
Spectral Learning
Part I

Geoff Gordon
http://www.cs.cmu.edu/~ggordon/

Machine Learning Department
Carnegie Mellon University

http://www.cs.cmu.edu/~ggordon/spectral-learning/
What is spectral learning?

 machine learning is hard: fitting a good model = optimization with lots of local optima (e.g., learning HMMs 
is provably at least as hard as factoring big numbers)

 in some cases, by setting up the problem another way, we can avoid the difficult optimization entirely -- 
different set of tradeoffs (e.g., give up learning the factoring HMM, but make it a lot easier to learn other useful 
HMMs)

 replace it with a spectral problem (= based on matrix eigenvalues/vectors)

What is spectral learning good for?  We’ll look at some examples...

===

todo: 
show chaining in tree?
talk about kernel trick?



Geoff Gordon—ICML tutorial—July, 2012

Adaptive wing-flutter suppression

2

The FSU and the IBU w e r e  employed t o  protect the 
no&&. They could not be used on an operational 
airplane without predetermining the control laws i n  
the IBU. This action would negate the need for the 
m s  . 

Parameter Sets 

turing the wind tunnel demonstration, several 
parameters in  the AFSS algorithm w e r e  varied. For an 
operational aircraft the prameter set would be 
fixed. The purpose of varying the parameters during 
the demonstration was t o  determine the parameter set 
that  produced the best AFSS performance and the best 
common parameter set f o r  a l l  three s t o r e  
configurations. 

The number of time increments in  the data window 
was varied. Tests w e r e  conduded with data windows 
containing 400, 800, 1600, and 2000 tine incretnents 
which correspond t o  4, 8, 16, and 20 seconds of data, 
respedively. 

Two sets of the Q and R weighting matrices in 
the control algorithm, defined by equations (15) and 
(16) , w e r e  tested. 

The feedback signal could be multiplied by a 
feedback coefficient (gain). Feedback coefficients 
of 0.5, 0.75, 1.0, and 2.0 w e r e  tested. 

Some control laws are mre effective in  
suppressing f lut ter  than others. An attempt was mde 
t o  implement a rationale for deciding whether a new 
contml law should replace the current control law or 
be discarded. A S f l  (signal t o  noise) ra t io  was 
camputed. The S/N ra t io  was defined as the square 
mt of the quotient of the measured sensor respnse 
squared divided by the square of the difference 
between the measured sensor response and the 
predicted sensor response averaged over a data 
window. When the S/N ra t io  for any of the three AFSS 
sensors exceded a preset threshold the updatd 
control law was implemented. otherwise, it was 
discarded. The threshold sett- was tested over a 
range f r m  0 to 6. When the threshold is set t o  
zero, every updated control law was implemented. 

A dead band could be placed in the feedback 
signal. The feedback signal was zero unless it 
exceeded the dead band expressed in degrees of 
CCumMndeed flaperon deflection. The AFSS was tested 
with the dead band set a t  0", _+0.05", and 20.1'. 

The size of the in i t ia l  number of mles that  
were collected af ter  a store drop for the purpose of 
cxmputing the init ial  control law wuld be varied. 
Hawever, this prameter was set a t  100 (1 sec of 
data) throughout the wind tunnel demonstration. 

The best Cammon parameter set for a l l  three 
store configurations consisted of 800 samples in the 
data window, [Q]=l and I+l for the weighting 
matrices, 0.5 feedback coefficient, zero S/N ratio, 
and zero dead band. 

Wind Tunnel Tests 

store confisuration 33 

A plot of the wind tunnel non-dimensional 
dynamic pressure versus mch number is sham in 
Figure 6. The m e n t  wind tunnel l i m i t s  are 
samewhat higher than indicated on the figwe. 
configuration 33 was tested along two nominally 
constant total pressure heads ( c o r r e 5 p O d ~  t o  tw0 
ncnninally constant altitude lines) t o  the m u m a  

(without f lut ter  suppression) f lut ter  boundary. The 
f lut ter  points are sham as solid circles. The 
f l u t m  mode was antisymmetric and the f lut ter  
frequency was 8.6 Hz. Shown on Figwe 6, as apen 
spt+s, are the wind tunnel conditions that w e r e  
achieved with the AFSS engaged, with several 
different parameters sets. 

5.00 

3.50 

3.00 

2.50 

2 00 

1.50 

9 __ 
' Ref 

1 00 

.90 

.BO 

.70 

.60 

3 0  

.40 

.30 

MACH NUMBER 

1 1 1 1 1 1 1 1 1 1 1 1  
2 I I 5 6 J 8 3 I O  ! I  1 1  I 1  

Figure 6 S t o r e  Configuration 3 3  

Prior t o  testing the m S ,  a BcL was acquind. 
With the K!L waged,  the model was tested to a speed 
that  was 30 percent above the unaugmented f lut ter  
lmxday. subsequently, the wind tunnel was rduced 
t o  a pomt belaw the f lut ter  boundary. IBU was 
disengaged and the thresholds for the sensors used in  
the FSU w e r e  set. Then the wind tunnel speed was 
increase2 to confirm that the FSU would engage the 
IBU as the f lut ter  b0urkh-y was approached. 

For each parameter set, the wind -ne1 was 
increased until the wind tunnel objective was reached 
or the Fsu engaged the IEU, whichever occurred f i r s t .  
A pass was defined as a test of the AFSS from belaw 
the f lu t te r  boundary t o  the maximum tested condition 
and a retum t o  below the f lut ter  boundary. S a w  52 
passes w e r e  conducted for store configuration 33. 

An ac tua tor  fa i lure  was simulated by 
deactivating the left flaperon actuator while the 
AFSS was suppressing f lut ter  a t  a point 30 percent 
above the unauqtented f lut ter  velocity. me AFss 
continu& t o  maintain control. 

Above the unaucpxted f lut ter  speed the AFsS was 
disengaged t o  allow the f lut ter  mtion t o  increase 
until the Fsu engaged the IBU while movies w e r e  
taken. For several parameter sets the wind tunnel 
was reduced rapidly and the m s  mintained control. 
Ten sbndated store drops w e r e  conducted and only one 
caused the Fsu t o  erigage the IBU. 

Store Confiquration 73 

configuration 73 was also test& along two 
nominally constant wind tunnel total  pressure heads 
i n  a manner similar to the tests conduded on store 
configuration 33. The f lut ter  mode was antisyrnetric 
and the f lut ter  frequency was 14.5 Hz. 

A t t e m p t s  t o  develop a BCL that would suppress 
f lut ter  t o  a speed 30 percent above the una" 
f lut ter  sped w e r e  unsuccessful. Each BcL that was 
developed suppressed f lut ter  for only a srmll 

airspeed (Mach)

dy
na

m
ic

 p
re

ss
ur

e 
q/

q 0

speed of sound

flutter boundary 
before suppression

adaptive flutter 
suppression

[P
el

ou
be

t, 
H

al
le

r 
&

 B
ol

di
ng

, C
D

C 
19

90
]

• High speeds can 
excite aircraft 
wing resonances

• Spectral LTI 
system ID adapts 
online: use last 1s 
of flight data to 
ID, derive LQG 
controller, repeat

resonances depend on conditions—e.g., external fuel tanks attached at hard points—so, they can’t easily be 
eliminated at design time

plot from wind tunnel tests w/ full-span wing model—intended to simulate 1990s-era fighter jet—typical flutter 
frequency 8.6Hz

plot shows tests w/ one wing configuration—not all tests moved the flutter boundary this much, and achievable 
speed varied widely depending on configuration (e.g., one configuration went from Mach 0.95 (before suppression) 
to 1.05 (after))

sensing was with 3 pairs of accelerometers placed on wing

control was by actuating aircraft flaperons (wing surfaces) on top of input from pilot—100Hz updates

old-school: learning implemented on a VAX 11/750

===

dynamic pressure = kinetic energy of a fixed volume of air hitting the wing



Geoff Gordon—ICML tutorial—July, 2012

Intuition: bottleneck

st
at

e
compress expand

bottleneck

predict

data about past
(many samples)

data about future
(many samples)

3

Can find best rank-k bottleneck via matrix 
factorization ⇒ spectral method

for regularization, don’t just want a state: want a low-d (hopefully minimal) one

so, select k (linear combinations of) predictions which explain as much variance in future as possible



Geoff Gordon—ICML tutorial—July, 2012

(train from a short video, then simulate learned model)
Video textures

4

observation = raw pixels (vector of reals over time)

[Siddiqi, Boots & Gordon, 2007; 
Doretto & Soatto 2006]

fountain steam grate

Both this example and the last one: learned model is a linear time invariant (LTI) system (aka Kalman filter)

Spectral algorithms for LTI systems have been known for decades—but recently it was discovered that we can use 
spectral algorithms to learn more-interesting models



Geoff Gordon—ICML tutorial—July, 2012

Video textures, redux

Kalman Filter PSR

5

both models: 10 latent dimensions

Original

reason for failure of Kalman: Gaussian is log-concave.  So, if two images are likely, their *average* is at least as 
likely.

So: we need a *nonlinear* filter



Geoff Gordon—ICML tutorial—July, 2012

Learning to parse

6

• Treebanks commonly 
used to train parsers

• But manual tags typically 
don’t make fine-enough 
distinctions to enable 
local decisions by parser

‣ e.g., helps to label NPs 
with gender, number, 
mass/count, animate/
inanimate, human/
nonhuman, …

NP-SBJ

S

I saw the man with the telescope

VP

NP

PP

NP

[Cohen, Stratos, Collins, Foster & Ungar, ACL 2012]

parse is from Penn Treebank, omitting annotation of ambiguity -- could have been (NP (NP the man) (PP with the 
telescope))

the extra labels would help parsing, but they’re not available—could we simulate them?



Geoff Gordon—ICML tutorial—July, 2012

Learning to parse

7

NP-SBJ

S

I saw the man with the telescope

VP

NP

PP

NP

• Refine manual tags w/ 
learned latent variables

• Each latent depends on 
neighboring tags and 
latents

• Learn to fill in latents by 
trying to explain training 
parses

‣ spectral method leads 
to low-d latents

, Z4

, Z2

, Z1

, Z3

, Z5

, Z6

[Cohen, Stratos, Collins, Foster & Ungar, ACL 2012]

intuition: to determine latent at each node, predict (features of) inside context from outside context, and vice versa

advantages of spectral: very fast to train (can handle bigger data sets); no need to think of a smart initialization to 
defeat local optima; can benefit from arbitrary smart features computed from inside and outside contexts

but so far, smart initialization of EM to find MLE still gets best final parsing accuracy



Geoff Gordon—ICML tutorial—July, 2012

Latent Dirichlet Allocation

8

[Blei, Ng and Jordan, JMLR 2003]
[Anandkumar et al., arXiv 2012]

LDA: famous example of not 
knowing when MCMC converges

Spectral: single global optimum

α: overall topic frequencies
↓

θd: topic frequencies in document d 
↓

zwd: topic for word w of doc d
↓

identity of word w of doc d

Dirichlet(α)

Multinomial(θd)

Multinomial(β(zwd))
β(z): word 

distribution for 
topic z

docs
words

but, practical implementation of spectral method still in progress



Geoff Gordon—ICML tutorial—July, 2012

Structure from Motion

9

[T
om

as
i &

 K
an

ad
e, 

19
92

]

measurement matrix = 2d image positions of tracked features over time



Geoff Gordon—ICML tutorial—July, 2012

Structure from Motion

10

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, AUGUST 200X 19

0 50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0 50 100 150
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0 50 100 150
1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0 50 100 150
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160 180
1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0.2

0 20 40 60 80 100 120 140 160 180
1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0.2

0 20 40 60 80 100 120 140 160 180
1

0.8

0.6

0.4

0.2

0

0.2

0.4

Fig. 7. Reconstruction accuracy for three actors. The X-coordinate trajectories for three different points on the actors

is shown. The approximation error introduced by DCT projection has a smoothing impact on the reconstruction.

Red lines indicate ground truth data and blue lines indicate reconstructed data.

(a) (b)

Fig. 8. Structure recovery for multiple walk dataset containing 8 people with different walking styles. (a) Shows

the recovered structure (gray circles) and ground truth (black dots) for one frame. (b) Shows the recovered 3D

trajectories (gray solid line) and ground truth trajectories (black dotted line) of some points of a walk in the dataset.

It also shows the recovered structure for the starting and ending frame.

September 9, 2010 DRAFT

[Akter, Sheikh, Khan & Kanade, TPAMI 2011]

nonrigid 
version: learn a 
model of how 
shape changes 

over time

grey line: recovered
black dots: ground truth



Geoff Gordon—ICML tutorial—July, 2012

The problems: inference & learning

11

observed

hidden

some structure of MRF or factor graph

some nodes always hidden

some nodes always or usually observed in training data (but perhaps not in test)

variables may be discrete, continuous, mixed; structure may vary from example to example (so long as there are 
common pieces)



Geoff Gordon—ICML tutorial—July, 2012

The data

12

Many replicates of 
our network

either: repeated observations of same graph, or…



Geoff Gordon—ICML tutorial—July, 2012

The data

13

… or many common substructures 
carved out of one big network

... repeated structure in one or a few big graphs 

need repetition one way or the other so that we have a chance to learn something

could also have a similar sliding window for trees



Geoff Gordon—ICML tutorial—July, 2012

The data

14

Test time: some vars observed 
in training set are missing

for simplicity of notation, assume for now repeated observations of same graph



Geoff Gordon—ICML tutorial—July, 2012

Exact solutions

• Inference: belief propagation

‣ problem: exponential in treewidth (base = arity)

‣ continuous vars: exponential in diameter too

• Learning: maximum likelihood

‣ e.g., gradient descent or EM

‣ problem: inference is a subtask

‣ problem: lots of local optima

15
inference is (very!) hard in general
learning is (very very!) hard in general

any hope of computationally efficient learning and inference?  yes, w/ (surprisingly weak) assumptions, using 
spectral methods



Geoff Gordon—ICML tutorial—July, 2012

Key ideas for spectral learning

• Spectral bottleneck

• Predictive state

• Observable representation of model

16

[Littman, Sutton, Singh, NIPS 2001]

[a bunch of control theorists in ’80s;
van Overschee & de Moor, Automatica, 1993]

[Jaeger, Neural Computation, 1999]

already seen bottleneck idea
predictive state: next
observable rep’n: later

 expresses model in terms of predictive state and direct observables



Geoff Gordon—ICML tutorial—July, 2012

Predictive state

17

Use a vector of 
predictions of 
(features of) 

observables as state

e.g., in movie, predicted future pixels
e.g., in parse tree, predicted nonterminals on opposite side of current nonterminal

Here, we need predictions of pixels from at least two frames (to capture both position and direction of pendulum).

Predictions are E(features of future observations).  Predictive state can represent uncertainty: e.g., uncertain 
position leads to average image of pendulum in various positions.  (This smeared-out image doesn’t mean that 
we will ever see the pendulum in multiple states at once, only that we are uncertain where it will be.)

Why do we want a predictive state?  Easier to interpret, easier to learn.  E.g., if learning algorithm wants an 
unbiased estimate of current state, all it has to do is wait and see what the future looks like.

In some cases we know a good set of features to predict (examples include HMM, Kalman, characteristic RKHS); if 
not, we guess feature space (typical ML feature engineering problem)



Geoff Gordon—ICML tutorial—July, 2012

Predictive state: minimal example

• E([ϕ(ot+1) … ϕ(ot+k)] | st) = Wst with W invertible

18

P(st | st−1) =





2
3 0 1

4
1
3

2
3 0

0 1
3

3
4



 = T

P(ot | st−1) =

�
1
2 1 0
1
2 0 1

�
= O

OT =

�
2
3

2
3 0

1
3

1
3

7
8

�
W

here we derive a predictive state for a simple HMM (exact numbers don’t matter)

transition matrix T, observation matrix O

given state s, current expected observation is Os

next state is Ts, so next expected observation is OTs, etc.

pick W to be any 3 linearly independent rows of O, OT, OTT, OTTT, etc.

note: may not be able to get an invertible W under non-observability: e.g., 2 distinct hidden states w/ identical 
transitions and observations.  But in this case we can pick a representative of each equivalence class of states, and 
use the corresponding pseudoinverse.

===

\mathbb P(s_{t}\mid s_{t-1})\ &= \left[
\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & 0\\
\frac{1}{3} & & \\
0 & & \\
\end{array}
\right]\ =\ T\\
\mathbb P(o_{t}\mid s_{t-1})\ &= \left[
\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & 0\\
\frac{1}{3} & & \\
0 & & \\
\end{array}
\right]\ =\ T\\



Geoff Gordon—ICML tutorial—July, 2012

Start simple

19

x yy

P(x, y) = N(0,Σ)

Σ =

�
Σxx Σxy

Σyx Σyy

�

P(y | x) = N(ΣyxΣ
−1
xxx, . . .)

Inference: normal equations

Learning: estimate Σxx 
and Σxy from data

2D Gaussian case; training data has (x,y), while test data has x and we need to predict y

normal equations give Bayes rule update for E(y | x)

learning is just estimating covariances (= linear regression)

===

\mathbb P(y \mid x) &= N(\Sigma_{yx}\Sigma_{xx}^{-1} x, \ldots)

\mathbb P(x,y) &= N(0,\Sigma)\\
\Sigma &= \left(\begin{array}{cc}
\Sigma_{xx} & \Sigma_{xy}\\
\Sigma_{yx} & \Sigma_{yy}
\end{array}
\right)

===

\mathbb P(y \mid x) &= N(\mu, \Pi)\\
\mu &= \Sigma_{yx}\Sigma_{xx}^{-1} x\\
\Pi &= \ldots % \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1}\Sigma_{xy}

P(x,y) &= N(x,y \mid 0,\Sigma)\\
&= \sqrt{|(2\pi\Sigma)^{-1}|}\exp\left(-\frac{1}{2}
\left[\begin{array}{c} x\\ y \end{array}\right]\tr \Sigma^{-1}
\left[\begin{array}{c} x\\ y \end{array}\right]
\right)\\
\Sigma &= \left(\begin{array}{cc}
\Sigma_{xx} & \Sigma_{xy}\\
\Sigma_{yx} & \Sigma_{yy}
\end{array}
\right)\\
\Sigma^{-1} &= \left(\begin{array}{cc}
\Sigma_{xx} & \Sigma_{xy}\\
\Sigma_{yx} & \Sigma_{yy}
\end{array}
\right)\\
\\
P(y \mid x) &= 



Geoff Gordon—ICML tutorial—July, 2012

Another simple case

20

P(y | x) = P(x, y)/P(x)

x y

 

 

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0
1
0
0
0
0
0

0
0
0
1
0
0
0
x    y

P(x,y)

x

y

small number of discrete outcomes: P(x,y) specified by a probability table, can implement Bayes rule exactly by 
iterating over table



Geoff Gordon—ICML tutorial—July, 2012 21

0
1
0
0
0
0
0

0
0
0
1
0
0
0

Σxy

x    y




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





Σxy = E(xy�)
[Σxy]ij = P(x = ei, y = ej)

P(x, y) = x�Σxyy

Σxx

Σxx = E(xx�)

[Σxx]ii = P(x = ei)

P(x) = x�Σxxx

Inference

To connect to Gaussian case, let’s look at covariances

Can write everything needed for Bayes rule in terms of Σxx and Σxy

===

\Sigma_{xy} &= \mathbb E(xy\tr)\\
[\Sigma_{xy}]_{ij} &= \mathbb P(x=e_i,y=e_j)\\
\mathbb P(x,y) &= x\tr \Sigma_{xy} y

\Sigma_{xx} &= \mathbb E(xx\tr)\\
[\Sigma_{xx}]_{ii} &= \mathbb P(x=e_i)\\
\mathbb P(x) &= x\tr \Sigma_{xx} x

\left(
\begin{array}{ccccccc}
0&0&0&0&0&0&0\\
0&0&0&0&0&0&0\\
0&0&0&0&0&0&0\\
0&1&0&0&0&0&0\\
0&0&0&0&0&0&0\\
0&0&0&0&0&0&0\\
0&0&0&0&0&0&0
\end{array}
\right)



Geoff Gordon—ICML tutorial—July, 2012 22

0
1
0
0
0
0
0

0
0
0
1
0
0
0

ΣxyD

x    y
P(y = ej | x = ei) = P(x = ei, y = ej)/P(x = ei)

= [Σxy]ij/[Σxx]ii

P(y | x) = x�Σ−1
xxΣxyy

Σxx

Bayes rule: matrix version

Inference

====
\mathbb P(y=e_j\mid x=e_i) &= \mathbb P(x=e_i, y=e_j) / \mathbb P(x=e_i) \\
&= [\Sigma_{xy}]_{ij} / [\Sigma_{xx}]_{ii}\\
\mathbb P(y \mid x) &= x\tr \Sigma_{xx}^{-1} \Sigma_{xy} y



Geoff Gordon—ICML tutorial—July, 2012 23

0
1
0
0
0
0
0

0
0
0
1
0
0
0

Σxy

x    y

Σxx

empirical matrix 
Bayes rule
(consistent)

Σ̂xy =
1

T

T�

t=1

xty
�
t

Σ̂xx =
1

T

T�

t=1

xtx
�
t

P̂(y | x) = x�Σ̂−1
xx Σ̂xyy

Learning

these are same formulas as for Gaussian case

optional: can regularize Σxx by adding a ridge term λI (and possibly rescaling to maintain sum=1)

===
\hat \Sigma_{xy} &= \frac{1}{T} \sum_{t=1}^T x_t y_t\tr\\
\hat \Sigma_{xx} &= \frac{1}{T} \sum_{t=1}^T x_t x_t\tr

\hat {\mathbb P}(y \mid x) &= x\tr \hat \Sigma_{xx} ^{-1} \hat \Sigma_{xy} y



Geoff Gordon—ICML tutorial—July, 2012

Slightly more complicated graph

24

x ys

Σxx

x, y, s discrete

0
1
0
0
0
0
0

0
0
0
1
0
0
0
x    y    s

0
0
1

P(x, y, s) = 1

η
Qxs(x, s)Qys(y, s)

P(x, y) =
�

s

1

η
Qxs(x, s)Qys(y, s)

U
VT = Σxy

Uik =
1

η
Qxs(ei, ek)

Vjk = Qys(ej , ek)

Start to work our way up in graph complexity: suppose a latent variable z separates x from y

then something interesting happens: Σxy is low rank

just as before, Σxx is diagonal

===

\mathbb P(x,y,s) &= \frac{1}{\eta} Q_{xs}(x,s) Q_{ys}(y,s)\\
\mathbb P(x,y) &= \sum_s \frac{1}{\eta} Q_{xs}(x,s) Q_{ys}(y,s)\\
\\
U_{ik} &= \frac{1}{\eta} Q_{xs}(e_i,e_k)\\
V_{jk} &= Q_{ys}(e_j,e_k)



Geoff Gordon—ICML tutorial—July, 2012

Inference and learning

25

P(y = ej | x = ei) = [Σxy]ij/[Σxx]ii

P(y | x) = x�Σ−1
xxΣxyy

Σ̂xy = rankk

�
1

T

T�

t=1

xty
�
t

�

Σ̂xx =
1

T

T�

t=1

xtx
�
t

inference by 
normal equations

learning: project 
empirical covariance 

onto rank k

the learned rule is exact if k ≥ rank(true Σxy), but clearly we can still use it as an approximation if not

===

\mathbb P(y=e_j\mid x=e_i) 
&= [\Sigma_{xy}]_{ij} / [\Sigma_{xx}]_{ii}\\
\mathbb P(y \mid x) &= x\tr \Sigma_{xx}^{-1} \Sigma_{xy} y



Geoff Gordon—ICML tutorial—July, 2012

So what do we do w/ a real graph?

26

s1

x1

s2

x2

s3

x3

s4

x4

s5

x5 x6

Goal: Bayes filter
Given belief P(s2 | x12): dist’n over a cut, given left context

Update recursively: get belief P(s3 | x123)

L

M

R



Geoff Gordon—ICML tutorial—July, 2012

Bayes filter

27

s1

x1

s2

x2

s3

x3

s4

x4

s5

x5 x6

• Extend: P(s2, x3, s3 | …) = P(s2 | …) P(s3, x3 | s2)

• Marginalize: drop s2 to get P(x3, s3 | …)

• Condition: P(s3 | …) = P(x3, s3 | …) / P(x3 | …)

We’ll show how to do each of these steps efficiently; the result will look like repeated application of the matrix 
Bayes rule.  (And as above this result is exact if we use a big enough rank, or approximate if we pick a smaller 
rank.)



Geoff Gordon—ICML tutorial—July, 2012

P(x) = Σ12,3456

So what do we do w/ a real graph?

28

x1 x2 x3 x4 x5 x6

x ys
U

VT

x1, x2

x3, x4, x5, x6

If we group variables, we get right back to X-S-Y case

Write P(x) as a matrix: it is covariance of x12 vs x3456.  Each row is an event x12 = something; each column is an 
event x3456 = something.

This matrix is low-rank (by same argument above)

So, if we have UT * x12, that’s enough to compute P(x) for any value of x matching x12 -- we don’t need the actual 
value of x12 

Similarly, can compute P(x3456 | x12) by normalizing this slice of P(x)

Problem: can’t actually write down a table as big as P(x3456) -- much less P(x123456)

So what do we do?



Geoff Gordon—ICML tutorial—July, 2012

P(x12, 
x3456 = 
Q3456)

Cutting down on storage

29

P(x) = Σ12,3456

x3456 = [0,5,2,3]

x12 = [5,1]

x1, x2

x3, x4, x5, x6

basis Q3456

Say rank is 5

Then we can find 5 linearly independent columns (a basis for the column space) -- each column gives 
probabilities of all settings of x12 for one setting of x3456

And we can reconstruct any other column as a linear combination of this basis

Now we can work with the (much smaller) matrix which has only the basis columns, and we’ll be able to 
reconstruct any other desired column as needed

E.g., our belief will be represented as a prediction of probabilities for the events corresponding to basis columns 
-- this is our predictive state



Geoff Gordon—ICML tutorial—July, 2012

P(x12 = 
Q12, x3456 
= Q3456)

It works for rows too

30

Q3456

Q12

P(x) = Σ12,3456

Same idea works for rows, so we only need a small square submatrix of Σ



Geoff Gordon—ICML tutorial—July, 2012

Numerical example

31

x1 x2 x3 x4

x3,4

x 1
,2

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

this matrix ↑ has rank 2

since this variable has arity 2
↑

===

A = [1:9; (((1:9)-5).^2)/4]'/25.06; 
B = [sin(1:9)+1; ones(1,9)]/25.06;
 
k = 10;
tck = ((k+1)/2):k:9*k;
imagesc(kron(A*B,ones(k))); axis square; set(gca, 'fontsize', 20)
set(gca,'xtick',tck,'xticklabel','1,1|1,2|1,3|2,1|2,2|2,3|3,1|3,2|3,3')
set(gca,'ytick',tck,'yticklabel','1,1|1,2|1,3|2,1|2,2|2,3|3,1|3,2|3,3')
xlabel('x_{3,4}', 'fontsize', 24)
ylabel('x_{1,2}', 'fontsize', 24)
colorbar
set(gca,'fontsize',20)

===

imagesc(kron(A,ones(k))); 
axis equal tight; 
set(gca, 'fontsize', 20) 
set(gca,'xtick',[(k+1)/2 k+(k+1)/2],'xticklabel','1|2');
set(gca,'ytick',tck,'yticklabel','1,1|1,2|1,3|2,1|2,2|2,3|3,1|3,2|3,3')
xlabel('latent', 'fontsize', 24)
ylabel('x_{1,2}', 'fontsize', 24)
 

imagesc(kron(B,ones(k))); 
axis equal tight; 
set(gca, 'fontsize', 20)
set(gca,'ytick',[(k+1)/2 k+(k+1)/2],'yticklabel','1|2');
set(gca,'xtick',tck,'xticklabel','1,1|1,2|1,3|2,1|2,2|2,3|3,1|3,2|3,3')
ylabel('latent', 'fontsize', 24)
xlabel('x_{3,4}', 'fontsize', 24)



Geoff Gordon—ICML tutorial—July, 2012

Numerical example

32

↑ B = basis subset of P

↑ RT = regress from B to P(core, :) 

↑ L = regress from B to P(:, core) 

P = LBRT
core set

x 1,
2

1,3 3,1

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

co
re

 s
et

x3,4
1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,2

3,2co
re

 s
et

core set
1,2 3,2

1,3

3,1

we’ve represented the entire distribution P as the product of these 3 matrices -- many fewer parameters

If you’ve heard PSR terminology “core events” and “indicative events”, these are other names for a basis set

note: common caxis, except B, which is factor of 500 larger

===

corel = [3 7]';
corer = [2 8]';
AB0 = AB(corel, corer);
ABL = AB(:,corer);
ABR = AB(corel,:);
RR = AB0 \ ABR;
LL = ABL / AB0;
 
clf
 
imagesc(kron(LL,ones(k))); 
axis equal tight; 
set(gca, 'fontsize', 20) 
set(gca,'xtick',[(k+1)/2 k+(k+1)/2],'xticklabel','1,2|3,2');
set(gca,'ytick',tck,'yticklabel','1,1|1,2|1,3|2,1|2,2|2,3|3,1|3,2|3,3')
xlabel('core set', 'fontsize', 24)
ylabel('x_{1,2}', 'fontsize', 24)
 
print -depsc tmp.eps
 
pause
 
imagesc(kron(RR,ones(k))); 
axis equal tight; 
set(gca, 'fontsize', 20)
set(gca,'ytick',[(k+1)/2 k+(k+1)/2],'yticklabel','1,3|3,1');
set(gca,'xtick',tck,'xticklabel','1,1|1,2|1,3|2,1|2,2|2,3|3,1|3,2|3,3')
ylabel('core set', 'fontsize', 24)
xlabel('x_{3,4}', 'fontsize', 24)
 
print -depsc tmp.eps
 
pause
 
clf;
fr = .2;
subplot('position', [.13 .2 fr fr]);
imagesc(kron(AB0,ones(k))); 
axis equal tight; 
set(gca, 'fontsize', 20)
set(gca,'ytick',[(k+1)/2 k+(k+1)/2],'xticklabel','1,3|3,1');
set(gca,'xtick',[(k+1)/2 k+(k+1)/2],'yticklabel','1,2|3,2');
ylabel('core set', 'fontsize', 24)
xlabel('core set', 'fontsize', 24)
 
print -depsc tmp.eps



Geoff Gordon—ICML tutorial—July, 2012

Ambiguity

33

L
RTB

LB
S S-1

‣All these factorizations are equivalent

‣ Each corresponds to a linear transform of 
the basis

‣ Instead of P(basis event), E(basis statistic)
�

x1,x2

P(x1, x2)f(x1, x2)

We can rearrange factorization:
L B RT

(LB) RT

(LB) S S-1 RT



Geoff Gordon—ICML tutorial—July, 2012

Learning and inference

34

core set

x 1,
2

1,2 3,2

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

co
re

 s
et

x3,4
1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

1,3

3,1co
re

 s
et

core set
1,3 3,1

1,2

3,2

B R

L

Learn L and R by SVD

If desired, learn B by counting co-
occurrences of core events, adjust L and R

Inference by usual formula:
P(x3,4 | x1,2) = x�

12Σ
−1
12,12Σ12,34x34

In reality, though, for big sets of variables, Σxy will be too big to write down

===

\mathbb P(x_{3,4} \mid x_{1,2}) = x_{12}\tr \Sigma_{12,12}^{-1} \Sigma_{12,34} x_{34}



Geoff Gordon—ICML tutorial—July, 2012

Φ

Features

35

x1,2 x1+x2 x2 …
1, 1 2 1 …

1, 2 3 2 …

1, 3 4 3 …

2, 1 3 1 …

2, 2 4 2 …

2, 3 5 3 …

3, 1 4 1 …

3, 2 5 2 …

3, 3 6 3 …

Φ�Σ̂xyΨ = rankk

�
1

T

T�

t=1

φtψ
�
t

�

Ψ
ΦT

Σ12,34

So, define features of x12 and x34 -- call them phi and psi, and suppose there are ≥k of them on each side -- each 
feature is a linear combination of indicators for events

Compute empirical covariance of features, and project onto rank k

big advantage: we never need to represent a PDF over domain of X or Y, which can be huge -- instead work only 
with shorter feature vectors

big advantage #2: fixes a numerical/statistical problem.  If each core event has small probability (the usual case, 
since it’s a conjunction of settings for many variables), then it might take a lot of data to estimate the core 
submatrix, and it might be ill-conditioned to reconstruct other event probabilities from the core events.  But as 
long as features are not (nearly) perfectly correlated, projecting feature covariance onto rank k is well-
conditioned.

Problem: can’t do this with Σxx (it’s not low-rank)

Solution: we’ll use Bayes filter to condition on observed variables one at a time, instead of all at once

===

\mathbb P(y \mid x) &= x\tr \Sigma_{xx}^{-1} \Sigma_{xy} y

\Phi\tr \hat \Sigma_{xy} \Psi &= \text{rank}_k\left(
\frac{1}{T}\sum_{t=1}^T \phi_t \psi_t\tr
\right)

\Phi\tr \hat \Sigma_{xy} \Psi &= \text{rank}_k\left(
\frac{1}{T}\sum_{t=1}^T \phi_t \psi_t\tr
\right)\\
&= UV\tr\\
&= U S S^{-1} V\tr



Geoff Gordon—ICML tutorial—July, 2012

OK, we can work with groups

36

x1 x2 x3 x4 x5 x6

x ys
U

VT

x1, x2

x3, x4, x5, x6

So now we’ve shown how to work efficiently with this grouping



Geoff Gordon—ICML tutorial—July, 2012

Do it again

37

x yz

x1, x2, x3

x3, x4, x5

P(x)=Σ123,456

P(x123, 
x456 = 
Q456)

Q456

⇒

we can also regroup variables, and find a basis set for x345

or, if desired, a transformed basis (not just a subset of atomic events)



Geoff Gordon—ICML tutorial—July, 2012

Bayes filter

38

context C

P(Q | C) →

context C’

P(Q’ | C’) →

q ∈ Q
q’ ∈ Q’

P(Q | C) = 
vector of P(q | C)

xq’ = (x, then q’): e.g., if 
q’ is x456 = (4, 2, 7), then 
5q’ is x3456 = (5, 4, 2, 7)

We are given a belief over a core set: P(Q | context C) -- this is a short vector -- length 5 in our example

Given an observation x3 = x, we need to update: P(Q’ | C’) where C’ = (context C, observation x)

Marginalize: not really clear where this is happening since latents are never explicitly represented



Geoff Gordon—ICML tutorial—July, 2012

∀q� ∈ Q�, ∀ symbols x, ∃mxq� ∈ Rk,

P (xq� | C) = m�
xq�P (Q | C)

P (x | C) = m�
x P (Q | C)

Bayes filter

39

P(Q | C) = 
vector of P(q | C)

xq’ = (x, then q’): e.g., if q’ is 
x456 = (4, 2, 7), then 5q’ is 

x3456 = (5, 4, 2, 7) context C

P(Q | C) →

context C’

P(Q’ | C’) →

Extend: by assumption, for any qj’ in Q’, P(x, qj’ | context C) is a linear function of P(Q | C)

in symbols, P(xQ’ | C) = Mx P(Q | C) for some matrix Mx

again by assumption, P(x | C) = mx P(Q | C) for some vector mx

===
\forall q'\in Q',\,\forall\ \text{symbols}&\ x,\,\exists m_{xq'}\in\Re^k,\,\\
P(xq'\mid C) &= m_{xq'}\tr P(Q \mid C)\\[.8ex]
P(x\mid C) &= m_x\tr P(Q \mid C)



Geoff Gordon—ICML tutorial—July, 2012

P (q� | C �) = P (q� | C, x)
= P (xq� | C) / P (x | C)

= m�
xq�P (Q | C) / m�

x P (Q | C)

P (Q� | C �) = Mx(NxP (Q | C))−1P (Q | C)

= (covar of x, q� | C)(covar of x | C)−1P (Q | C)

Bayes filter

40

P(Q | C) = 
vector of P(q | C)

xq’ = (x, then q’): e.g., if q’ is 
x456 = (4, 2, 7), then 5q’ is 

x3456 = (5, 4, 2, 7) context C

P(Q | C) →

context C’

P(Q’ | C’) →

Condition: Bayes rule: P(qj | C, x) = P(x, qj | C) / P(x | C)

Or, all at once: P(Q | C’) = Mx P(Q | C) / mx P(Q | C)

===
P(q' \mid C') &= P(q’\mid C, x)\\
&= P(xq' \mid C)\ /\ P(x \mid C)\\
&= m_{xq'}\tr P(Q \mid C)\ /\ m_{x}\tr P(Q \mid C)\\[.8ex]
P(Q' \mid C') &= M_x (N_{x} P(Q \mid C))^{-1} P(Q \mid C)\\
&= (\text{covar of}~x,\,q'\mid C)(\text{covar of x}\mid C)^{-1} P(Q\mid C)



Geoff Gordon—ICML tutorial—July, 2012

Does it work?

• Simple HMM: 5 states, 7 observations

• N=300 thru N=900k

41

Tr
an

si
tio

ns
O

bs
er

va
tio

ns
XT

YT



Geoff Gordon—ICML tutorial—July, 2012

Does it work?

42

m
ea

n 
ab

s 
er

r
(1

00 =
pr

ed
ic

t 
un

ifo
rm

)

training data

Model True

P(
o 1

, o
2, 

o 3
)

103 104 105

10 2

10 1

100

 

 

Run 1
Run 2
Run 3
c/sqrt(n)

In heat maps,
first observation: major blocks
2nd: up&down within block
3rd: across rows



Geoff Gordon—ICML tutorial—July, 2012

Discussion

• Impossibility—learning DFA in poly time = 
breaking crypto primitives [Kearns & Valiant 89]

‣ so, clearly, we can’t always be statistically efficient

‣ but, see McDonald [11], HKZ [09], us [09]: 
convergence depends on mixing rate

• Nonlinearity—Bayes filter update is highly 
nonlinear in state (matrix inverse), even though we 
use a linear regression to identify the model

‣ this is essential for expressiveness (e.g., clock)

• Infinite memory horizon—even if we learn from 
a finite window

43
there are data sets from which it would be possible to learn a good dynamical system (using arbitrary 
computational power) where we learn little or nothing

failure mode: we need exponentially more data than would be possible with arbitrary computational power—
contrast breaking RSA by factoring vs. by building a table of (plaintext, cyphertext) pairs

any proof of efficiency would need to use some parameter such as beta-mixing which excludes “bad” HMMs



Geoff Gordon—ICML tutorial—July, 2012

Summary so far

• We can write Bayes rule updates in terms of 
covariances

‣ Often, they are low rank

‣ We can learn them from data

• We can chain Bayes rule updates together to 
make a Bayes filter

• Lots of cool applications of this simple idea

44


