Simplifying rational functions

Geoff Gordon

June 3, 2005

This document describes how to use synthetic division and partial fraction expansion to reduce a rational function to its canonical form. Synthetic division and partial fraction expansion are implemented in Matlab's residue function, which is a good way to experiment with them.

1 Partial fractions

Suppose we have a rational function

$$\frac{B(s)}{A(s)} = \frac{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0}{a_m s^m + a_{m-1} s^{m-1} + \dots + a_0}$$

We would like to represent it in a simpler form. It turns out that any rational function can be decomposed in the partial fraction expansion

$$\frac{B(s)}{A(s)} = K(s) + \frac{C_1(s)}{P_1(s)} + \frac{C_2(s)}{P_2(s)} + \dots$$

Here K(s) is a polynomial, and $C_i(s)$ and $P_i(s)$ are "simple" polynomials. K(s) is called the *direct term*; it is necessary only if $n \geq m$, and if it exists it has degree (n-m).

The denominator polynomials P_i depend on the roots of A, which are also called *poles* of the rational function. (Roots of B are called *zeros* of the rational function.) Each isolated root x_i of A results in a denominator polynomial of the form $P_i(s) = s - x_i$; each complex conjugate pair of roots $x_i \pm y_i \mathbf{i}$ gives a denominator of the form $P_i(s) = s^2 + 2x_i s + x_i^2 - y_i^2$. Multiple roots result in terms of higher degree; for example a real root x_i with multiplicity k gives a denominator $P_i(s) = (s - x_i)^k$.

To determine the direct term we can use *synthetic division* (see below). So for now let us assume n < m. In this case we can use the Heaviside method (also called the cover-up method) to determine the coefficient polynomials C_i .

The simplest case is an isolated root x_i of A(s). In this case, C_i is a constant, and we have

$$(s - x_i)\frac{B(S)}{A(S)} = (s - x_i)\left(K(s) + \frac{C_1(s)}{P_1(s)} + \frac{C_2(s)}{P_2(s)} + \dots\right)$$

$$\left[(s - x_i) \frac{B(S)}{A(S)} \right]_{s = x_i} = C_i$$

where the second equation holds because every term on the right-hand side contains a factor $(s - x_i)$ except for the term $(s - x_i)C_i/(s - x_i)$. So, we can determine C_i by deleting one of the factors $(s - x_i)$ of A_i from our rational function, and evaluating the result at x_i .

For example, suppose we have

$$\frac{A(s)}{B(s)} = \frac{1}{(s^2+1)(s-2)}$$

We will then have a term in our expansion

$$\frac{a}{s-2}$$

To determine a, we evaluate $1/(s^2+1)$ at s=2. This tells us that a=1/5, so our term is

$$\frac{1/5}{s-2}$$

This way of determining coefficients gives the method its name: we "covered up" the factor 1/(s-2) of B(s)/A(s) and evaluated the remaining expression at s=2.

If our denominator has a repeated root or a complex conjugate pair of roots (or even a repeated conjugate pair), then we will have a factor $P_i(s)$ in the denominator which has degree d > 1. This factor will result in a term $C_i(s)/P_i(s)$ in our expansion, where degree(C_i) < d. In this case we can determine the coefficients of C_i by evaluating $P_i(s)B(s)/A(s)$ at the d points where P_i is zero; this will result in d equations in the d unknown coefficients.

For example, consider again the rational function

$$\frac{A(s)}{B(s)} = \frac{1}{(s^2+1)(s-2)}$$

The factor $(s^2 + 1)$ leads to a term in our expansion

$$\frac{as+b}{s^2+1}$$

To determine a and b, we evaluate 1/(s-2) at the two points at which (s^2+1) is 0, namely $\pm \mathbf{i}$. This gets us two equations,

$$a\mathbf{i} + b = \frac{1}{\mathbf{i} - 2} = -\frac{\mathbf{i} + 2}{5}$$
 $-a\mathbf{i} + b = \frac{1}{-\mathbf{i} - 2} = \frac{\mathbf{i} - 2}{5}$

Solving these equations gives a=-1/5 and b=-2/5; combining the new term with our previous result tells us that our final expansion is

$$\frac{B(s)}{A(s)} = \frac{1/5}{s-2} - \frac{s/5 + 2/5}{s^2 + 1}$$

2 Synthetic division

We are given a rational function B(s)/A(s) with numerator degree n and denominator degree m. If $n \ge m$, we can pull out a *quotient* term K(s), leaving a remainder term R(s) with degree (R) < m, so that

$$\frac{B(s)}{A(s)} = K(s) + \frac{R(s)}{A(s)}$$

The process is analogous to long division, and is called *synthetic division*. We will illustrate it by example: suppose we start with

$$\frac{B(s)}{A(s)} = \frac{s^3 - s^2 + s + 1}{s^2 - 4s + 3}$$

We are looking for K(s) and R(s), with degree(R) < 2, so that

$$B(s) = K(s)A(s) + R(s)$$

To get the highest-order term of B(s) (namely s^3) right, we can see that we have to multiply A(s) by s. If we set $K_1(s) = s$, we have

$$R_1(s) = B(s) - K_1(s)A(s) = (s^3 - s^2 + s + 1) - (s^3 - 4s^2 + 3s) = 3s^2 - 2s + 1$$

This gets us partway to our goal: $R_1(s)$ has a smaller degree than B(s) did, but not small enough. But, we can repeat the process: to get rid of the leading term of $R_1(s)$ (namely $3s^2$), we can multiply A(s) by 3. Setting $K_2(s) = s + 3$, we have

$$R_2(s) = B(s) - K_2(s)A(s) = (s^3 - s^2 + s + 1) - (s^3 - 4s^2 + 3s) - (3s^2 - 12s + 9)$$

Cancelling terms gives $R_2(s) = 10s - 8$, which has sufficiently low degree, so we can take $R = R_2$ and $K = K_2$.