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What is spectral learning?

machine learning is hard: fitting a good model = optimization with lots of local optima (e.g., learning HMMs
is provably at least as hard as factoring big numbers)

in some cases, by setting up the problem another way, we can avoid the difficult optimization entirely —-

different set of tradeoffs (e.g., give up learning the factoring HMM, but make it a lot easier to learn other useful
HMMs)

replace it with a spectral problem (= based on matrix eigenvalues/vectors)

What is spectral learning good for? We’ll look at some examples...
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resonances depend on conditions—e.qg., external fuel tanks attached at hard points—so, they can’t easily be
eliminated at design time

plot from wind tunnel tests w/ full-span wing model—intended to simulate 1990s-era fighter jet—typical flutter
frequency 8.6Hz

plot shows tests w/ one wing configuration—not all tests moved the flutter boundary this much, and achievable
speed varied widely depending on configuration (e.g., one configuration went from Mach 0.95 (before suppression)
to 1.05 (after))

sensing was with 3 pairs of accelerometers placed on wing

control was by actuating aircraft flaperons (wing surfaces) on top of input from pilot—100Hz updates

old-school: learning implemented on a VAX 11/750

dynamic pressure = kinetic energy of a fixed volume of air hitting the wing



Intuition: bottleneck
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factorization = spectral method
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for regularization, don’t just want a state: want a low-d (hopefully minimal) one

so, select k (linear combinations of) predictions which explain as much variance in future as possible



Video textures

(train from a short video, then simulate learned model)
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fountain steam grate

observation = raw pixels (vector of reals over time)

[Siddiqi, Boots & Gordon, 2007;
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Both this example and the last one: learned model is a linear time invariant (LTI) system (aka Kalman filter)

Spectral algorithms for LTI systems have been known for decades—but recently it was discovered that we can use
spectral algorithms to learn more-interesting models



Video textures, redux
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Original Kalman Filter PSR

both models: 10 latent dimensions
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reason for failure of Kalman: Gaussian is log-concave. So, if two images are likely, their *average* is at least as
likely.
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So: we need a *nonlinear* filter



Learning to parse

YOPRSTRIRE A St 4 ot AT oS oDt udn-o's*'-'“"""'%-'J-ifl!“-‘-'*“"'“lw"“4"""“"h..«,-:'.um i

[Cohen, Stratos, Collins, Foster & Ungar, ACL 201 2] ® Treebanks commonl)'
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e \ ® But manual tags typically
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parse is from Penn Treebank, omitting annotation of ambiguity —- could have been (NP (NP the man) (PP with the
telescope))

| saw the man with the telescope

the extra labels would help parsing, but they’re not available—could we simulate them?



Learning to parse
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[Cohen, Stratos, Collins, Foster & Ungar,ACL 201 2]

® Refine manual tags w/
learned latent variables

® Fach latent depends on
neighboring tags and
latents

NP-SBJ, Z;

® | earn to fill in latents by
trying to explain training
parses

| saw the man with the telescope| ) spectral method leads

to low-d latents
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intuition: to determine latent at each node, predict (features of) inside context from outside context, and vice versa

advantages of spectral: very fast to train (can handle bigger data sets); no need to think of a smart initialization to
defeat local optima; can benefit from arbitrary smart features computed from inside and outside contexts

but so far, smart initialization of EM to find MLE still gets best final parsing accuracy



Latent Dirichlet Allocation
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words

docs

[Blei, Ng and Jordan, JIMLR 2003]
[Anandkumar et al., arXiv 201 2]
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Spectral: single global optimum

but, practical implementation of spectral method still in progress



Structure from Motion
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measurement matrix = 2d image positions of tracked features over time

[Tomasi & Kanade, 1992]



Structure from Motion
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[Akter, Sheikh, Khan & Kanade, TPAMI 201 1]
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grey line: recovered
black dots: ground truth



The problems: inference & learning
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some structure of MRF or factor graph

some nodes always hidden
some nodes always or usually observed in training data (but perhaps not in test)

variables may be discrete, continuous, mixed; structure may vary from example to example (so long as there are
common pieces)



The data
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our network
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either: repeated observations of same graph, or...



The data
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... Or many common substructures
carved out of one big network
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... repeated structure in one or a few big graphs

need repetition one way or the other so that we have a chance to learn something

could also have a similar sliding window for trees



The data
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Test time: some vars observed
In training set are missing
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for simplicity of notation, assume for now repeated observations of same graph



Exact solutions
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® |nference: belief propagation
» problem: exponential in treewidth (base = arity)

» continuous vars: exponential in diameter too

® | earning: maximum likelihood
» e.g., gradient descent or EM
» problem: inference is a subtask

» problem: lots of local optima
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inference is (very!) hard in general
learning is (very very!) hard in general

any hope of computationally efficient learning and inference? yes, w/ (surprisingly weak) assumptions, using
spectral methods



Key ideas for spectral Iearnmg
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® Spectral bottleneck

[a bunch of control theorists in "80s;
van Overschee & de Moor,Automatica, 1 993]

® Predictive state

[Littman, Sutton, Singh, NIPS 2001 ]

® Observable representation of model

[Jaeger, Neural Computation, 1 999]
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already seen bottleneck idea
predictive state: next
observable rep’n: later
expresses model in terms of predictive state and direct observables

|6



Predictive state
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e.g., in movie, predicted future pixels
e.g., in parse tree, predicted nonterminals on opposite side of current nonterminal

Here, we need predictions of pixels from at least two frames (to capture both position and direction of pendulum).

Predictions are E(features of future observations). Predictive state can represent uncertainty: e.g., uncertain
position leads to average image of pendulum in various positions. (This smeared-out image doesn’t mean that
we will ever see the pendulum in multiple states at once, only that we are uncertain where it will be.)

Why do we want a predictive state? Easier to interpret, easier to learn. E.g., if learning algorithm wants an
unbiased estimate of current state, all it has to do is wait and see what the future looks like.

In some cases we know a good set of features to predict (examples include HMM, Kalman, characteristic RKHS); if
not, we guess feature space (typical ML feature engineering problem)



Predictive state: minimal example
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here we derive a predictive state for a simple HMM (exact numbers don’t matter)
transition matrix T, observation matrix O
given state s, current expected observation is Os

next state is Ts, so next expected observation is OTs, etc.

pick W to be any 3 linearly independent rows of O, OT, OTT, OTTT, etc.

note: may not be able to get an invertible W under non-observability: e.g., 2 distinct hidden states w/ identical
transitions and observations. But in this case we can pick a representative of each equivalence class of states, and
use the corresponding pseudoinverse.



Start simple
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2D Gaussian case; training data has (x,y), while test data has x and we need to predicty

normal equations give Bayes rule update for E(y | x)

learning is just estimating covariances (= linear regression)



Another simple case
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small number of discrete outcomes: P(x,y) specified by a probability table, can implement Bayes rule exactly by
iterating over table



Inference
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To connect to Gaussian case, let’s look at covariances

Can write everything needed for Bayes rule in terms of Zxx and Zxy



Inference
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Pz =e;,y =¢;)/P(x = e;)
A Vi S

P(y | =)

Bayes rule: matrix version

22



Learning
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these are same formulas as for Gaussian case

[
S
5

|

optional: can regularize 2xx by adding a ridge term Al (and possibly rescaling to maintain sum=1)



Slightly more comphcated graph
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zk — Q:L's euek

Vi = Qys(ej, exr)

N\

ZXX

N

Start to work our way up in graph complexity: suppose a latent variable z separates x fromy

then something interesting happens: 2xy is low rank

just as before, 3xx is diagonal

24



Inference and Iearnmg
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the learned rule is exact if k > rank(true Zxy), but clearly we can still use it as an approximation if not



So what do we do w/ a real graph7
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Goal: Bayes filter
Given belief P(s2 | x12): dist’'n over a cut, given left context
Update recursively: get belief P(s3 | x123)
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Bayes filter
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® Extend: P(sy, x3,s3|...) = P(s2]|...) P(s3, x3 | s2)

® Marginalize: drop s; to get P(x3,s3]...)
e Condition: P(s3|...) = P(x3,s3]|...) / P(x3]...)
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We’ll show how to do each of these steps efficiently; the result will look like repeated application of the matrix

Bayes rule. (And as above this result is exact if we use a big enough rank, or approximate if we pick a smaller
rank.)



So what do we do w/ a real graph7
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If we group variables, we get right back to X-S-Y case

Write P(x) as a matrix: it is covariance of x12 vs x3456. Each row is an event x12 = something; each column is an
event X3456 = something.

This matrix is low-rank (by same argument above)

So, if we have UT * x12, that’s enough to compute P(x) for any value of x matching x12 -- we don’t need the actual
value of x12

Similarly, can compute P(x3456 | X12) by normalizing this slice of P(x)
Problem: can’t actually write down a table as big as P(x3456) —— much less P(x123456)

So what do we do?



Cutting down on storage
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Geoff Gordon—ICML tutorial—]uly, 2012

Say rank is 5

Then we can find 5 linearly independent columns (a basis for the column space) —-- each column gives
probabilities of all settings of x12 for one setting of X34s6

And we can reconstruct any other column as a linear combination of this basis

Now we can work with the (much smaller) matrix which has only the basis columns, and we’ll be able to
reconstruct any other desired column as needed

E.g., our belief will be represented as a prediction of probabilities for the events corresponding to basis columns
—- this is our predictive state

29



It works for rows too
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Same idea works for rows, so we only need a small square submatrix of

A U

30



Numerical example
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since this variable has arity 2

1,1 1,2 13 2,1 22 2,3 3|1 3,2 3,3
3,4

this matrix T has rank 2
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Numerical example
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core set

3,2(
3,3

T L = regress from B to P(:, core)
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we’ve represented the entire distribution P as the product of these 3 matrices -- many fewer parameters

If you’ve heard PSR terminology “core events” and “indicative events”, these are other names for a basis set

note: common caxis, except B, which is factor of 500 larger



Ambiguity
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» All these factorizations are equivalent

» Each corresponds to a linear transform of
the basis

» Instead of P(basis event), E(basis statistic)

> P(w,x2) f (21, 22)

L1,T2
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We can rearrange factorization:

L BRT
(LB) RT
(LB) S S-1 RT

33



Learning and inference
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core set X34
B R

Learn L and R by SVD

If desired, learn B by counting co-
occurrences of core events, adjust L and R

1,2 3,2
core set
1 Inference by usual formula:
T v—1
P(z3,4 | T1,2) = 13215 19212,34734
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In reality, though, for big sets of variables, >xy will be too big to write down
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So, define features of x12 and x34 —- call them phi and psi, and suppose there are >k of them on each side —- each

X|2 X/+Xz‘ X2 ‘
2,3
feature is a linear combination of indicators for events

Compute empirical covariance of features, and project onto rank k

big advantage: we never need to represent a PDF over domain of X or Y, which can be huge -- instead work only
with shorter feature vectors

big advantage #2: fixes a numerical/statistical problem. If each core event has small probability (the usual case,
since it’s a conjunction of settings for many variables), then it might take a lot of data to estimate the core
submatrix, and it might be ill-conditioned to reconstruct other event probabilities from the core events. But as
long as features are not (nearly) perfectly correlated, projecting feature covariance onto rank k is well-
conditioned.

Problem: can’t do this with 2xx (it’s not low-rank)

Solution: we’ll use Bayes filter to condition on observed variables one at a time, instead of all at once



OK, we can work with groups
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So now we’ve shown how to work efficiently with this grouping




Do it again
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X3, X4, X5
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we can also regroup variables, and find a basis set for X345

or, if desired, a transformed basis (not just a subset of atomic events)



Bayes filter
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context C context C

qe Q P(Q | C) = xq = (x,then q’): e.g., if

’ ’ t f P C q’ iS X456 — (4, 2, 7), then
qeQ  vectorofP@C) i xesse = (5. 4,2, 7)
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We are given a belief over a core set: P(Q | context C) —- this is a short vector —- length 5 in our example

Given an observation x3 = x, we need to update: P(Q’ | C’) where C’ = (context C, observation x)

Marginalize: not really clear where this is happening since latents are never explicitly represented

38



Bayes filter
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PQ|C) = el R
vector of P(q | C)

xq = (x,then q'):e.g., if q' is
X456 = (4,2, 7),then 5q’ is
x3456 = (5,4,2,7)

context C context C’

V¢ € Q', V symbols z, Img, € RF.
P(zq | C) =m,,P(Q|C)
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Extend: by assumption, for any g;’ in Q’, P(x, g;’ | context C) is a linear function of P(Q | C)

in symbols, P(xQ’ | C) = Mx P(Q | C) for some matrix My

again by assumption, P(x | C) = mx P(Q | C) for some vector mx



Bayes filter
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P(Q|C) =
vector of P(q | C)

xq = (x,then q'):e.g., if q' is
X456 = (4,2, 7),then 5q’ is
x3456 = (5,4, 2,7)

context C context C’

P(q' | C") = P(q" | C,x)
= P(zq' | C) / P(z | C)

=myy P(Q | C) / my P(Q | C)
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Condition: Bayes rule: P(g; | C, x) = P(x, gq; | C) / P(x | C)

Or, all atonce: PQ | C)=MxPQ | C) / mx P(Q | C)



Does it work?

L L i = Lankanie /. PRI SE CrE-SP e ST

Transitions

® Simple HMM: 5 states, /7 observations

Observations

e N=300 thru N=900k
i
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Does it work?
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In heat maps,

first observation: major blocks
2nd: up&down within block
3rd: across rows

P(o1, 02, 03)

10°

mean abs err
(10%=predict uniform)

—
o

|
N

— Run 1

—Run 2
—Run 3

- - -c/sqrt(n) |

10"

training data
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Discussion
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® Impossibility—Ilearning DFA in poly time =
breaking crypto primitives [Kearns & Valiant 89]

» so, clearly, we can’t always be statistically efficient

» but, see McDonald [ 1], HKZ [09], us [09]:
convergence depends on mixing rate

® Nonlinearity—-Bayes filter update is highly
nonlinear in state (matrix inverse), even though we
use a linear regression to identify the model

» this is essential for expressiveness (e.g., clock)

® Infinite memory horizon—even if we learn from
a finite window
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there are data sets from which it would be possible to learn a good dynamical system (using arbitrary
computational power) where we learn little or nothing

failure mode: we need exponentially more data than would be possible with arbitrary computational power—
contrast breaking RSA by factoring vs. by building a table of (plaintext, cyphertext) pairs

any proof of efficiency would need to use some parameter such as beta-mixing which excludes “bad” HMMs
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Summary so far
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® We can write Bayes rule updates in terms of
covariances

» Often, they are low rank

» We can learn them from data

® We can chain Bayes rule updates together to
make a Bayes filter

® | ots of cool applications of this simple idea

Geoff Gordon—ICML tutorial—]uly, 2012

44



