[Siddiqi, Boots, Gordon, 2007]

1
800
time t time {

(40 dimensions) (40 dimensions)
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Additional Examples

Glass oven modeling [Backx, 1987]

Aircraft wing flutter [Peloubet et al., 1990]

Control of air temperature and flow [Ljung, 1991]

Mechanical construction of CD player arms [Van Den Hof et al., 1993]
Heat flow through walls [Bloem, 1994]

Chemical processes [Van Overschee, De Moor, 1996]

Economic forecasting [Aoki, Havenner, 1997]
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Sense

JearnKalman Filter Spectral Learning: Failure

given a short video

Learn a model
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Sense

JearnKalman Filter Spectral Learning: Failure

given a short video

Learn a model
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Sense

JearnKalman Filter Spectral Learning: Failure

Simulations from models trained on clock data

(?

Kalman Filter (spectral) HMM (Baum-\Welch) Something better...
10 dimensions 10 states 10 dimensions
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Sense

JearnKalman Filter Spectral Learning: Failure

Simulations from models trained on clock data

(?

Kalman Filter (spectral) HMM (Baum-\Welch) Something better...
10 dimensions 10 states 10 dimensions
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Sense

JearnKalman Filter Spectral Learning: Failure

Simulations from models trained on clock data

(?

Kalman Filter (spectral) HMM (Baum-\Welch) Something better...
10 dimensions 10 states 10 dimensions
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sense ' nA?
sense  Can We Generalize Spectral Learning®

act HMMs

g —@D—E— - —=®

x
o, = Cxy + noise

01 09 03 Or

observation matrix:
n

* Get rid of Gaussian noise assumption
C
* Hidden Markov Model: same form as Kalman
Filter but,

» A>0, A1=1,C>0,Cl=1

» noise ~ Multinomial Distribution

» = ando are indicators: e.g. “4” = [00010]"

transition matrix:

n.
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Sense

@ﬂé@t@m Spectral Learning: Gaussian vs. Multinomial

Kalman Filter Hidden Markov Model

:IE [0t+k0tT | xt”
:E [OH_k ’ wt]E[O;ﬁr ‘ ajt”

(CAFz,) (C’xt)T}

= CA"E[z2)|CT
= CA*pCT

* Assume for simplicity that m > n and that A and C are full rank
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Sense

@ﬂé@t@m Spectral Learning: Gaussian vs. Multinomial

Kalman Filter Hidden Markov Model

:E [Ot_H{O;r ’ CIZ’t}} 1) [Ot_|_k0;5r] — :E [Ot_|_k0;r ‘ ZCt}}

:IE [OH_k | ajt]]E[o;r | a:tH =K IE [OH_k | xt]E[OI | ZEtH

(CAFz,) (Cxt)T} =E |(CA*z,) (Cxt)T}

= CA"E[z2)|CT = CA*E[z.z]]CT
= CA*pCT = CA*PCT

exactly the same!

* Assume for simplicity that m > n and that A and C are full rank
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Spectral Learning for HMMs

5

A = U, (UTy)

(UTCAHAU ' CA)!
SAS™!

e As before, recover A and C from >:1 and X,
e Does notsatisfyA>0, A1=1, C>0, Cl1=1

» is this a problem?
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Spectral Learning for HMMs

5

A = U, (UTy)

(UTCAHAU ' CA)!
SAS™!

e As before, recover A and C from >:1 and X,
e Does notsatisfyA>0, A1=1, C>0, Cl1=1
» is this a problem?

Yes. Inference is different in an HMM.
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Inference for HMMs

Ploy,092,...,0.]
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Inference for HMMs

Ploy,092,...,0.]

> Placg | 2] Plos | 2] prg\a;z 02 | 2] Y Plwg | 21]Ploy | 2] P [21]

LTr4+1 Tr

factor by chain rule
marginalizing out latent state
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Inference for HMMs

Ploy,092,...,0.]

> Placg | 2] Plos | 2] prg\a;z 02 | 2] Y Plag | 21]Ploy | 21] P [21]

LTr4+1 Tt

transition probability = observation likelihood
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Inference for HMMs

:CT+1 X

likelihood of

< 01
02
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Inference for HMMs

1, SAS™! Sdiag(C,, . )S™"...SAS™" Sdiag(C,,.)S™' SAS™! Sdiag(C,, .)S™ ' SP[z]
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Inference for HMMs

1, SAS™! Sdiag(C,, . )S™"...SAS™" Sdiag(C,,.)S™' SAS™! Sdiag(C,, .)S™ ' SP[z]

We have access to:

A=SA45"1 C=cCs!
but

No good way of finding the observation likelihoods
(e.9. Sdiag(C,,.)S™)
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Inference for HMMs
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Inference for HMMs

combine into a single observable operator, one for each observation

observable operator HMM

standard HMM parameterization
parameterization [Jaeger, 1998]
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Inference for HMMs

Ploy,092,...,0.]

S: S:,P[a:ﬂrl | x, "[E or | 7], YIP’ (x5 | 2 ||IP 02 | a:z]lxp[azg | xl]IILP 01

frtn \ \

1ZIA diag(Co, ,) ... Adiag(Co, . ).

\ .
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Inference for HMMs

Ploy,092,...,0.]

S: S:,P[a:ﬂrl | x, "[E or | 7], YIP’ (x5 | 2 ||IP 02 | a:z]lxp[azg | xl]IILP 01

frer \ \

1ZIA diag(Cy, ) . .- Adiag(Co, , ) A diag(Co, , )P |21]

N

1A, .. Ay, Ay Plx]

157154, S...SA,,S1SA,, ST SP[x:]

In fact, only need to estimate similarity transforms of parameters S4,5 "

the S's cancel
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Spectral Learning for HMMs

Goal is to find similarity transforms of A,s
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Spectral Learning for HMMs

Goal is to find similarity transforms of A,s

E [0t+10ﬂ Do E [OHQOH
CA?PCT
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Spectral Learning for HMMs

K [0t+10ﬂ dig K [OHQOH
cA*PC’

a tensor
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Spectral Learning for HMMs

= E[ot42(0, 0141)0; |

a tensor
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Spectral Learning for HMMs

:0t+2(52f%+4)021

0112(8, 0p41)0; | 2]

0112(0y 0111) | ] Efo] | a4]]

0112 | 4,041 = 0[P[og41 = 0 | 2] (Czy) ']
0112 | 24,0001 = 0](1" Apy)(Cizy) ']

a tensor

E
E
£
I

Ayxy
1T Az,
E[CAA,x:(Cxy)']
CAAE[zz, |C"
CAA,PCT

E [CA [ ] (1" Ayz)(Cay) "

Byron Boots — Spectral Algorithms for Latent Variable Models: Dynamical Systems
Tuesday, June 26, 2012




Spectral Learning for HMMs

Elos+2(8, 01+1)0; ]

a tensor

... and then a miracle occurs!
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Spectral Learning for HMMs

Goal is to find similarity transforms of A,s

E [Ot_|_10;r} 22 . 1) [OH_QO;F} Eg
CA2pCT

a tensor
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Spectral Learning for HMMs

e Assume for simplicity that m > n and that A and C' are full rank

e Let Ube the left n singular vectors of X,

A, = U'™S(UT2)T
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Spectral Learning for HMMs

e Assume for simplicity that m > n and that A and C' are full rank

e Let Ube the left n singular vectors of X,

A, = UTS3(UTE)!
U'CAA,PC" (U'"CAPC )T
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Spectral Learning for HMMs

e Assume for simplicity that m > n and that A and C' are full rank

e Let Ube the left n singular vectors of X,

A, = U'™S(UT2)T
U'CAA,PC"(U'CAPC )T
U'cAA,U'cA (U capPcT (UTcAPCT)T

Byron Boots — Spectral Algorithms for Latent Variable Models: Dynamical Systems
Tuesday, June 26, 2012




Spectral Learning for HMMs

e Assume for simplicity that m > n and that A and C' are full rank

e Let Ube the left n singular vectors of X,

Ay = UTSUTEY)!
U'CAA,PC"(U'CAPC )T
U'cAA,U'cA (U capPcT (UTcAPCT)T
(U'CA)AUTCA)™!
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Spectral Learning for HMMs

e Assume for simplicity that m > n and that A and C' are full rank

e Let Ube the left n singular vectors of X,

Ay = UTSUTEY)!
U'CAA,PC" (U'"CAPC )T
(UTCAAU'cA) U'capc (UTCAPC )T
(U'CA)A,(U'CA)™!

SA,S~t similarity transform of 4,
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Spectral Learning for HMMs

e Assume for simplicity that m > n and that A and C' are full rank

e Let Ube the left n singular vectors of X,

Ay = UTSUTEY)!
U'CAA,PC" (U'"CAPC )T
(UTCAAU'cA) U'capc (UTCAPC )T
(U'CA)A,(U'CA)™!

SA,S~t similarity transform of 4,

» Additional parameters, like normalizer and initial state can be
found in a similar manner

e S always cancels when predicting, filtering, simulating: e.g.

1571SA, S7'...SA, ST1SA,, S SP[x,]
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Spectral Learning for HMMs

Spectral Learning Algorithm:
e Estimate:; and>5 from data
e Find U by SVD
* Plug in forA,s

Learning is Consistent:
e Law of Large numbers for 2.1 and X9

e Continuity of formulas for A,s

Byron Boots — Spectral Algorithms for Latent Variable Models: Dynamical Systems
Tuesday, June 26, 2012




Example: Clock (Revisited)
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Example: Clock Pendulum

Simulations from models trained on clock data

Kalman Filter (spectral) HMM (Baum-\Welch) HMM? (spectral)
10 dimensions 10 states 10 dimensions
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Example: Clock Pendulum

Simulations from models trained on clock data

Kalman Filter (spectral) HMM (Baum-\Welch) HMM? (spectral)
10 dimensions 10 states 10 dimensions
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Can We Generalize?
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Can We Generalize?
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Can We Generalize?

Lots of states: not a problem in itself, but means we need lots
of data to learn transition & observation models
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Generalizing HMMs

HMM state space:

e HMMs had =z € A
» intuition: number of discrete states = number of dimensions

* We now have x € SA
» essentially equally restrictive

e Can we allow a more general state space?
» e.g. # states > # dimensions
» discretize more finely while keeping dimensionality the same

Byron Boots — Spectral Algorithms for Latent Variable Models: Dynamical Systems
Tuesday, June 26, 2012




Predictive State Representations

= OOMs, multiplicity automata, etc...

e PSR: defined by transition matrices A,, and a normalization vector

like HMM, but lift restriction of X = SA

lift restrictions on A,s, top eigenvalue of Z A, must be 1

O

instead of a set of discrete states, can think of state space as a possibly
infinite-dimensional simplex projected onto a finite dimensional space

includes HMMs (and POMDPs) as special case
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Sense

learn SSID for PSRs

act

PSRs are more expressive than HMMs & POMDPs ... and as easy to learn!

Predictive State Representations

HMMs & POMDPS

for fixed latent dimension n
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Example: Clock Pendulum

Simulations from models trained on clock data

Kalman Filter (spectral) HMM (Baum-\Welch) PSR (spectral)
10 states 10 dimensions 10 dimensions
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Sense

_learn Variations on Spectral Learning for PSRs

e Use arbitrary features of past and future observations

» work from covariance of past, future features
» good features make a big difference in practice

» but still need a discrete set of transition matrices A4,

 Use different spectral decompositions to find state space: CCA, RRR

e (Can extend to learn models with actions
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Can We Generalize? Features!

e So far: allowed finer discretization of state space
e Can we improve? Allow continuous observations?

* Yes: Featurize!
» letp(o) be a feature function

$9 = Elor420(0141)0] |
Zﬁb E[ot12(3, 0r41)0; ]

store Egb for many different ¢ , recover 4, as needed
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Sense

@u&@m Can We Generalize? Infinite Features!

* If some features are good, more must be better!
» Kernels

* Everything that we have seen is linear algebra
» works just fine in an arbitrary RKHS
» Can rewrite all of the formulas in terms of Gram matrices

Result: Hilbert Space Embeddings of Predictive State Representations

* handles near arbitrary observation distributions
e good prediction performance
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Sense

Jearn Example: Prediction (Slot Car Domain)
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Sense

Jearn Example: Prediction (Slot Car Domain)
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Sense

Jearn Example: Prediction (Slot Car Domain)
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Sense

Jearn Example: Prediction (Slot Car Domain)

|« = - Mean Obs. ——— Feature-PSR |
Kernel-PSR

1020 30 40 50 60 70 80 90 100
Prediction Horizon
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sense
ct

@le@m Example: Prediction (Slot Car Domain)

|« = - Mean Obs.

——— Feature-PSR
Kernel-PSR

1020 30 40 50
Prediction

60 70 80 90 100
Horizon

Nonparametric Models Win

(Gaussian Process Latent Variable Models
[Ko & Fox, 2010]
~1 day on 8-core i7 workstation
in Matlab/C++

Kernel PSRs:
11.6 seconds to learn model

on my laptop in Matlab
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Making it All Fast:
Online Updates to Spectral Learning

With each new observation, rank-1 update of:
» SVD (Brand)

» inverse (Sherman-Morrison)

n features; latent dimension d; T steps
» space = O(nd): may fit in cache!

» time = O(nd“T): bounded time per example

Small loss in statistical efficiency (estimated subspace
rotates), but can deal with it

Problem: no rank-1 update of k-SVD

» can use random projections
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Summary

Learn dynamical system models with no local optima, fast online computation

In contrast with many other methods, learning and inference is extremely fast
and robust

Nonparametric (kernel-based) version handles near-arbitrary observation
distributions

One general principle yields algorithms for Kalman System ID, HMMs, PSRs

Good results from a general-purpose algorithm on problems typically tackled
by lots of engineering
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Thank Youl!
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