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PrefaceMatrix eigenvalue problems arise in a large number of disciplinesof sciences and engineering. They constitute the basic tool usedin designing buildings, bridges, and turbines, that are resistentto vibrations. They allow to model queueing networks, and toanalyze stability of electrical networks or 
uid 
ow. They alsoallow the scientist to understand local physical phenonema orto study bifurcation patterns in dynamical systems. In fact thewriting of this book was motivated mostly by the second class ofproblems.Several books dealing with numerical methods for solving eigen-value problems involving symmetric (or Hermitian) matrices havebeen written and there are a few software packages both publicand commercial available. The book by Parlett [118] is an ex-cellent treatise of the problem. Despite a rather strong demandby engineers and scientists there is little written on nonsymmetricproblems and even less is available in terms of software. The 1965book by Wilkinson [183] still constitutes an important reference.Certainly, science has evolved since the writing of Wilkinson'sbook and so has the computational environment and the demandfor solving large matrix problems. Problems are becoming largerand more complicated while at the same time computers are ableto deliver ever higher performances. This means in particular thatmethods that were deemed too demanding yesterday are now inthe realm of the achievable. I hope that this book will be a smallstep in bridging the gap between the literature on what is avail-able in the symmetric case and the nonsymmetric case. Both



viii Prefacethe Hermitian and the non-Hermitian case are covered, althoughnon-Hermitian problems are given more emphasis.This book attempts to achieve a good balance between the-ory and practice. I should comment that the theory is especiallyimportant in the nonsymmetric case. In essence what di�erenti-ates the Hermitian from the non-Hermitian eigenvalue problem isthat in the �rst case we can always manage to compute an ap-proximation whereas there are nonsymmetric problems that canbe arbitrarily di�cult to solve and can essentially make any algo-rithm fail. Stated more rigorously, the eigenvalue of a Hermitianmatrix is always well-conditioned whereas this is not true for non-symmetric matrices. On the practical side, I tried to give a generalview of algorithms and tools that have proved e�cient. Many ofthe algorithms described correspond to actual implementationsof research software and have been tested on realistic problems.I have tried to convey our experience from the practice in usingthese techniques.As a result of the partial emphasis on theory, there are a fewchapters that may be found hard to digest for readers inexperi-enced with linear algebra. These are Chapter III and to someextent, a small part of Chapter IV. Fortunately, Chapter III isbasically independent of the rest of the book. The minimal back-ground needed to use the algorithmic part of the book, namelyChapters IV through VIII, is calculus and linear algebra at theundergraduate level. The book has been used twice to teach a spe-cial topics course; once in a Mathematics department and once ina Computer Science department. In a quarter period represent-ing roughly 12 weeks of 2.5 hours lecture per week, Chapter I, III,and IV, to VI have been covered without much di�culty. In asemester period, 18 weeks of 2.5 hours lecture weekly, all chapterscan be covered with various degrees of depth. Chapters II and Xneed not be treated in class and can be given as remedial reading.Finally, I would like to extend my appreciation to a numberof people to whom I am indebted. Fran�coise Chatelin, who wasmy thesis adviser, introduced me to numerical methods for eigen-



Preface ixvalue problems. Her in
uence on my way of thinking is certainlyre
ected in this book. Beresford Parlett has been encouragingthroughout my career and has always been a real inspiration.Part of the motivation in getting this book completed, ratherthan `never �nished', is owed to L. E. Scriven from the ChemicalEngineering department and to many others in applied scienceswho expressed interest in my work. I am indebted to Roland Fre-und who has read this manuscript with great care and has pointedout numerous mistakes. Minneapolis, December 1991Youcef Saad
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Chapter I
Background in MatrixTheory and Linear AlgebraThis chapter reviews basic matrix theory and introduces someof the elementary notation used throughout the book. Matricesare objects that represent linear mappings between vector spaces.The notions that will be predominantly used in this book are veryintimately related to these linear mappings and it is possible todiscuss eigenvalues of linear operators without ever mentioningtheir matrix representations. However, to the numerical analyst,or the engineer, any theory that would be developed in this man-ner would be insu�cient in that it will not be of much help indeveloping or understanding computational algorithms. The ab-straction of linear mappings on vector spaces does however pro-vide very concise de�nitions and some important theorems.



2 Chapter I1. MatricesWhen dealing with eigenvalues it is more convenient, if not morerelevant, to manipulate complex matrices rather than real matri-ces. A complex n � m matrix A is an n � m array of complexnumbers aij; i = 1; : : : ; n; j = 1; : : : ; m:The set of all n �m matrices is a complex vector space denotedby Cn�m. The main operations with matrices are the following:� Addition: C = A + B, where A;B and C are matrices ofsize n�m and cij = aij + bij ;i = 1; 2; : : : n, j = 1; 2; : : :m.� Multiplication by a scalar: C = �A, where cij = � aij.� Multiplication by another matrix:C = AB;where A 2 Cn�m; B 2 Cm�p; C 2 Cn�p, andcij = mXk=1 aikbkj:A notation that is often used is that of column vectors androw vectors. The column vector a:j is the vector consisting of thej-th column of A, i.e., a:j = (aij)i=1;:::;n. Similarly we will use thenotation ai: to denote the i-th row of the matrix A. For example,we may write that A = (a:1; a:2; : : : ; a:m) :or A = 0BBBBB@ a1:a2:::an:
1CCCCCA



Background 3The transpose of a matrix A in Cn�m is a matrix C in Cm�nwhose elements are de�ned by cij = aji; i = 1; : : : ; m; j = 1; : : : ; n.The transpose of a matrix A is denoted by AT . It is more rele-vant in eigenvalue problems to use the transpose conjugate matrixdenoted by AH and de�ned byAH = �AT = ATin which the bar denotes the (element-wise) complex conjugation.Finally, we should recall that matrices are strongly related tolinear mappings between vector spaces of �nite dimension. Theyare in fact representations of these transformations with respectto two given bases; one for the initial vector space and the otherfor the image vector space.2. Square Matrices and EigenvaluesA matrix belonging to Cn�n is said to be square. Some notionsare only de�ned for square matrices. A square matrix which isvery important is the identity matrixI = f�ijgi;j=1;:::;nwhere �ij is the Kronecker symbol. The identity matrix satis�esthe equality AI = IA = A for every matrix A of size n. Theinverse of a matrix, when it exists, is a matrix C such that CA =AC = I. The inverse of A is denoted by A�1.The determinant of a matrix may be de�ned in several ways.For simplicity we adopt here the following recursive de�nition.The determinant of a 1� 1 matrix (a) is de�ned as the scalar a.Then the determinant of an n� n matrix is given bydet(A) = nXj=1(�1)j+1a1jdet(A1j)



4 Chapter Iwhere A1j is an (n� 1)� (n� 1) matrix obtained by deleting the1-st row and the j� th column of A. The determinant of a matrixdetermines whether or not a matrix is singular since A is singularif and only if its determinant is zero. We have the following simpleproperties:� det(AB) = det(BA),� det(AT ) = det(A),� det(�A) = �ndet(A),� det( �A) = det(A),� det(I) = 1.From the above de�nition of the determinant it can be shownby induction that the function that maps a given complex value� to the value pA(�) = det(A � �I) is a polynomial of degree n(Problem P-1.6). This is referred to as the characteristic polyno-mial of the matrix A.De�nition 1.1 A complex scalar � is called an eigenvalue of thesquare matrix A if there exists a nonzero vector u of Cn such thatAu = �u. The vector u is called an eigenvector of A associatedwith �. The set of all the eigenvalues of A is referred to as thespectrum of A and is denoted by �(A).An eigenvalue of A is a root of the characteristic polynomial.Indeed � is an eigenvalue of A i� det(A � �I) � pA(�) = 0. Sothere are at most n distinct eigenvalues. The maximum modulusof the eigenvalues is called spectral radius and is denoted by �(A):�(A) = max�2�(A) j�j:The trace of a matrix is equal to the sum of all its diagonal ele-ments, tr(A) = nXi=1 aii:



Background 5It can be easily shown that this is also equal to the sum of itseigenvalues counted with their multiplicities as roots of the char-acteristic polynomial.Proposition 1.1 If � is an eigenvalue of A then �� is an eigen-value of AH. An eigenvector v of AH associated with the eigen-value �� is called left eigenvector of A.When a distinction is necessary, an eigenvector of A is often calleda right eigenvector. Thus the eigenvalue � and the right and lefteigenvectors, u and v, satisfy the relationsAu = �u ; vHA = �vHor, equivalently, uHAH = ��uH ; AHv = ��v :3. Types of MatricesThe properties of eigenvalues and eigenvectors of square matriceswill sometimes depend on special properties of the matrix A. Forexample, the eigenvalues or eigenvectors of the following types ofmatrices will all have some special properties.� Symmetric matrices: AT = A;� Hermitian matrices: AH = A;� Skew-symmetric matrices: AT = �A;� Skew-Hermitian matrices: AH = �A;� Normal matrices: AHA = AAH ;� Nonnegative matrices: aij � 0; i; j = 1; : : : ; n (similarde�nition for nonpositive, positive, and negative matrices);



6 Chapter I� Unitary matrices: QHQ = I.Often, a matrix Q such that QHQ is diagonal is called orthogonal.It is worth noting that a unitary matrix Q is a matrix whoseinverse is its transpose conjugate QH .Some matrices have particular structures that are often con-venient for computational purposes and play important roles innumerical analysis. The following list though incomplete, gives anidea of the most important special matrices arising in applicationsand algorithms.� Diagonal matrices: aij = 0 for j 6= i. Notation:A = diag (a11; a22; : : : ; ann) :� Upper triangular matrices: aij = 0 for i > j.� Lower triangular matrices: aij = 0 for i < j.� Upper bidiagonal matrices: aij = 0 for j 6= i or j 6= i + 1.� Lower bidiagonal matrices: aij = 0 for j 6= i or j 6= i� 1.� Tridiagonal matrices: aij = 0 for any pair i; j such thatjj � ij>1. Notation:A = tridiag (ai;i�1; aii; ai;i+1) :� Banded matrices: there exist two integers ml and mu suchthat aij 6= 0 only if i � ml � j � i + mu. The numberml +mu + 1 is called the bandwidth of A.� Upper Hessenberg matrices: aij = 0 for any pair i; j suchthat i > j + 1. One can de�ne lower Hessenberg matricessimilarly.� Outer product matrices: A = uvH, where both u and v arevectors.



Background 7� Permutation matrices: the columns of A are a permutationof the columns of the identity matrix.� Block diagonal matrices: generalizes the diagonal matrix byreplacing each diagonal entry by a matrix. Notation:A = diag (A11; A22; : : : ; Ann) :� Block tri-diagonal matrices: generalizes the tri-diagonal ma-trix by replacing each nonzero entry by a square matrix.Notation: A = tridiag (Ai;i�1; Aii; Ai;i+1) :The above properties emphasize structure, i.e., positions ofthe nonzero elements with respect to the zeros, and assume thatthere are many zero elements or that the matrix is of low rank.No such assumption is made for, say, orthogonal or symmetricmatrices.4. Vector Inner Products and NormsWe de�ne the Hermitian inner product of the two vectors x =(xi)i=1;:::;n and y = (yi)i=1;:::;n of Cn as the complex number(x; y) = nXi=1 xi�yi; (1.1)which is often rewritten in matrix notation as(x; y) = yHx:A vector norm on Cn is a real-valued function on Cn, whichsatis�es the following three conditions,kxk � 0 8 x; and kxk = 0 i� x = 0;k�xk = j�jkxk; 8 x 2 Cn; 8� 2 C ;kx+ yk � kxk+ kyk; 8x; y 2 Cn :



8 Chapter IAssociated with the inner product (1.1) is the Euclidean normof a complex vector de�ned bykxk2 = (x; x)1=2 :A fundamental additional property in matrix computations is thesimple relation (Ax; y) = (x;AHy) 8x; y 2 Cn (1.2)the proof of which is straightforward. The following propositionis a consequence of the above equality.Proposition 1.2 Unitary matrices preserve the Hermitian innerproduct, i.e., (Qx;Qy) = (x; y) for any unitary matrix Q.Proof. Indeed (Qx;Qy) = (x;QHQy) = (x; y).In particular a unitary matrix preserves the 2-norm metric, i.e.,it is isometric with respect to the 2-norm.The most commonly used vector norms in numerical linearalgebra are special cases of the H�older normskxkp =  nXi=1 jxijp!1=p : (1.3)Note that the limit of kxkp when p tends to in�nity exists and isequal to the maximum modulus of the xi's. This de�nes a normdenoted by k:k1. The cases p = 1, p = 2, and p =1 lead to themost important norms in practice,kxk1 = jx1j+ jx2j+ � � �+ jxnjkxk2 = hjx1j2 + jx2j2 + � � �+ jxnj2i1=2kxk1 = maxi=1;::;n jxij :A useful relation concerning the 2-norm is the so-called Cauchy-Schwartz inequality: j(x; y)j � kxk2kyk2:



Background 95. Matrix NormsFor a general matrix A in Cn�m we de�ne a special set of normsof matrices as followskAkpq = maxx2Cm; x6=0 kAxkpkxkq : (1.4)We say that the norms k:kpq are induced by the two norms k:kpand k:kq. These norms satisfy the usual properties of norms, i.e.,kAk � 0 8A 2 Cn�m and kAk = 0 i� A = 0 ;k�Ak = j�jkAk; 8A 2 Cn�m; 8� 2 C ;kA+Bk � kAk+ kBk; 8A;B 2 Cn�m :Again the most important cases are the ones associated withthe cases p; q = 1; 2;1. The case q = p is of particular interestand the associated norm k:kpq is simply denoted by k:kp.A fundamental property of these norms is thatkABkp � kAkpkBkp;which is an immediate consequence of the de�nition (1.4). Ma-trix norms that satisfy the above property are sometimes calledconsistent. As a result of the above inequality, for example, wehave that for any square matrix A,kAnkp � kAknp ;which implies in particular that the matrix An converges to zeroif any of its p-norms is less than 1.The Frobenius norm of a matrix is de�ned bykAkF = 0@ mXj=1 nXi=1 jaijj21A1=2 : (1.5)This can be viewed as the 2-norm of the column (or row) vectorin Cn2 consisting of all the columns (resp. rows) of A listed from



10 Chapter I1 to m (resp. 1 to n). It can easily be shown that this norm isalso consistent, in spite of the fact that is not induced by a pairof vector norms, i.e., it is not derived from a formula of the form(1.4), see Problem P-1.3. However, it does not satisfy some of theother properties of the p-norms. For example, the Frobenius normof the identity matrix is not unity. To avoid these di�culties, wewill only use the term matrix norm for a norm that is induced bytwo norms as in the de�nition (1.4). Thus, we will not considerthe Frobenius norm to be a proper matrix norm, according to ourconventions, even though it is consistent.It can be shown that the norms of matrices de�ned abovesatisfy the following equalities that lead to alternative de�nitionsthat are often easier to work with.kAk1 = maxj=1;::;m nXi=1 jaijj ; (1.6)kAk1 = maxi=1;::;n mXj=1 jaijj ; (1.7)kAk2 = h�(AHA)i1=2 = h�(AAH)i1=2 ; (1.8)kAkF = htr(AHA)i1=2 = htr(AAH)i1=2 : (1.9)As will be shown in Section 5, the eigenvalues of AHA arenonnegative. Their square roots are called singular values of Aand are denoted by �i; i = 1; : : : ; m. Thus, the relation (1.8)shows that kAk2 is equal to �1, the largest singular value of A.Example 1.1 From the above properties, it is clear that the spectralradius �(A) is equal to the 2-norm of a matrix when the matrix isHermitian. However, it is not a matrix norm in general. For example,the �rst property of norms is not satis�ed, since forA = � 0 10 0�we have �(A) = 0 while A 6= 0. The triangle inequality is also notsatis�ed for the pair A, and B = AT where A is de�ned above. Indeed,�(A+B) = 1 while �(A) + �(B) = 0:



Background 116. SubspacesA subspace of Cn is a subset of Cn that is also a complex vectorspace. The set of all linear combinations of a set of vectors G =fa1; a2; :::; aqg of Cn is a vector subspace called the linear span ofG, spanfGg = span fa1; a2; : : : ; aqg= (z 2 Cn j z = qXi=1 �iai ; f�gi=1;:::;q 2 Cq) :If the ai's are linearly independent, then each vector of spanfGgadmits a unique expression as a linear combination of the ai's.The set G is then called a basis of the subspace spanfGg.Given two vector subspaces S1 and S2, their sum S is a sub-space de�ned as the set of all vectors that are equal to the sum of avector of S1 and a vector of S2. The intersection of two subspacesis also a subspace. If the intersection of S1 and S2 is reduced tof0g then the sum of S1 and S2 is called their direct sum and isdenoted by S = S1LS2. When S is equal to Cn then every vec-tor x of Cn can be decomposed in a unique way as the sum of anelement x1 of S1 and an element x2 of S2. The transformation Pthat maps x into x1 is a linear transformation that is idempotent(P 2 = P ). It is called a projector, onto S1 along S2.Two subspaces of importance that are associated with a ma-trix A of Cn�m are its range de�ned byRan(A) = fAx j x 2 Cmg (1.10)and its kernel or null spaceKer(A) = fx 2 Cm j Ax = 0 g :The range of A is clearly equal to the linear span of its columns.The rank of a matrix is equal to the dimension of the range of A.A subspace S is said to be invariant under a (square) matrixA whenever AS � S. In particular for any eigenvalue � of A



12 Chapter Ithe subspace Ker(A � �I) is invariant under A. The subspaceKer(A��I) is called the eigenspace associated with � and consistsof all the eigenvectors of A associated with � and the vector 0.7. Orthogonal Vectors and SubspacesA set of vectors G = fa1; a2; : : : ; arg is said to be orthogonal if(ai; aj) = 0 when i 6= jIt is orthonormal if in addition every vector of G has a 2-normequal to unity. Every subspace admits an orthonormal basis whichis obtained by taking any basis and \orthonormalizing" it. Theorthonormalization can be achieved by an algorithm referred toas the Gram-Schmidt process which we now describe. Given a setof linearly independent vectors fx1; x2; : : : ; xrg, we �rst normalizethe vector x1, i.e., we divide it by its 2-norm, to obtain the scaledvector q1. Then x2 is orthogonalized against the vector q1 bysubtracting from x2 a multiple of q1 to make the resulting vectororthogonal to q1, i.e., x2  x2 � (x2; q1)q1:The resulting vector is again normalized to yield the second vec-tor q2. The i-th step of the Gram-Schmidt process consists oforthogonalizing the vector xi against all previous vectors qj.Algorithm 1.1 Gram-Schmidt1. Start: Compute r11 := kx1k2. If r11 = 0 stop, else q1 :=x1=r11.2. Loop: For j = 2; : : : ; r do:(a) Compute rij := (xj; qi) for i = 1; 2; : : : ; j � 1;(b) q̂ := xj � j�1Pi=1 rijqi ,



Background 13(c) rjj := kq̂k2 ,(d) If rjj = 0 then stop, else qj := q̂=rjj.It is easy to prove that the above algorithm will not breakdown, i.e., all r steps will be completed, if and only if the familyof vectors x1; x2; : : : ; xr is linearly independent. From 2-(b) and2-(c) it is clear that at every step of the algorithm the followingrelation holds: xj = jXi=1 rijqi :If we let X = [x1; x2; : : : ; xr], Q = [q1; q2; : : : ; qr], and if R denotesthe r � r upper triangular matrix whose nonzero elements arethe rij de�ned in the algorithm, then the above relation can bewritten as X = QR : (1.11)This is called the QR decomposition of the n�r matrix X. Thus,from what was said above the QR decomposition of a matrix existswhenever the column vectors of X form a linearly independent setof vectors.The above algorithm is the standard Gram-Schmidt process.There are other formulations of the same algorithm which aremathematically equivalent but have better numerical properties.The Modi�ed Gram-Schmidt algorithm (MGSA) is one such al-ternative.Algorithm 1.2 Modi�ed Gram-Schmidt1. Start: de�ne r11 := kx1k2. If r11 = 0 stop, else q1 := x1=r11.2. Loop: For j = 2; : : : ; r do:(a) De�ne q̂ := xj,(b) For i = 1; : : : ; j � 1, do ( rij := (q̂; qi)q̂ := q̂ � rijqi(c) Compute rjj := kq̂k2,



14 Chapter I(d) If rjj = 0 then stop, else qj := q̂=rjj.A vector that is orthogonal to all the vectors of a subspaceS is said to be orthogonal to that subspace. The set of all thevectors that are orthogonal to S is a vector subspace called theorthogonal complement of S and denoted by S?. The space Cn isthe direct sum of S and its orthogonal complement. The projectoronto S along its orthogonal complement is called an orthogonalprojector onto S. If V = [v1; v2; : : : ; vr] is an orthonormal matrixthen V HV = I, i.e., V is orthogonal. However, V V H is notthe identity matrix but represents the orthogonal projector ontospanfV g, see Section 1 of Chapter III for details.8. Canonical Forms of MatricesIn this section we will be concerned with the reduction of squarematrices into matrices that have simpler forms, such as diagonalor bidiagonal, or triangular. By reduction we mean a transforma-tion that preserves the eigenvalues of a matrix.De�nition 1.2 Two matrices A and B are said to be similar ifthere is a nonsingular matrix X such thatA = XBX�1The mapping B ! A is called a similarity transformation.It is clear that similarity is an equivalence relation. Similaritytransformations preserve the eigenvalues of matrix. An eigenvec-tor uB of B is transformed into the eigenvector uA = XuB of A.In e�ect, a similarity transformation amounts to representing thematrix B in a di�erent basis.We now need to de�ne some terminology.1. An eigenvalue � of A is said to have algebraic multiplicity � ifit is a root of multiplicity � of the characteristic polynomial.



Background 152. If an eigenvalue is of algebraic multiplicity one it is said tobe simple. A nonsimple eigenvalue is said to be multiple.3. An eigenvalue � of A is said to have geometric multiplicity 
if the maximum number of independent eigenvectors associ-ated with it is 
. In other words the geometric multiplicity
 is the dimension of the eigenspace Ker (A� �I).4. A matrix is said to be derogatory if the geometric multiplic-ity of at least one of its eigenvalues is larger than one.5. An eigenvalue is said to be semi-simple if its algebraic mul-tiplicity is equal to its geometric multiplicity. An eigenvaluethat is not semi-simple is called defective .We will often denote by �1; �2; : : : ; �p, (p � n), all the distincteigenvalues of A. It is a simple exercise to show that the char-acteristic polynomials of two similar matrices are identical, seeExercise P-1.7. Therefore, the eigenvalues of two similar matricesare equal and so are their algebraic multiplicities. Moreover if vis an eigenvector of B then Xv is an eigenvector of A and, con-versely, if y is an eigenvector of A then X�1y is an eigenvector ofB. As a result the number of independent eigenvectors associatedwith a given eigenvalue is the same for two similar matrices, i.e.,their geometric multiplicity is also the same.The possible desired forms are numerous but they all have thecommon goal of attempting to simplify the original eigenvalueproblem. Here are some possibilities with comments as to theirusefulness.� Diagonal: the simplest and certainly most desirable choicebut it is not always achievable.� Jordan: this is an upper bidiagonal matrix with ones orzeroes on the super diagonal. Always possible but not nu-merically trustworthy.



16 Chapter I� Upper triangular: in practice this is the most reasonablecompromise as the similarity from the original matrix to atriangular form can be chosen to be isometric and there-fore the transformation can be achieved via a sequence ofelementary unitary transformations which are numericallystable.8.1. Reduction to the Diagonal Form.The simplest form in which a matrix can be reduced is undoubt-edly the diagonal form but this reduction is, unfortunately, notalways possible. A matrix that can be reduced to the diagonalform is called diagonalizable. The following theorem characterizessuch matrices.Theorem 1.1 A matrix of dimension n is diagonalizable if andonly if it has n linearly independent eigenvectors.Proof. A matrix A is diagonalizable if and only if there existsa nonsingular matrix X and a diagonal matrix D such that A =XDX�1 or equivalently AX = XD, whereD is a diagonal matrix.This is equivalent to saying that there exist n linearly independentvectors { the n column-vectors of X { such that Axi = dixi, i.e.,each of these column-vectors is an eigenvector of A.A matrix that is diagonalizable has only semi-simple eigenvalues.Conversely, if all the eigenvalues of a matrix are semi-simple thenthere exist n eigenvectors of the matrix A. It can be easily shownthat these eigenvectors are linearly independent, see Exercise P-1.1. As a result we have the following proposition.Proposition 1.3 A matrix is diagonalizable if and only if all itseigenvalues are semi-simple.Since every simple eigenvalue is semi-simple, an immediatecorollary of the above result is that when A has n distinct eigen-values then it is diagonalizable.



Background 178.2. The Jordan Canonical FormFrom the theoretical viewpoint, one of the most important canon-ical forms of matrices is the well-known Jordan form. In what fol-lows, the main constructive steps that lead to the Jordan canoni-cal decomposition are outlined. For details, the reader is referredto a standard book on matrix theory or linear algebra.� For every integer l and each eigenvalue �i it is true thatKer(A� �iI)l+1 � Ker(A� �iI)l :� Because we are in a �nite dimensional space the above propertyimplies that there is a �rst integer li such thatKer(A� �iI)li+1 = Ker(A� �iI)li;and in fact Ker(A � �iI)l = Ker(A � �iI)li for all l � li. Theinteger li is called the index of �i.� The subspace Mi = Ker(A� �iI)li is invariant under A. More-over, the space Cn is the direct sum of the subspaces Mi's, fori = 1; 2; : : : ; p. Let mi = dim(Mi).� In each invariant subspace Mi there are 
i independent eigen-vectors, i.e., elements of Ker(A � �iI), with 
i � mi. It turnsout that this set of vectors can be completed to form a basisof Mi by adding to it elements of Ker(A � �iI)2, then elementsof Ker(A � �iI)3, and so on. These elements are generated bystarting separately from each eigenvector u, i.e., an element ofKer(A � �iI), and then seeking an element that satis�es (A ��iI)z1 = u. Then, more generally we construct zi+1 by solvingthe equation (A � �iI)zi+1 = zi when possible. The vector zibelongs to Ker(A��iI)i+1 and is called a principal vector (some-times generalized eigenvector). The process is continued until nomore principal vectors are found. There are at most li principalvectors for each of the 
i eigenvectors.



18 Chapter I� The �nal step is to represent the original matrix A with respectto the basis made up of the p bases of the invariant subspaces Mide�ned in the previous step.The matrix representation J of A in the new basis describedabove has the block diagonal structure,
X�1AX = J = 0BBBBBBBBB@

J1 J2 . . . Ji . . . Jp
1CCCCCCCCCAwhere each Ji corresponds to the subspace Mi associated withthe eigenvalue �i. It is of size mi and it has itself the followingstructure,Ji = 0BBB@ Ji1 Ji2 . . . Ji
i 1CCCA with Jik = 0BBB@�i 1. . . . . .�i 1�i1CCCA :Each of the blocks Jik corresponds to a di�erent eigenvector as-sociated with the eigenvalue �i. Its size is equal to the number ofprincipal vectors found for the eigenvector to which the block isassociated and does not exceed li.Theorem 1.2 Any matrix A can be reduced to a block diagonalmatrix consisting of p diagonal blocks, each associated with a dis-tinct eigenvalue. Each diagonal block number i has itself a blockdiagonal structure consisting of 
i subblocks, where 
i is the ge-ometric multiplicity of the eigenvalue �i. Each of the subblocks,referred to as a Jordan block, is an upper bidiagonal matrix ofsize not exceeding li, with the constant �i on the diagonal and theconstant one on the super diagonal.



Background 19We refer to the i-th diagonal block, i = 1; : : : ; p as the i-th Jordan submatrix (sometimes \Jordan Box"). The Jordansubmatrix number i starts in column ji � m1+m2+� � �+mi�1+1.From the above form it is not di�cult to see that Mi = Ker(A��iI)li is merely the span of the columns ji; ji + 1; : : : ; ji+1 � 1of the matrix X. These vectors are all the eigenvectors and theprincipal vectors associated with the eigenvalue �i.Since A and J are similar matrices their characteristic poly-nomials are identical. Hence, it is clear that the algebraic multi-plicity of an eigenvalue �i is equal to the dimension of Mi:�i = mi � dim (Mi) :As a result, �i � 
i:Because Cn is the direct sum of the subspaces Mi; i = 1; : : : ; peach vector x can be written in a unique way asx = x1 + x2 + � � �+ xi + � � �+ xp;where xi is a member of the subspace Mi. The linear transforma-tion de�ned by Pi : x! xiis a projector onto Mi along the direct sum of the subspacesMj; j 6= i. The family of projectors Pi; i = 1; : : : ; p satis�es thefollowing properties, Ran(Pi) =Mi (1.12)PiPj = PjPi = 0; if i 6= j (1.13)pXi=1 Pi = I (1.14)In fact it is easy to see that the above three properties de�ne adecomposition of Cn into a direct sum of the images of the projec-tors Pi in a unique way. More precisely, any family of projectors



20 Chapter Ithat satis�es the above three properties is uniquely determinedand is associated with the decomposition of Cn into the directsum of the images of the Pi 's.It is helpful for the understanding of the Jordan canonicalform to determine the matrix representation of the projectors Pi.Consider the matrix Ĵi which is obtained from the Jordan matrixby replacing all the diagonal submatrices by zero blocks exceptthe ith submatrix which is replaced by the identity matrix.Ĵi = 0BBBBB@ 0 0 I 0 0
1CCCCCAIn other words if each i-th Jordan submatrix starts at the columnnumber ji, then the columns of Ĵi will be zero columns exceptcolumns ji; : : : ; ji+1 � 1 which are the corresponding columns ofthe identity matrix. Let P̂i = XĴiX�1. Then it is not di�cult toverify that P̂i is a projector and that,1. The range of P̂i is the span of columns ji; : : : ; ji+1�1 of thematrix X. This is the same subspace as Mi.2. P̂iP̂j = P̂jP̂i = 0 whenever i 6= j3. P̂1 + P̂2 + � � �+ P̂p = IAccording to our observation concerning the uniqueness of a fam-ily of projectors that satisfy (1.12) - (1.14) this implies thatP̂i = Pi ; i = 1; : : : ; pExample 1.2 Let us assume that the eigenvalue �i is simple. Then,Pi = XeieHi X�1 � uiwHi ;in which we have de�ned ui = Xei and wi = X�Hei. It is easy to showthat ui and wi are right and left eigenvectors, respectively, associatedwith �i and normalized so that wHi ui = 1.



Background 21Consider now the matrix D̂i obtained from the Jordan form ofA by replacing each Jordan submatrix by a zero matrix except thei-th submatrix which is obtained by zeroing its diagonal elements,i.e., D̂i = 0BBBBBBBBBB@
0 0 . . .Ji � �iI. . . 0

1CCCCCCCCCCADe�ne Di = XD̂iX�1. Then it is a simple exercise to show bymeans of the explicit expression for P̂i, thatDi = (A� �iI)Pi: (1.15)Moreover, Dlii = 0, i.e., Di is a nilpotent matrix of index li. Weare now ready to state the following important theorem which canbe viewed as an alternative mathematical formulation of Theorem1.2 on Jordan forms.Theorem 1.3 Every square matrix A admits the decompositionA = pXi=1(�iPi +Di) (1.16)where the family of projectors fPigi=1;:::;p satis�es the conditions(1.12), (1.13), and (1.14), and where Di = (A��iI)Pi is a nilpo-tent operator of index li.Proof. From (1.15), we haveAPi = �iPi +Di i = 1; 2; : : : ; pSumming up the above equalities for i = 1; 2; : : : ; p we getA pXi=1 Pi = pXi=1(�iPi +Di)



22 Chapter IThe proof follows by substituting (1.14) into the left-hand-side.The projector Pi is called the spectral projector associated withthe eigenvalue �i. The linear operator Di is called the nilpotentassociated with �i. The decomposition (1.16) is referred to asthe spectral decomposition of A. Additional properties that areeasy to prove from the various expressions of Pi and Di are thefollowing PiDj = DjPi = �ijPi (1.17)APi = PiA = PiAPi = �iPi +Di (1.18)AkPi = PiAk = PiAkPi =Pi(�iI +Di)k = (�iI +Di)kPi (1.19)APi = [xji; : : : ; xji+1�1]Bi[yji; : : : ; yji+1�1]H (1.20)where Bi is the i-th Jordan submatrix and where the columns yjare the columns of the matrix X�H .Corollary 1.1 For any matrix norm k:k, the following relationholds limk!1 kAkk1=k = �(A) : (1.21)Proof. The proof of this corollary is the subject of exerciseP-1.8.Another way of stating the above corollary is that there is a se-quence �k such that kAkk = (�(A) + �k)kwhere limk!1 �k = 0.



Background 238.3. The Schur Canonical FormWe will now show that any matrix is unitarily similar to an uppertriangular matrix. The only result needed to prove the followingtheorem is that any vector of 2-norm one can be completed byn� 1 additional vectors to form an orthonormal basis of Cn.Theorem 1.4 For any given matrix A there exists a unitary ma-trix Q such that QHAQ = R is upper triangular.Proof. The proof is by induction over the dimension n. Theresult is trivial for n = 1. Let us assume that it is true for n�1 andconsider any matrix A of size n. The matrix admits at least oneeigenvector u that is associated with an eigenvalue �. We assumewithout loss of generality that kuk2 = 1: We can complete thevector u into an orthonormal set, i.e., we can �nd an n� (n� 1)matrix V such that the n� n matrix U = [u; V ] is unitary. Thenwe have AU = [�u;AV ] and hence,UHAU = � uHV H � [�u;AV ] = �� uHAV0 V HAV � (1.22)We now use our induction hypothesis for the (n � 1) � (n � 1)matrix B = V HAV : there exists an (n � 1) � (n � 1) unitarymatrix Q1 such that QH1 BQ1 = R1 is upper triangular. Let usde�ne the n� n matrix Q̂1 = � 1 00 Q1 �and multiply both members of (1.22) by Q̂H1 from the left and Q̂1from the right. The resulting matrix is clearly upper triangularand this shows that the result is true for A, with Q = Q̂1U whichis a unitary n� n matrix.A simpler proof that uses the Jordan canonical form and the QRdecomposition is the subject of Exercise P-1.5. Since the matrix



24 Chapter IR is triangular and similar to A, its diagonal elements are equalto the eigenvalues of A ordered in a certain manner. In factit is easy to extend the proof of the theorem to show that wecan obtain this factorization with any order we want for theeigenvalues. One might ask the question as to which order mightbe best numerically but the answer to the question goes beyondthe scope of this book. Despite its simplicity, the above theoremhas far reaching consequences some of which will be examined inthe next section.It is important to note that for any k � n the subspacespanned by the �rst k columns of Q is invariant under A. This isbecause from the Schur decomposition we have, for 1 � j � k,Aqj = i=jXi=1 rijqi :In fact, lettingQk = [q1; q2; : : : ; qk] andRk be the principal leadingsubmatrix of dimension k ofR, the above relation can be rewrittenas AQk = QkRkwhich we refer to as the partial Schur decomposition of A. Thesimplest case of this decomposition is when k = 1, in which caseq1 is an eigenvector. The vectors qi are usually referred to asSchur vectors. Note that the Schur vectors are not unique and infact they depend on the order chosen for the eigenvalues.A slight variation on the Schur canonical form is the quasiSchur form, also referred to as the real Schur form. Here, diagonalblocks of size 2 x 2 are allowed in the upper triangular matrixR. The reason for this is to avoid complex arithmetic when theoriginal matrix is real. A 2 � 2 block is associated with eachcomplex conjugate pair of eigenvalues of the matrix.Example 1.3 Consider the 3� 3 matrixA = 0B@ 1 10 0�1 3 1�1 0 1 1CA



Background 25The matrix A has the pair of complex conjugate eigenvalues2:4069:: � i� 3:2110::and the real eigenvalue 0:1863::. The standard (complex) Schur formis given by the pair of matricesV = 0B@ 0:3381 � 0:8462i 0:3572 � 0:1071i 0:17490:3193 � 0:0105i �0:2263 � 0:6786i �0:62140:1824 + 0:1852i �0:2659 � 0:5277i 0:7637 1CAandS = 0B@ 2:4069 + 3:2110i 4:6073 � 4:7030i �2:3418 � 5:2330i0 2:4069 � 3:2110i �2:0251 � 1:2016i0 0 0:1863 1CA :It is possible to avoid complex arithmetic by using the quasi-Schurform which consists of the pair of matricesU = 0B@ �0:9768 0:1236 0:1749�0:0121 0:7834 �0:62140:2138 0:6091 0:7637 1CAand R = 0B@ 1:3129 �7:7033 6:04071:4938 3:5008 �1:38700 0 0:1863 1CA :We would like to conclude this section by pointing out thatthe Schur and the quasi Schur forms of a given matrix are in noway unique. In addition to the dependence on the ordering of theeigenvalues, any column of Q can be multiplied by a complex signei� and a new corresponding R can be found. For the quasi Schurform there are in�nitely many ways of selecting the 2� 2 blocks,corresponding to applying arbitrary rotations to the columns ofQ associated with these blocks.



26 Chapter I9. Normal and Hermitian MatricesIn this section we look at the speci�c properties of normal matri-ces and Hermitian matrices regarding among other things theirspectra and some important optimality properties of their eigen-values. The most common normal matrices that arise in practiceare Hermitian or skew-Hermitian. In fact, symmetric real ma-trices form a large part of the matrices that arise in practicaleigenvalue problems.9.1. Normal MatricesBy de�nition a matrix is said to be normal if it satis�es the rela-tion AHA = AAH : (1.23)An immediate property of normal matrices is stated in the fol-lowing proposition.Proposition 1.4 If a normal matrix is triangular then it is nec-essarily a diagonal matrix.Proof. Assume for example that A is upper triangular andnormal and let us compare the �rst diagonal element of the lefthand side matrix of (1.23) with the corresponding element of thematrix on the right hand side. We obtain thatja11j2 = nXj=1 ja1jj2;which shows that the elements of the �rst row are zeros exceptfor the diagonal one. The same argument can now be used forthe second row, the third row, and so on to the last row, to showthat aij = 0 for i 6= j.As a consequence of this we have the following important re-sult.



Background 27Theorem 1.5 A matrix is normal if and only if it is unitarilysimilar to a diagonal matrix.Proof. It is straightforward to verify that a matrix which isunitarily similar to a diagonal matrix is normal. Let us now showthat any normal matrixA is unitarily similar to a diagonal matrix.Let A = QRQH be the Schur canonical form of A where we recallthat Q is unitary and R is upper triangular. By the normality ofA we have QRHQHQRQH = QRQHQRHQHor, QRHRQH = QRRHQHUpon multiplication by QH on the left and Q on the right thisleads to the equality RHR = RRH which means that R is normal,and according to the previous proposition this is only possible ifR is diagonal.Thus, any normal matrix is diagonalizable and admits an or-thonormal basis of eigenvectors, namely the column vectors ofQ. Clearly, Hermitian matrices are just a particular case of nor-mal matrices. Since a normal matrix satis�es the relation A =QDQH , with D diagonal and Q unitary, the eigenvalues of A arethe diagonal entries of D. Therefore, if these entries are real it isclear that we will have AH = A. This is restated in the followingcorollary.Corollary 1.2 A normal matrix whose eigenvalues are real isHermitian.As will be seen shortly the converse is also true, in that a Hermi-tian matrix has real eigenvalues.An eigenvalue � of any matrix satis�es the relation� = (Au; u)(u; u)



28 Chapter Iwhere u is an associated eigenvector. More generally one mightconsider the complex scalars,�(x) = (Ax; x)(x; x) (1.24)de�ned for any nonzero vector in Cn. These ratios are referredto as Rayleigh quotients and are important both from theoreticaland practical purposes. The set of all possible Rayleigh quotientsas x runs over Cn is called the �eld of values of A. This set isclearly bounded since each j�(x)j is bounded by the the 2-normof A, i.e., j�(x)j � kAk2 for all x.If a matrix is normal then any vector x in Cn can be expressedas nXi=1 �iqiwhere the vectors qi form an orthogonal basis of eigenvectors, andthe expression for �(x) becomes,�(x) = (Ax; x)(x; x) = Pnk=1 �kj�kj2Pnk=1 j�kj2 � nXk=1�k�k (1.25)where 0 � �i = j�ij2Pnk=1 j�kj2 � 1 ; and nXi=1 �i = 1From a well-known characterization of convex hulls due to Haus-dor�, (Hausdor�'s convex hull theorem) this means that the setof all possible Rayleigh quotients as x runs over all of Cn is equalto the convex hull of the �i's. This leads to the following theorem.Theorem 1.6 The �eld of values of a normal matrix is equal tothe convex hull of its spectrum.The question that arises next is whether or not this is also truefor non-normal matrices and the answer is no, i.e., the convex hullof the eigenvalues and the �eld of values of a non-normal matrixare di�erent in general, see Exercise P-1.10 for an example. As a



Background 29generic example, one can take any nonsymmetric real matrix thathas real eigenvalues only; its �eld of values will contain imaginaryvalues. It has been shown (Hausdor�) that the �eld of values of amatrix is a convex set. Since the eigenvalues are members of the�eld of values, their convex hull is contained in the �eld of values.This is summarized in the following proposition.Proposition 1.5 The �eld of values of an arbitrary matrix isa convex set which contains the convex hull of its spectrum. Itis equal to the convex hull of the spectrum when the matrix innormal.9.2. Hermitian MatricesA �rst and important result on Hermitian matrices is the follow-ing.Theorem 1.7 The eigenvalues of a Hermitian matrix are real,i.e., �(A) � R.Proof. Let � be an eigenvalue of A and u an associated eigen-vector or 2-norm unity. Then� = (Au; u) = (u;Au) = (Au; u) = �
Moreover, it is not di�cult to see that if, in addition, the matrixis real then the eigenvectors can be chosen to be real, see Exer-cise P-1.16. Since a Hermitian matrix is normal an immediateconsequence of Theorem 1.5 is the following result.Theorem 1.8 Any Hermitian matrix is unitarily similar to a realdiagonal matrix.



30 Chapter IIn particular a Hermitian matrix admits a set of orthonormaleigenvectors that form a basis of Cn.In the proof of Theorem 1.6 we used the fact that the innerproducts (Au; u) are real. More generally it is clear that anyHermitian matrix is such that (Ax; x) is real for any vector x 2Cn. It turns out that the converse is also true, i.e., it can be shownthat if (Az; z) is real for all vectors z in Cn then the matrix A isHermitian, see Problem P-1.14.Eigenvalues of Hermitian matrices can be characterized by op-timality properties of the Rayleigh quotients (1.24). The bestknown of these is the Min-Max principle. Let us order all theeigenvalues of A in descending order:�1 � �2 : : : � �n:Here the eigenvalues are not necessarily distinct and they arerepeated, each according to its multiplicity. In what follows, wedenote by S a generic subspace of Cn. Then we have the followingtheorem.Theorem 1.9 (Min-Max theorem) The eigenvalues of a Her-mitian matrix A are characterized by the relation�k = minS; dim (S)=n�k+1 maxx2S;x 6=0 (Ax; x)(x; x) (1.26)Proof. Let fqigi=1;:::;n be an orthonormal basis of Cn consistingof eigenvectors of A associated with �1; : : : ; �n respectively. LetSk be the subspace spanned by the �rst k of these vectors anddenote by �(S) the maximum of (Ax; x)=(x; x) over all nonzerovectors of a subspace S. Since the dimension of Sk is k, a well-known theorem of linear algebra shows that its intersection withany subspace S of dimension n� k+1 is not reduced to f0g, i.e.,there is vector x in S TSk. For this x = Pki=1 �iqi we have(Ax; x)(x; x) = Pki=1 �ij�ij2Pki=1 j�ij2 � �k



Background 31so that �(S) � �k .Consider on the other hand the particular subspace S0 of di-mension n�k+1 which is spanned by qk; : : : ; qn. For each vectorx in this subspace we have(Ax; x)(x; x) = Pni=k �ij�ij2Pni=k j�ij2 � �kso that �(S0) � �k. In other words, as S runs over all n� k + 1-dimensional subspaces �(S) is always � �k and there is at leastone subspace S0 for which �(S0) � �k which shows the result.This result is attributed to Courant and Fisher, and to Poincar�eand Weyl. It is often referred to as Courant-Fisher min-max prin-ciple or theorem. As a particular case, the largest eigenvalue ofA satis�es �1 = maxx6=0 (Ax; x)(x; x) : (1.27)Actually, there are four di�erent ways of rewriting the abovecharacterization. The second formulation is�k = maxS; dim (S)=k minx2S;x 6=0 ; (Ax; x)(x; x) (1.28)and the two other ones can be obtained from the above two for-mulations by simply relabeling the eigenvalues increasingly in-stead of decreasingly. Thus, with our labeling of the eigenvaluesin descending order, (1.28) tells us that the smallest eigenvaluesatis�es, �n = minx6=0 (Ax; x)(x; x) :with �n replaced by �1 if the eigenvalues are relabeled increasingly.In order for all the eigenvalues of a Hermitian matrix to bepositive it is necessary and su�cient that(Ax; x) > 0; 8 x 2 Cn; x 6= 0:



32 Chapter ISuch a matrix is called positive de�nite. A matrix that satis�es(Ax; x) � 0 for any x is said to be positive semi-de�nite. In partic-ular the matrix AHA is semi-positive de�nite for any rectangularmatrix, since (AHAx; x) = (Ax;Ax) � 0 8 x:Similarly, AAH is also a Hermitian semi-positive de�nite matrix.The square roots of the eigenvalues of AHA for a general rectan-gular matrix A are called the singular values of A and are denotedby �i. In Section 1.5 we have stated without proof that the 2-norm of any matrix A is equal to the largest singular value �1 ofA. This is now an obvious fact, becausekAk22 = maxx6=0 kAxk22kxk22 = maxx6=0 (Ax;Ax)(x; x) = maxx6=0 (AHAx; x)(x; x) = �21which results from (1.27).Another characterization of eigenvalues, known as the Courantcharacterization, is stated in the next theorem. In contrast withthe min-max theorem this property is recursive in nature.Theorem 1.10 The eigenvalue �i and the corresponding eigen-vector qi of a Hermitian matrix are such that�1 = (Aq1; q1)(q1; q1) = maxx2Cn;x6=0 (Ax; x)(x; x)and for k > 1:�k = (Aqk; qk)(qk; qk) = maxx6=0;qH1 x=:::=qHk�1x=0 (Ax; x)(x; x) : (1.29)In other words, the maximum of the Rayleigh quotient over asubspace that is orthogonal to the �rst k�1 eigenvectors is equalto �k and is achieved for the eigenvector qk associated with �k.The proof follows easily from the expansion (1.25) of the Rayleighquotient.



Background 3310. Nonnegative MatricesA nonnegative matrix is a matrix whose entries are nonnegative,aij � 0 :Nonnegative matrices arise in many applications and play a cru-cial role in the theory of matrices. They play for example a keyrole in the analysis of convergence of iterative methods for par-tial di�erential equations. They also arise in economics, queuingtheory, chemical engineering, etc..A matrix is said to be reducible if, there is a permutation ma-trix P such that PAP T is block upper triangular. An importantresult concerning nonnegative matrices is the following theoremknown as the Perron-Frobenius theorem.Theorem 1.11 Let A be a real n�n nonnegative irreducible ma-trix. Then � � �(A), the spectral radius of A, is a simple eigen-value of A. Moreover, there exists an eigenvector u with positiveelements associated with this eigenvalue.ProblemsP-1.1 Show that two eigenvectors associated with two distinct eigen-values are linearly independent. More generally show that a family ofeigenvectors associated with distinct eigenvalues forms a linearly inde-pendent family.P-1.2 Show that if � is any eigenvalue of the matrix AB then it isalso an eigenvalue of the matrix BA. Start with the particular casewhere A and B are square and B is nonsingular then consider the moregeneral case where A;B may be singular or even rectangular (but suchthat AB and BA are square).P-1.3 Show that the Frobenius norm is consistent. Can this normbe associated to two vector norms via (1.4)? What is the Frobeniusnorm of a diagonal matrix? What is the p-norm of a diagonal matrix(for any p)?



34 Chapter IP-1.4 Find the Jordan canonical form of the matrix:A = 0@ 1 2 �40 1 20 0 2 1A :Same question for the matrix obtained by replacing the element a33by 1.P-1.5 Give an alternative proof of Theorem 1.4 on the Schur formby starting from the Jordan canonical form. [Hint: write A = XJX�1and use the QR decomposition of X.]P-1.6 Show from the de�nition of determinants used in Section (1.2)that the characteristic polynomial is a polynomial of degree n for ann� n matrix.P-1.7 Show that the characteristic polynomials of two similar matri-ces are equal.P-1.8 Show that limk!1 kAkk1=k = �(A);for any matrix norm. [Hint: use the Jordan canonical form or Theorem1.3]P-1.9 Let X be a nonsingular matrix and, for any matrix norm k:k,de�ne kAkX = kAXk. Show that this is indeed a matrix norm. Isthis matrix norm consistent? Similar questions for kXAk and kY AXkwhere Y is also a nonsingular matrix. These norms are not, in general,associated with any vector norms, i.e., they can't be de�ned by aformula of the form (1.4). Why? What about the particular casekAk0 = kXAX�1k?P-1.10 Find the �eld of values of the matrixA = � 0 10 0�and verify that it is not equal to the convex hull of its eigenvalues.P-1.11 Show that any matrix can be written as the sum of a Hermi-tian and a skew-Hermitian matrix (or the sum of a symmetric and askew-symmetric matrix).



Background 35P-1.12 Show that for a skew-Hermitian matrix S, we have<e(Sx; x) = 0 for any x 2 Cn:P-1.13 Given an arbitrary matrix S, show that if (Sx; x) = 0 for allx in Cn then we must have(Sy; z) + (Sz; y) = 0 8 y ; z 2 Cn:[Hint: expand (S(y + z); y + z) ].P-1.14 Using the result of the previous two problems, show that if(Ax; x) is real for all x in Cn, then A must be Hermitian. Would thisresult be true if we were to replace the assumption by: (Ax; x) is realfor all real x? Explain.P-1.15 The de�nition of a positive de�nite matrix is that (Ax; x) bereal and positive for all real vectors x. Show that this is equivalentto requiring that the Hermitian part of A, namely 12 (A + AH), be(Hermitian) positive de�nite.P-1.16 Let A be a real symmetric matrix and � an eigenvalue of A.Show that if u is an eigenvector associated with � then so is �u. As aresult, prove that for any eigenvalue of a real symmetric matrix, thereis an associated eigenvector which is real.P-1.17 Show that a Hessenberg matrix H such that hj+1;j 6= 0; j =1; 2; : : : ; n� 1 cannot be derogatory.Notes and References. For additional reading on the material presentedin this Chapter, see Golub and Van Loan [63] and Stewart [167]. More detailson matrix eigenvalue problems can be found in Gantmacher's book [54] andWilkinson [183]. Stewart and Sun's recent book [172] devotes a separatechapter to matrix norms and contains a wealth of information. Some of theterminology we used is borrowed from Chatelin [14, 15] and Kato [85]. For agood overview of the linear algebra aspects of matrix theory and a completeproof of Jordan's canonical form we recommend Halmos' book [69]. �
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Chapter II
Sparse MatricesThe eigenvalue problems that arise in practice often involve verylarge matrices. The meaning of `large' is relative and it is chang-ing rapidly with the progress of computer technology. A matrix ofsize a few hundreds can be considered large if one is working on aworkstation, while, similarly, a matrix whose size is in the millionscan be considered large if one is using a supercomputer. Fortu-nately, many of these matrices are also sparse, i.e., they have veryfew nonzeros. Again, it is not clear how `few' nonzeros a matrixmust have before it can be called sparse. A commonly used de�-nition due to Wilkinson is to say that a matrix is sparse wheneverit is possible to take advantage of the number and location of itsnonzero entries. By this de�nition a tridiagonal matrix is sparse,but so would also be a triangular matrix, which may not be asconvincing. It is probably best to leave this notion somewhatvague, since the decision as to whether or not a matrix should beconsidered sparse is a practical one that is ultimately made bythe user.



38 Chapter II1. IntroductionThe natural idea of taking advantage of the zeros of a matrixand their location has been exploited for a long time. In the sim-plest situation, such as for banded or tridiagonal matrices, specialtechniques are straightforward to develop. However, the notionof exploiting sparsity for general sparse matrices, i.e., sparse ma-trices with irregular structure, has become popular only after the1960's. The main issue, and the �rst one to be addressed bysparse matrix technology, is to devise direct solution methods forlinear systems, that are economical both in terms of storage andcomputational e�ort. These sparse direct solvers allow to handlevery large problems that could not be tackled by the usual `dense'solvers. We will brie
y discuss the solution of large sparse linearsystems in Section 4 of this Chapter.

Figure 2.1 A �nite element grid model



Sparse Matrices 39There are basically two broad types of sparse matrices: struc-tured and unstructured. A structured sparse matrix is one whosenonzero entries, or square blocks of nonzero entries, form a regularpattern, often along a small number of diagonals. A matrix withirregularly located entries is said to be irregularly structured. Thebest example of a regularly structured matrix is that of a matrixthat consists only of a few diagonals. Figure 2.2 shows a smallirregularly structured sparse matrix associated with the �nite el-ement grid problem shown in Figure 2.1......
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Figure 2.2 Sparse matrix associated with the �niteelement grid of Figure 2.1Although the di�erence between the two types of matricesmay not matter that much for direct solvers, it may be importantfor eigenvalue methods or iterative methods for solving linear sys-tems. In these methods, one of the essential operations are matrixby vector products. The performance of these operations on su-percomputers can di�er signi�cantly from one data structure to



40 Chapter IIanother. For example, diagonal storage schemes are ideal for vec-tor machines, whereas more general schemes, may su�er on suchmachines because of the need to use indirect addressing.In the next section we will discuss some of the storage schemesused for sparse matrices. Then we will see how some of the sim-plest matrix operations with sparse matrices can be performed.We will then give an overview of sparse linear system solutionmethods. The last two sections discuss test matrices and a set oftools for working with sparse matrices called SPARSKIT.2. Storage SchemesIn order to take advantage of the large number of zero elementsspecial schemes are required to store sparse matrices. Clearly, themain goal is to represent only the nonzero elements, and be ableat the same time to perform the commonly needed matrix oper-ations. In the following we will denote by Nz the total numberof nonzero elements. We describe only the most popular schemesbut additional details can be found in the book by Du�, Erisman,and Reid [38].The simplest storage scheme for sparse matrices is the so-calledcoordinate format. The data structure consists of three arrays:a real array containing all the real (or complex) values of thenonzero elements of A in any order, an integer array containingtheir row indices and a second integer array containing their col-umn indices. All three arrays are of length Nz. Thus the matrixA = 0BBBBBB@ 1: 0: 0: 2: 0:3: 4: 0: 5: 0:6: 0: 7: 8: 9:0: 0: 10: 11: 0:0: 0: 0: 0: 12:
1CCCCCCA (2.1)will be represented (for example) by



Sparse Matrices 41AA =JR =JC = 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.5 3 3 2 1 1 4 2 3 2 3 45 5 3 4 1 4 4 1 1 2 4 3In the above example we have, on purpose, listed the elementsin an arbitrary order. In fact it would have been more naturalto list the elements by row or columns. If we listed the elementsrow-wise, we would notice that the array JC contains redundantinformation, and may be replaced by an array that points to thebeginning of each row instead. This would entail nonnegligiblesavings in storage. The new data structure consists of three arrayswith the following functions.� A real array AA contains the real values aij stored row byrow, from row 1 to n. The length of AA is Nz.� An integer array JA contains the column indices of the el-ements aij as stored in the array AA. The length of JA isNz.� An integer array IA contains the pointers to the beginningof each row in the arrays AA and JA. Thus the contentof IA(i) is the position in arrays AA and JA where the i-th row starts. The length of IA is n + 1 with IA(n + 1)containing the number IA(1) + Nz, i.e., the address in Aand JA of the beginning of a �ctitious row n + 1.Thus, the above matrix could be stored as follows.AA =JA =IA = 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.1 4 1 2 4 1 3 4 5 3 4 51 3 6 10 12 13This format is probably the most commonly used to storegeneral sparse matrices. We will refer to it as the Compressed



42 Chapter IISparse Row (CSR) format. An advantage of this scheme overthe coordinate scheme is that it is often more amenable to performtypical computations. On the other hand the coordinate schemeis attractive because of its simplicity and its 
exibility. For thisreason it is used as the `entry' format in software packages suchas the Harwell library.There are a number of variations to the Compressed SparseRow format. The most obvious variation is to store the columnsinstead of the rows. The corresponding scheme will be calledthe Compressed Sparse Column (CSC) scheme Another commonvariation exploits the fact that the diagonal elements of manymatrices are usually all nonzero and/or that they are accessedmore often than the rest of the elements. As a result they can bestored separately. In fact, what we refer to as the Modi�ed SparseRow (MSR) format, consists of only two arrays: a real array AAand an integer array JA. The �rst n positions in AA contain thediagonal elements of the matrix, in order. The position n+1 of thearray AA is not used, or may sometimes be used to carry someother information concerning the matrix. Starting at positionn+2, the nonzero elements of AA, excluding its diagonal elements,are stored row-wise. Corresponding to each element AA(k) theinteger JA(k) is the column index of the element A(k) in thematrix AA. The n + 1 �rst positions of JA contain the pointerto the beginning of each row in AA and JA. Thus, for the aboveexample the two arrays will be as follows.AA =JA = 1. 4. 7. 11. 12. * 2. 3. 5. 6. 8. 9. 10.7 8 10 13 14 14 4 1 4 1 4 5 3The star denotes an unused location. Notice that JA(n) =JA(n + 1) = 14, indicating that the last row, is a zero row, oncethe diagonal element has been removed.There are a number of applications that lead to regularly struc-



Sparse Matrices 43tured matrices. Among these matrices one can distinguish twodi�erent types: block matrices, and diagonally structured matri-ces. Here we discuss only diagonally structured matrices whichare matrices whose nonzero elements are located along a smallnumber of diagonals. To store such matrices we may store the di-agonals in a rectangular array DIAG(1 : n; 1 : Nd) where Nd isthe number of diagonals. We also need to know the o�sets of eachof the diagonals with respect to the main diagonal. These will bestored in an array IOFF (1 : Nd). Thus, in position (i; j) ofthe array DIAG is located the element ai;i+IOFF(j) of the originalmatrix, i.e., DIAG(i; j) ai;i+io�(j):The order in which the diagonals are stored in the columns ofDIAG is unimportant in general. If many more operations areperformed with the main diagonal there may be a slight advantagein storing it in the �rst column. Note also that all the diagonalsexcept the main diagonal have fewer than n elements, so thereare positions in DIAG that will not be used.For example the following matrix which has three diagonalsA = 0BBBBBB@ 1: 0: 2: 0: 0:3: 4: 0: 5: 0:0: 6: 7: 0: 8:0: 0: 9: 10: 0:0: 0: 0: 11: 12:
1CCCCCCA (2.2)will be represented the two arraysDIAG = * 1. 2.3. 4. 5.6. 7. 8.9. 10. *11 12. * IOFF = -1 0 2A more general scheme that has been popular on vector ma-chines is the so-called Ellpack-Itpack format. The assumption in



44 Chapter IIthis scheme is that we have at most Nd nonzero elements perrow, where Nd is small. Then two rectangular arrays of dimen-sion n�Nd each are required, one real and one integer. The �rst,COEF , is similar to DIAG and contains the nonzero elements ofA. We can store the nonzero elements of each row of the matrixin a row of the array COEF (1 : n; 1 : Nd) completing the rowby zeros if necessary. Together with COEF we need to store aninteger array JCOEF (1 : n; 1 : Nd) which contains the columnpositions of each entry in COEF . Thus, for the above matrix, wewould have,COEF = 1. 2. 0.3. 4. 5.6. 7. 8.9. 10. 0.11 12. 0. JCOEF = 1 3 11 2 42 3 53 4 44 5 5 .Note that in the above JCOEF array we have put a columnnumber equal to the row number, for the zero elements that havebeen added to pad the rows of DIAG that correspond to shorterrows in the matrix A. This is somewhat arbitrary, and in fact anyinteger between 1 and n would be acceptable, except that theremay be good reasons for not putting the same integers too often,for performance considerations.3. Basic Sparse Matrix OperationsOne of the most important operations required in many of thealgorithms for computing eigenvalues of sparse matrices is thematrix-by-vector product. We do not intend to show how theseare performed for each of the storage schemes considered earlier,but only for a few important ones.The following Fortran 8-X segment shows the main loop of thematrix by vector operation for matrices stored in the CompressedSparse Row stored format.



Sparse Matrices 45DO I=1, NK1 = IA(I)K2 = IA(I+1)-1Y(I) = DOTPRODUCT(A(K1:K2),X(JA(K1:K2)))ENDDONotice that each iteration of the loop computes a di�erentcomponent of the resulting vector. This has the obvious advan-tage that each of these iterations can be performed independently.If the matrix is stored column-wise, then we would use the fol-lowing code instead.DO J=1, NK1 = IA(J)K2 = IA(J+1)-1Y(JA(K1:K2)) = Y(JA(K1:K2))+X(J)*A(K1:K2)ENDDOIn each iteration of the loop a multiple of the j-th column isadded to the result, which is assumed to have been set initially tozero. Notice now that the outer loop is no longer parallelizable.Barring the use of a di�erent data structure, the only alternativeleft to improve parallelization is to attempt to split the vector op-eration in each inner loop, which has few operations, in general.The point of this comparison is that we may have to change datastructures to improve performance when dealing with supercom-puters.We now consider the matrix-vector product in diagonal stor-age. DO J=1, NDIAGJOFF = IOFF(J)DO I=1, NY(I) = Y(I) + DIAG(I,J)*X(JOFF+I)ENDDOENDDO



46 Chapter IIHere, each of the diagonals is multiplied by the vector x andthe result added to the vector y. It is again assumed that thevector y has been �lled with zero elements before the start of theloop. From the point of view of parallelization and/or vectoriza-tion the above code is probably the one that has the most to o�er.On the other hand, its drawback is that it is not general enough.Another important `kernel' in sparse matrix computations isthat of solving a lower or upper triangular system. The followingsegment shows a simple routine for solving a unit lower triangularsystem.X(1) = Y(1)DO K = 2, NK1 = IAL(K)k2 = IAL(K+1)-1X(K)=Y(K)-DOTPRODUCT(AL(K1:K2),X(JAL(K1:K2)))ENDDO4. Sparse Direct Solution MethodsSolution methods for large sparse linear systems of equationsare important in eigenvalue calculations mainly because they areneeded in the context of the shift-and-invert techniques, describedin Chapter IV. In these techniques the matrix that is used in theiteration process is (A � �I)�1 or (A � �B)�1B for the general-ized eigenvalue problem. In this section we give a brief overviewof sparse matrix techniques for solving linear systems. The di�-culty here is that we must deal with problems that are not onlycomplex, since complex shifts are likely to occur, but also inde�-nite. There are two broad classes of methods that are commonlyused: direct and iterative. Direct methods are more commonlyused in the context of shift-and-invert techniques because of theirrobustness when dealing with inde�nite problems.Most direct methods for sparse linear systems perform an LUfactorization of the original matrix and try to reduce cost by mini-



Sparse Matrices 47mizing �ll-ins, i.e., non-zero elements introduced during the elim-ination process in positions which were initially zeros. Typicalcodes in this category include MA28, see reference [36], from theHarwell library and the Yale Sparse Matrix Package (YSMP), seereference [163]. For a detailed view of sparse matrix techniqueswe refer to the book by Du�, Erisman, and Reid [38].Currently, the most popular iterative methods are the precon-ditioned conjugate gradient type techniques. In these techniquesan approximate factorization A = LU+E of the original matrix isobtained and then the conjugate gradient method is applied to apreconditioned system, a form of which is U�1L�1Ax = U�1L�1b.The conjugate gradient method is a projection method relatedto the Lanczos algorithm, which will be described in ChapterVI. One di�culty with conjugate gradient-type methods is thatthey are designed for matrices that are positive real, i.e., matriceswhose symmetric parts are positive de�nite, and as a result theywill perform well for the types of problems that will arise in thecontext of shift-and-invert.5. Test ProblemsWhen developing algorithms for sparse matrix computations it isdesirable to be able to use test matrices that are well documentedand often used by other researchers. There are many di�erentways in which these test matrices can be useful but their mostcommon use is for comparison purposes.Two di�erent ways of providing data sets consisting of largesparse matrices for test purposes have been used in the past. The�rst one is to collect sparse matrices in a well-speci�ced format,from various applications. This approach has is used in the well-known Harwell-Boeing collection of test matrices. The secondapproach is to collect subroutines or programs that generate suchmatrices. This approach is taken in the SPARSKIT package whichwe brie
y describe in the next section.In the course of the book we will often use two test problems



48 Chapter IIin the examples. These are described in detail next. While thesetwo examples are far from being representative of all the problemsthat occur they have the advantage of being easy to reproduce.They have also been extensively used in the literature.

� � � � � � �i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6� � � � � �� � � � �� � � �� � �� ��j = 6j = 5j = 4j = 3j = 2j = 1j = 0Figure 2.3 Random walk on a triangular grid5.1. Random Walk ProblemThe �rst test problem is issued from a Markov model of a randomwalk on a triangular grid. It was proposed by G. W. Stewart[170] and has been used in several papers for testing eigenvaluealgorithms. The problem models a random walk on a (k + 1) �(k + 1) triangular grid as is shown in Figure 2.3.We label by (i; j) the node of the grid with coordinates (ih; jh)where h is the grid spacing, for i; j = 0; 1; :::k. A particle moves



Sparse Matrices 49randomly on the grid by jumping from a node (i; j) into either ofits (at most 4) neighbors. The probability of jumping from node(i; j) to either node (i� 1; j) or node (i; j � 1) (down transition)is given by pd(i; j) = i+ j2kthis probability being doubled when either i or j is equal to zero.The probability of jumping from node (i; j) to either node (i+1; j)or node (i; j + 1) (up transition) is given bypu(i; j) = 12 � pd(i; j):Note that there cannot be an up transition when i + j = k, i.e.,for nodes on the oblique boundary of the grid. This is re
ectedby the fact that in this situation pu(i; j) = 0.The problem is to compute the steady state probability dis-tribution of the chain, i.e., the probabilities that the particle belocated in each grid cell after a very long period of time. Wenumber the nodes from the bottom up and from left to right, i.e.,in the order,(0; 0); (0; 1); : : : ; (0; k); (1; 0); (1; 1); : : : (1; k � 1); :::::; (k; 0)The matrix P of transition probabilities is the matrix whosegeneric element pk;q is the probability that the particle jumpsfrom node k to node q. This is a stochastic matrix, i.e., its ele-ments are nonnegative and the sum of elements in the same rowis equal to one. The vector (1; 1; ::::; 1)T is an eigenvector of Passociated with the eigenvalue unity. As is known the steady stateprobability distribution vector is the appropriately scaled eigen-vector of the transpose of P associated with the eigenvalue one.Note that the number of di�erent states is 12(k+1)(k+2), whichis the dimension of the matrix. We will denote by Mark(k+1) thecorresponding matrix. Figure 2.4 shows the sparsity pattern ofMark(15) which is a matrix of dimension n = 120 with nz = 420nonzero elements.
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............................................................................................................................................................................................................................................................................................................................................Figure 2.4 Sparsity pattern of the matrix Mark(15).5.2. Chemical ReactionsThe second test example, models concentration waves in reactionand transport interaction of some chemical solutions in a tubularreactor. The concentrations x(�; z); y(�; z) of two reacting anddi�using components, where 0 � z � 1 represents a coordinatealong the tube, and � is the time, are modeled by the system:@x@� = DxL2 @2x@z2 + f(x; y); (2.3)@y@� = DyL2 @2y@z2 + g(x; y); (2.4)



Sparse Matrices 51with the initial conditionx(0; z) = x0(z); y(0; z) = y0(z); 8 z 2 [0; 1];and the Dirichlet boundary conditions:x(0; �) = x(1; �) = �xy(0; �) = y(1; �) = �y:The linear stability of the above system is traditionally studiedaround the steady state solution obtained by setting the partialderivatives of x and y with respect to time to be zero. Moreprecisely, the stability of the system is the same as that of theJacobian of (2.3) - (2.4) evaluated at the steady state solution. Inmany problems one is primarily interested in the existence of limitcycles, or equivalently the existence of periodic solutions to (2.3),(2.4). This translates into the problem of determining whetherthe Jacobian of (2.3), (2.4) evaluated at the steady state solutionadmits a pair of purely imaginary eigenvalues.We consider in particular the so-called Brusselator wave modelin which f(x; y) = A� (B + 1)x+ x2yg(x; y) = Bx� x2y:Then, the above system admits the trivial stationary solution�x = A; �y = B=A. A stable periodic solution to the systemexists if the eigenvalues of largest real parts of the Jacobian ofthe right-hand side of (2.3), (2.4) is exactly zero. To verify thisnumerically, we �rst need to discretize the equations with respectto the variable z and compute the eigenvalues with largest realparts of the resulting discrete Jacobian.For this example, the exact eigenvalues are known and theproblem is analytically solvable. The following set of parametershave been commonly used in previous articles,Dx = 0:008; Dy = 12Dx = 0:004;A = 2; B = 5:45 :



52 Chapter IIThe bifurcation parameter is L. For small L the Jacobian has onlyeigenvalues with negative real parts. At L � 0:51302 a purelyimaginary eigenvalue appears.We discretize the interval [0; 1] using n+ 1 points, and de�nethe mesh size h � 1=n. The discrete vector is of the form �xy�where x and y are n-dimensional vectors. Denoting by fh and ghthe corresponding discretized functions f and g, the Jacobian isa 2 x 2 block matrix in which the diagonal blocks (1; 1) and (2; 2)are the matrices1h2 DxL2 tridiag f1;�2; 1g+ @fh(x; y)@xand 1h2 DyL2 tridiag f1;�2; 1g+ @gh(x; y)@yrespectively, while the blocks (1; 2) and (2; 1) are@fh(x; y)@y and @gh(x; y)@xrespectively. Note that because the steady state solution is aconstant with respect to the variable z, the Jacobians of either fhor gh with respect to either x or y are scaled identity matrices. Wedenote by A the resulting 2n x 2n Jacobian matrix. The matrixA has the following structureA = ��T �I
I �T � ;In which T = tridiag f1;�2; 1g, and �, �, 
, and � are scalars.The exact eigenvalues of A are readily computable, since thereexists a quadratic relation between the eigenvalues of the matrixA and those of the classical di�erence matrix T .5.3. The Harwell-Boeing CollectionThis large collection of test matrices has been gathered over sev-eral years by I. Du� (Harwell) and R. Grimes and J. Lewis (Boe-ing) [39]. The number of matrices in the collection at the time



Sparse Matrices 53of this writing is 292. The matrices have been contributed by re-searchers and engineers in many di�erent areas. The sizes of thematrices vary from very small, such as counter example matrices,to very large. One drawback of the collection is that it containsfew non-Hermitian eigenvalue problems. Many of the eigenvalueproblems in the collection are from structural engineering, whichare generalized eigenvalue problems. One the other hand the col-lection provides a data structure which constitutes an excellentmedium of exchanging matrices.The matrices are stored as ASCII �les with a very speci�c for-mat consisting of a 4 or 5 line header and then the data containingthe matrix stored in CSC format together with any right-handsides, initial guesses, or exact solutions.The collection is available for public distribution from the au-thors.6. SPARSKITSPARSKIT is a package aimed at providing subroutines and util-ities for working with general sparse matrices. Its purpose is notas much to solve particular problems involving sparse matrices(linear systems, eigenvalue problems) but rather to make availablethe little tools to manipulate and performs simple operations withsparse matrices. For example there are tools for exchanging datastructures, e.g., passing from the Compressed Sparse Row formatto the diagonal format and vice versa. There are various toolsfor extracting submatrices or performing other similar manipula-tions. SPARSKIT also provides matrix generation subroutines aswell as basic linear algebra routines for sparse matrices (such asaddition, multiplication, etc...).A short description of the contents of SPARSKIT follows. Thepackage is divided up in six modules, each having a di�erent func-tion. To refer to these six parts we will use the names of thesubdirectories where they are held in the package in its currentversion.



54 Chapter IIFORMATS This module contains essentially two sets of rou-tines. The �rst set contained in the �le formats.f consists of theroutines needed to translate data structures. Translations fromthe basic Compressed Sparse Row format to any of the other for-mats supported is provided together with a routine for the reversetransformation. This way one can translate from any of the datastructures supported to any other one with two transformation atmost. The formats currently supported are the following.DNS Dense formatBND Linpack Banded formatCSR Compressed Sparse Row formatCSC Compressed Sparse Column formatCOO Coordinate formatELL Ellpack-Itpack generalized diagonal formatDIA Diagonal formatBSR Block Sparse Row formatMSR Modi�ed Compressed Sparse Row formatSSK Symmetric Skyline formatNSK Nonsymmetric Skyline formatJAD The Jagged Diagonal schemeThe second set of routines contains a number of routines, cur-rently 27, called `unary', to perform simple manipulation func-tions on sparse matrices, such as extracting a particular diagonalor permuting a matrix, or yet for �ltering out small elements. Forreasons of space we cannot list these routines here.



Sparse Matrices 55BLASSM This module contains a number of routines for do-ing basic linear algebra with sparse matrices. It is comprised ofessentially two sets of routines. Basically, the �rst one consistsof matrix-matrix operations (e.g., multiplication of matrices) andthe second consists of matrix-vector operations. The �rst set al-lows to perform the following operations with sparse matrices,where A;B;C are sparse matrices, D is a diagonal matrix, and �is a scalar. C = AB, C = A + B, C = A + �B, C = A � BT ,C = A+ �BT , A := A+ �I, C = A+D.The second set contains various routines for performing matrixby vector products and solving sparse triangular linear systemsin di�erent storage formats.INOUT This module consists of routines to read and write ma-trices in the Harwell-Boeing format. For more information on thisformat and the Harwell-Boeing collection see the reference [39].It also provides routines for plotting the pattern of the matrix orsimply dumping it in a nice format.INFO There is currently only one subroutine in this module. Itspurpose is to provide as many statistics as possible on a matrixwith little cost. About 33 lines of information are written. Forexample, the code analyzes diagonal dominance of the matrix(row and column), its degree of symmetry (structural as well asnumerical), its block structure, its diagonal structure, etc,...MATGEN The set of routines in this module allows one togenerate test matrices. For now there are generators for 5 di�erenttypes of matrices.1. Five-point and seven point matrices on rectangular regionsdiscretizing a general elliptic partial di�erential equation.2. Same as above but provides block matrices (several degreesof freedom per grid point in the PDE).



56 Chapter II3. Finite elements matrices for the heat condition problem,using various domains (including user provided ones).4. Test matrices from the paper by Z. Zlatev, K. Schaumburg,and J. Wasniewski, [187].5. Markov chain matrices arising from a random walk on atriangular grid. See Section 5.1 for details.UNSUPP As is suggested by its name this module containsvarious unsupported software tools that are not necessarily portableor that do not �t in any of the previous modules. For examplesoftware for viewing matrix patterns on some workstations willbe found here. For now UNSUPP contains subroutines for vi-sualizing matrices and a preconditioned GMRES package (witha `robust' preconditioner based on Incomplete LU factorizationwith controlled �ll-in).ProblemsP-2.1 Write a FORTRAN code segment to perform the matrix-vectorproduct for matrices stored in Ellpack-Itpack format.P-2.2 Write a small subroutine to perform the following operationson a sparse matrix in coordinate format, diagonal format, and in CSRformat: a) count the number on nonzero elements in the main diagonal;b) extract the diagonal whose o�set is k (which may be negative); c)add a nonzero element in position (i; j) of the matrix (assume thatthis position may contain a zero or a nonzero element); d) add a givendiagonal to the matrix. What is the most convenient storage schemefor each of these operations?P-2.3 Generate explicitly the matrix Mark(4). Verify that it is astochastic matrix. Verify that 1 and -1 are eigenvalues.



Sparse Matrices 57Notes and References. Two good sources of reading on sparse matrixcomputations are the books by George and Liu [56] and by Du�, Erisman,and Reid [38]. Also of interest are [111] and [129] and the early survey byDu� [35]. For applications related to eigenvalue problems, see [27] and [8].For details on Markov Chain modeling see [86, 162]. The SPARSKIT pack-age is part of an ongoing project. Write to the author for information. Somedocumentation is available in the technical report [151]. Another manipula-tion package for sparse matrices, similar to SPARSKIT in spirit, is SMMSdeveloped by Alvarado [1]. �
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Chapter III
Perturbation Theory andError AnalysisThis chapter introduces some elementary spectral theory for linearoperators on �nite dimensional spaces as well as some elements ofperturbation analysis. The main question that perturbation the-ory addresses is: how does an eigenvalue and its associated eigen-vectors, spectral projector, etc.., vary when the original matrixundergoes a small perturbation. This information is importantboth for theoretical and practical purposes. The spectral theoryintroduced in this chapter is the main tool used to extend what isknown about spectra of matrices to general operators on in�nitedimensional spaces. However, it has also some consequences in an-alyzing the behavior of eigenvalues and eigenvectors of matrices.The material discussed in this chapter is probably the most theo-retical of the book. Fortunately, most of it is independent of therest and may be skipped in a �rst reading. The notions of condi-tion numbers and some of the results concerning error bounds arecrucial in understanding the di�culties that eigenvalue routinesmay encounter.



60 Chapter III1. Projectors and their PropertiesA projector P is a linear transformation from Cn to itself whichis idempotent, i.e., such thatP 2 = P:When P is a projector then so is (I � P ) and we have Ker(P ) =Ran(I � P ). The two subspaces Ker(P ) and Ran(P ) have onlythe element zero in common. This is because if a vector x is inRan(P ) then Px = x and if it is also in Ker(P ) then Px = 0so that x = 0 and the intersection of the two subspaces reducesto f0g. Moreover, every element of Cn can be written as x =Px + (I � P )x. As a result the space Cn can be decomposed asthe direct sum Cn = Ker(P ) � Ran(P ):Conversely, every pair of subspacesM and S that form a directsum of Cn de�ne a unique projector such that Ran(P ) = M andKer(P ) = S. The corresponding transformation P is the linearmapping that maps any element x of Cn into the component x1where x1 is the M -component in the unique decomposition x =x1 + x2 associated with the direct sum. In fact, this associationis unique in that a projector is uniquely determined by its kerneland range, two subspaces that form a direct sum of Cn.1.1. Orthogonal ProjectorsAn important particular case is when the subspace S is the or-thogonal complement of M , i.e., whenKer(P ) = Ran(P )?:In this case the projector P is said to be the orthogonal projectoronto M . Since Ran(P ) and Ker(P ) from a direct sum of Cn, the



Perturbation Theory 61decomposition x = Px+ (I � P )x is unique and the vector Px isuniquely de�ned by the set of equationsPx 2M and (I � P )x?M (3.1)or equivalently,Px 2 M and ((I � P )x; y) = 0 8y 2M :Proposition 3.1 A projector is orthogonal if and only if it isHermitian.Proof. As a consequence of the equality(PHx; y) = (x; Py) 8x ; 8y (3.2)we conclude that Ker(PH) = Ran(P )? (3.3)Ker(P ) = Ran(PH)? : (3.4)By de�nition an orthogonal projector is one for which Ker(P ) =Ran(P )?. Therefore, by (3.3), if P is Hermitian then it is orthog-onal.To show that the converse is true we �rst note that PH is alsoa projector since (PH)2 = (P 2)H = PH . We then observe that ifP is orthogonal then (3.3) implies that Ker(P ) = Ker(PH) while(3.4) implies that Ran(P ) = Ran(PH). Since PH is projector thisimplies that P = PH , because a projector is uniquely determinedby its range and its kernel.Given any unitary n � m matrix V whose columns form anorthonormal basis of M = Ran(P ), we can represent P by thematrix P = V V H . Indeed, in addition to being idempotent, thelinear mapping associated with this matrix satis�es the charac-terization given above, i.e.,V V Hx 2M and (I � V V H)x 2 M?:



62 Chapter IIIIt is important to note that this representation of the orthogonalprojector P is not unique. In fact any orthonormal basis V willgive a di�erent representation of P in the above form. As a con-sequence for any two orthogonal bases V1; V2 of M , we must haveV1V H1 = V2V H2 , an equality which can also be veri�ed indepen-dently, see Exercise P-3.2.From the above representation it is clear that when P is anorthogonal projector then we have kPxk2 � kxk2 for any x. Asa result the maximum of kPxk2=kxk2 for all x in Cn does notexceed one. On the other hand the value one is reached for anyelement in Ran(P ) and therefore,kPk2 = 1for any orthogonal projector P .Recall that the acute angle between two nonzero vectors of Cnis de�ned bycos �(x; y) = j(x; y)jkxk2kyk2 0 � �(x; y) � �2 :We de�ne the acute angle between a vector and a subspace S asthe smallest acute angle made between x and all vectors y of S,�(x; S) = miny2S �(x; y) : (3.5)An optimality property of orthogonal projectors is the following.Theorem 3.1 Let P be an orthogonal projector onto the subspaceS. Then given any vector x in Cn we have,miny2S kx� yk2 = kx� Pxk2 ; (3.6)or, equivalently, �(x; S) = �(x; Px) : (3.7)



Perturbation Theory 63Proof. Let y any vector of S and consider the square of itsdistance from x. We have,kx� yk22 = kx� Px+ (Px� y)k22 = kx� Pxk22 + k(Px� y)k22 ;because x � Px is orthogonal to S to which Px � y belongs.Therefore, kx�yk2 � kx�Pxk2 for all y in S and this establishesthe �rst result by noticing that the minimum is reached for y =Px. The second equality is a simple reformulation of the �rst.It is sometimes important to be able to measure distancesbetween two subspaces. If Pi represents the orthogonal projectoronto Mi, for i = 1; 2, a natural measure of the distance betweenM1 and M2 is provided by their gap de�ned by:!(M1;M2) = max8<:maxx2M2kxk2=1 kx� P1xk2 ; maxx2M1kxk2=1 kx� P2xk29=;We can also rede�ne !(M1;M2) as!(M1;M2) = maxfk(I � P1)P2k2 ; k(I � P2)P1k2gand it can even be shown that!(M1;M2) = kP1 � P2k2: (3.8)1.2. Oblique ProjectorsA projector that is not orthogonal is said to be oblique. It issometimes useful to have a de�nition of oblique projectors thatresembles that of orthogonal projectors, i.e., a de�nition similar to(3.1). If we call L the subspace that is the orthogonal complementto S = Ker(P ), it is clear that L will have the same dimension asM . Moreover, to say that (I�P )x belongs to Ker(P ) is equivalentto saying that it is in the orthogonal complement of L. There-fore, from the de�nitions seen at the beginning of Section 1, theprojector P can be characterized by the de�ning equationPx 2M and (I � P )x ? L : (3.9)



64 Chapter IIIWe say that P is a projector ontoM and orthogonal to L or alongthe orthogonal complement of L. This is illustrated in Figure 3.1.

ML ?
x
Px	Qx

Px 2 M; x� Px ?MQx 2 M; x�Qx ? L

Figure 3.1 Orthogonal and oblique projectors P andQ.Matrix representations of oblique projectors require two bases:a basis V = [v1; : : : ; vm] of the subspace M = Ran(P ) and theother W = [w1; : : : ; wm] for the subspace L, the orthogonal com-plement of Ker(P ). We will say that these two bases are biorthog-onal if (vi; wj) = �ij (3.10)Given any pair of biorthogonal bases V;W the projector P canbe represented by P = VWH (3.11)In contrast with orthogonal projectors, the norm of P is largerthan one in general. It can in fact be arbitrarily large, whichimplies that the norms of P � Q, for two oblique projectors Pand Q, will not, in general, be a good measure of the distancebetween the two subspaces Ran(P ) and Ran(Q). On the other



Perturbation Theory 65hand, it may give an idea on the di�erence between their rank asis stated in the next theorem.Theorem 3.2 Let k:k be any matrix norm, and assume that twoprojectors P and Q are such that kP �Qk < 1 thenrank(P ) = rank(Q) (3.12)Proof. First let us show that rank(Q) � rank(P ). Given abasis fxigi=1;:::;q of Ran(Q) we consider the family of vectors G =fPxigi=1;:::;q in Ran(P ) and show that it is linearly independent.Assume that qXi=1 �iPxi = 0:Then the vector y = Pqi=1 �ixi is such that Py = 0 and therefore(Q� P )y = Qy = y and k(Q� P )yk = kyk. Since kQ� Pk < 1this implies that y = 0. As a result the family G is linearlyindependent and so rank(P ) � q = rank(Q). It can be shownsimilarly that rank(P ) � rank(Q).The above theorem indicates that no norm of P � Q can be lessthan one if the two subspaces have di�erent dimensions. More-over, if we have a family of projectors P (t) that depends contin-uously on t then the rank of P (t) remains constant. In addition,an immediate corollary is that if the gap between two subspacesis less than one then they must have the same dimension.1.3. Resolvent and Spectral ProjectorFor any given complex z not in the spectrum of a matrix A wede�ne the resolvent operator of A at z as the linear transformationR(A; z) = (A� zI)�1 : (3.13)The notation R(z) is often used instead of R(A; z) if there is noambiguity. This notion can be de�ned for operators on in�nite



66 Chapter IIIdimensional spaces in which case the spectrum is de�ned as theset of all complex scalars such that the inverse of (A � zI) doesnot exist, see reference [14, 85] for details.The resolvent regarded as a function of z admits singularitiesat the eigenvalues of A. Away from any eigenvalue the resolventR(z) is analytic with respect to z. Indeed, we can write for anyz around an element z0 not equal to an eigenvalue,R(z) � (A� zI)�1 = ((A� z0I)� (z � z0)I)�1= R(z0)(I � (z � z0)R(z0))�1The term (I� (z�z0)R(z0))�1 can be expanded into the Neumanseries whenever the spectral radius of (z � z0)R(z0) is less thanunity. Therefore, the Taylor expansion of R(z) in the open diskjz � z0j < 1=�(R(zo)) exists and takes the form,R(z) = 1Xk=0(z � z0)kR(z0)k+1:It is important to determine the nature of the singularity ofR(z) at the eigenvalues �i; i = 1; : : : ; p. By a simple applicationof Cramer's rule it is easy to see that these singularities are notessential. In other words, the Laurent expansion of R(z)R(z) = +1Xk=�1(z � �i)kCkaround each pole �i has only a �nite number of negative powers.Thus, R(z) is a meromorphic function.The resolvent satis�es the following immediate properties.First resolvent equality:R(z1)� R(z2) = (z1 � z2)R(z1)R(z2) (3.14)Second resolvent equality:R(A1; z)�R(A2; z) = R(A1; z)(A2 � A1)R(A2; z) (3.15)



Perturbation Theory 67In what follows we will need to integrate the resolvent overJordan curves in the complex plane. A Jordan curve is a simpleclosed curve that is piecewise smooth and the integration willalways be counter clockwise unless otherwise stated. There isnot much di�erence between integrating complex valued functionswith values in C or in Cn�n. In fact such integrals can be de�nedover functions taking their values in Banach spaces in the sameway.Consider any Jordan curve �i that encloses the eigenvalue �iand no other eigenvalue of A, and letPi = �12�i Z�i R(z)dz (3.16)The above integral is often referred to as the Taylor-Dunford in-tegral.
�i��i

1.4 Relations with the Jordan formThe purpose of this subsection is to show that the operator Pide�ned by (3.16) is identical with the spectral projector de�nedin Chapter I by using the Jordan canonical form.Theorem 3.3 The linear transformations Pi, i = 1; 2; : : : ; p, as-sociated with the distinct eigenvalues �i; i = 1; : : : ; p, are suchthat



68 Chapter III(1) P 2i = Pi, i.e., each Pi is a projector.(2) PiPj = PjPi = 0 if i 6= j .(3) Ppi=1 Pi = I:Proof. (1) Let � and �0 two curves enclosing �i with �0 enclosing�. Then (2i�)2P 2i = Z� Z�0 R(z)R(z0)dzdz0= Z� Z�0 1z0 � z (R(z0)� R(z))dz0dzbecause of the �rst resolvent equality. We observe thatZ� dzz0 � z = 0 and Z�0 dz0z0 � z = 2i�;so that Z� Z�0 R(z0)z0 � zdz0dz = Z�0 R(z0) Z� dzz0 � z! dz0 = 0and,Z� Z�0 R(z)z0 � z dz0dz = Z�R(z) Z�0 dz0z0 � z! dz = 2i� Z�R(z)dzfrom which we get P 2i = Pi.(2) The proof is similar to (1) and is left as an exercise.(3) Consider P = �12i� pXi=1 Z�i R(z)dz :Since there are no poles of R(z) outside of the p Jordan curves,we can replace the sum of the integrals by an integral over any



Perturbation Theory 69curve that contains all of the eigenvalues of A. If we choose thiscurve to be a circle C of radius r and center the origin, we getP = �12i� ZC R(z)dz :Making the change of variables t = 1=z we �nd thatP = �12i� ZC0�(A� (1=t)I)�1  �dtt2 ! = �12i� ZC0+(tA� I)�1dttwhere C 0� ( resp. C 0+ ) is the circle of center the origin, radius1=r run clock-wise (resp. counter-clockwise). Moreover, becauser must be larger than �(A) we have �(tA) < 1 and the inverse ofI � tA is expandable into its Neuman series, i.e., the series(I � tA)�1 = 1Xk=0(tA)kconverges and therefore,P = 12i� ZC0+ "k=1Xk=0 tk�1Ak# dt = Iby the residue theorem.The above theorem shows that the projectors Pi satisfy thesame properties as those of the spectral projector de�ned in theprevious chapter, using the Jordan canonical form. However, toshow that these projectors are identical we still need to provethat they have the same range. Note that since A and R(z)commute we get by integration that APi = PiA and this impliesthat the range of Pi is invariant under A. We must show thatthis invariant subspace is the invariant subspace Mi associatedwith the eigenvalue �i, as de�ned in Chapter I. The next lemmaestablishes the desired result.



70 Chapter IIILemma 3.1 Let M̂i = Ran(Pi) and let Mi = Ker(A � �iI)li bethe invariant subspace associated with the eigenvalue �i. Then wehave Mi = M̂i for i = 1; 2; : : : ; p.Proof. We �rst prove that Mi � M̂i. This follows from the factthat when x 2 Ker(A� �iI)li , we can expand R(z)x as follows:R(z)x = (A� zI)�1x= [(A� �iI)� (z � �i)I]�1x= � 1z � �i hI � (z � �i)�1(A� �iI)i�1 x= �1z � �i liXj=0(z � �i)�j(A� �iI)jx :The integral of this over �i is simply �2i�x by the residue theo-rem, hence the result.We now show that M̂i �Mi. From(z � �i)R(z) = �I + (A� �iI)R(z) (3.17)it is easy to see that�12i� Z�(z � �i)R(z)dz = �12i� (A� �iI) Z�R(z)dz = (A� �iI)Piand more generally,�12i� Z�(z � �i)kR(z)dz = �12i� (A� �iI)k Z�R(z)dz= (A� �iI)kPi : (3.18)Notice that the term in the left-hand side of (3.18) is the coe�cientA�k�1 of the Laurent expansion of R(z) which has no essentialsingularities. Therefore, there is some integer k after which allthe left-hand sides of (3.18) vanish. This proves that for everyx = Pix in M̂i, there exists some l for which (A��iI)kx = 0; k � l.It follows that x belongs to Mi.



Perturbation Theory 71This �nally establishes that the projectors Pi are identical withthose de�ned with the Jordan canonical form and seen in Chap-ter I. Each projector Pi is associated with an eigenvalue �i. How-ever, it is important to note that more generally one can de�nea projector associated with a group of eigenvalues, which will bethe sum of the individual projectors associated with the di�erenteigenvalues. This can also be de�ned by an integral similar to(3.16) where � is a curve that encloses all the eigenvalues of thegroup and no other ones. Note that the rank of P thus de�nedis simply the sum of the algebraic multiplicities of the eigenvalue.In other words, the dimension of the range of such a P would bethe sum of the algebraic multiplicities of the distinct eigenvaluesenclosed by �.1.5. Linear Perturbations of AIn this section we consider the family of matrices de�ned byA(t) = A+ tHwhere t belongs to the complex plane. We are interested in thebehavior of the eigenelements of A(t) when t varies around theorigin. Consider �rst the `parameterized' resolvent,R(t; z) = (A+ tH � zI)�1:Noting that R(t; z) = R(z)(I + tR(z)H)�1 it is clear that if thespectral radius of tR(z)H is less than one then R(t; z) will beanalytic with respect to t. More precisely,Proposition 3.2 The resolvent R(t; z) is analytic with respect tot in the open disk jtj < ��1(HR(z)).We wish to show by integration over a Jordan curve � that asimilar result holds for the spectral projector P (t), i.e., that P (t)is analytic for t small enough. The result would be true if the



72 Chapter IIIresolvent R(t; z) were analytic with respect to t for each z on �i.To ensure this we must require thatjtj < infz2� ��1(R(z)H)) :The question that arises next is whether or not the disk of all t 'sde�ned above is empty. The answer is no as the following proofshows. We have�(R(z)H) � kR(z)Hk � kR(z)kkHk:The function kR(z)k is continuous with respect to z for z 2 � andtherefore it reaches its maximum at some point z0 of the closedcurve � and we obtain�(R(z)H) � kR(z)Hk � kR(z0)kkHk � � :Hence, infz2� ��1(R(z)H)) � ��1 :Theorem 3.4 Let � be a Jordan curve around one or a feweigenvalues of A and let�a = infz2�[�(R(z)H)]�1 :Then �a>0 and the spectral projectorP (t) = �12�i Z�R(t; z)dzis analytic in the disk jtj < �a.We have already proved that �a>0. The rest of the proof isstraightforward. As an immediate corollary of Theorem 3.4, weknow that the rank of P (t) will stay constant as long as t staysin the disk jtj < �a.



Perturbation Theory 73Corollary 3.1 The number m of eigenvalues of A(t), countedwith their algebraic multiplicities, located inside the curve �, isconstant provided that jtj < �a.In fact the condition on t is only a su�cient condition and it maybe too restrictive since the real condition required is that P (t) becontinuous with respect to t.While individual eigenvalues may not have an analytic behav-ior, their average is usually analytic. Consider the average�̂(t) = 1m mXi=1 �i(t)of the eigenvalues �1(t); �2(t); : : : ; �m(t) of A(t) that are inside� where we assume that the eigenvalues are counted with theirmultiplicities. Let B(t) be a matrix representation of the restric-tion of A(t) to the invariant subspace M(t) = Ran(P (t)). Notethat since M(t) is invariant under A(t) then B(t) is the matrixrepresentation of the rank m transformationA(t)jM(t) = A(t)P (t)jM(t) = P (t)A(t)jM(t) = P (t)A(t)P (t)jM(t)and we havê�(t) � 1mtr[B(t)] = 1mtr[A(t)P (t)jM(t)]= 1mtr[A(t)P (t)] (3.19)The last equality in the above equation is due to the fact that forany x not in M(t) we have P (t)x = 0 and therefore the extensionof A(t)P (t) to the whole space can only bring zero eigenvalues inaddition to the eigenvalues �i(t); i = 1; : : : ; m.Theorem 3.5 The linear transformation A(t)P (t) and itsweighted trace �̂(t) are analytic in the disk jzj < �a.



74 Chapter IIIProof. That A(t)P (t) is analytic is a consequence of the pre-vious theorem. That �̂(t) is analytic, comes from the equivalentexpression (3.19) and the fact that the trace of an operator X(t)that is analytic with respect to t is analytic.Therefore, a simple eigenvalue �(t) of A(t) not only stays sim-ple around a neighborhood of t = 0 but it is also analytic withrespect to t. Moreover, the vector ui(t) = Pi(t)ui is an eigenvectorof A(t) associated with this simple eigenvalue, with ui = ui(0) be-ing an eigenvector of A associated with the eigenvalue �i. Clearly,the eigenvector ui(t) is analytic with respect to the variable t.However, the situation is more complex for the case of a multipleeigenvalue. If an eigenvalue is of multiplicitym then after a smallperturbation, it will split into at most m distinct small branches�i(t). These branches taken individually are not analytic in gen-eral. On the other hand, their arithmetic average is analytic. Forthis reason it is critical, in practice, to try to recognize groupsof eigenvalues that are likely to originate from the splitting of aperturbed multiple eigenvalue.Example 3.1 That an individual branch of them branches of eigen-values �i(t) is not analytic can be easily illustrated by the exampleA =  0 10 0! ; H =  0 01 0! :The matrix A(t) has the eigenvalues �pt which degenerate into thedouble eigenvalue 0 as t ! 0. The individual eigenvalues are notanalytic but their average remains constant and equal to zero.In the above example each of the individual eigenvalues behaveslike the square root of t around the origin. One may wonderwhether this type of behavior can be generalized. The answer isstated in the next proposition.Proposition 3.3 Any eigenvalue �i(t) of A(t) inside the Jordancurve � satis�es j�i(t)� �ij = O (jtj1=li)



Perturbation Theory 75where li is the index of �i.Proof. Let f(z) = (z � �i)li. We have seen earlier (proof ofLemma 3.1) that f(A)Pi = 0. For an eigenvector u(t) of normunity associated with the eigenvalue �i(t) we havef(A(t))P (t)u(t) = f(A(t))u(t) = (A(t)� �iI)liu(t)= (�(t)� �i)liu(t) :Taking the norms of both members of the above equation andusing the fact that f(A)Pi = 0 we getj�i(t)� �ijli = kf(A(t))P (t)u(t)k� kf(A(t))P (t)k = kf(A(t))P (t)� f(A)Pik :Since f(A) = f(A(0)), Pi = P (0) and P (t); f(A(t)) are analyticthe right-hand-side in the above inequality is O(t) and thereforej�i(t)� �ijli = O (jtj)which shows the result.Example 3.2 A standard illustration of the above result is providedby taking A to be a Jordan block and H to be the rank one matrixH = eneT1 :A = 0BBBBB@ 0 10 10 10 10
1CCCCCA H = 0BBBBB@ 0 0 0 01 0

1CCCCCA :The matrix A has nonzero elements only in positions (i; i + 1) wherethey are equal to one. The matrix H has its elements equal to zeroexcept for the element in position (n; 1) which is equal to one. Fort = 0 the matrix A + tH admits only the eigenvalue � = 0. Thecharacteristic polynomial of A+ tH is equal topt(z) = det(A+ tH � zI) = (�1)n(zn � t)



76 Chapter IIIand its roots are �j(t) = t1=ne 2ij�n j = 1; : : : ; n. Thus, if n = 20 thenfor a perturbation on A of the order of 10�16, a reasonable number ifdouble precision arithmetic is used, the eigenvalue will be perturbedby as much as 0:158: :2. A-Posteriori Error BoundsIn this section we consider the problem of predicting the errormade on an eigenvalue/eigenvector pair from some a posterioriknowledge on their approximations. The simplest criterion usedto determine the accuracy of an approximate eigenpair ~�; ~u , is tocompute the norm of the so called residual vectorr = A~u� ~�~u:The aim is to derive error bounds that relate some norm of r,typically its 2-norm, to the errors on the eigenpair. Such errorbounds are referred to a posteriori error bounds. Such boundsmay help determine how accurate the approximations provided bysome algorithm may be. This information can in turn be helpfulin choosing a stopping criterion in iterative algorithms, in orderto ensure that the answer delivered by the numerical method iswithin a desired tolerance.2.1. General Error BoundsIn the non-Hermitian case there does not exist any `a posteriori'error bounds in the strict sense of the de�nition. The error boundsthat exist are in general weaker and not as easy to use as thoseknown in the Hermitian case. The �rst error bound which weconsider is known as the Bauer-Fike theorem. We recall that thecondition number of a matrix X relative to the p-norm is de�nedby Condp(X) = kXkpkX�1kp.Theorem 3.6 (Bauer-Fike) Let ~�; ~u be an approximate eigen-pair of A with residual vector r = A~u� ~�~u, where ~u is of 2-norm



Perturbation Theory 77unity. Moreover, assume that the matrix A is diagonalizable andlet X be the matrix that transforms it into diagonal form. Then,there exists an eigenvalue � of A such thatj�� ~�j � Cond2(X)krk2 :Proof. If ~� 2 �(A) the result is true. Assume that ~� is notan eigenvalue. From A = XDX�1, where D is the diagonal ofeigenvalues and since we assume that � =2 �(A), we can write~u = (A� ~�I)�1r = X(D � ~�I)�1X�1rand hence 1 = kX(D � ~�I)�1X�1rk2� kXk2kX�1k2k(D � ~�I)�1k2 krk2 : (3.20)The matrix (D � ~�I)�1 is a diagonal matrix and as a result its2-norm is the maximum of the absolute values of its diagonalentries. Therefore,1 � Cond2(X)krk2 max�i2�(A) j�i � ~�j�1from which the result follows.In case the matrix is not diagonalizable then the previous re-sult can be generalized as follows.Theorem 3.7 Let ~�; ~u an approximate eigenpair with residualvector r = A~u � ~�~u, where ~u is of 2-norm unity. Let X be thematrix that transforms A into its Jordan canonical form, A =XJX�1. Then, there exists an eigenvalue � of A such thatj�� ~�jl1 + j�� ~�j+ � � �+ j�� ~�jl�1 � Cond2(X)krk2where l is the index of �.



78 Chapter IIIProof. The proof starts as in the previous case but here thediagonal matrix D is replaced by the Jordan matrix J . Becausethe matrix (J � ~�I) is block diagonal its 2-norm is the maximumof the 2-norms of each block (a consequence of the alternativeformulation for 2-norms seen in Chapter I). For each of theseblocks we have (Ji � ~�I)�1 = ((�i � ~�)I + E)�1where E is the nilpotent matrix having ones in positions (i; i+1)and zeros elsewhere. Therefore,(Ji � ~�I)�1 = liXj=1(�i � ~�)�j(�E)j�1and as a result, setting �i = j�i � ~�j and noting that kEk2 = 1,we getk(Ji � ~�I)�1k2 � liXj=1 j�i � ~�j�jkEkj�12 = liXj=1 ��ji = ��lii li�1Xj=0 �ji :The analogue of (3.20) is1 � Cond2(X)k(J � ~�I)�1k2krk2: (3.21)Since,k(J � ~�I)�1k2 = maxi=1;:::;pk(Ji � ~�I)�1k2 � maxi=1;:::;p ��li li�1Xj=0 �jiwe get mini=1;:::;p8<: �liiPli�1j=0 �ji 9=; � Cond2(X)krk2which is essentially the desired result.



Perturbation Theory 79Corollary 3.2 (Kahan, Parlett, and Jiang, 1980). Under thesame assumptions as those of theorem 3.7, there exists an eigen-value � of A such thatj�� ~�jl(1 + j�� ~�j)l�1 � Cond2(X)krk2where l is the index of �.Proof. Follows immediately from the previous theorem and theinequality, l�1Xj=0 �ji � (1 + �i)l�1:
For an alternative proof see [82]. Unfortunately, the boundsof the type shown in the previous two theorems are not practicalbecause of the presence of the condition number ofX. The secondresult even requires the knowledge of the index of �i, which is notnumerically viable. The situation is much improved in the partic-ular case where A is Hermitian because in this case Cond2(X) = 1.This is taken up next.2.2. The Hermitian CaseIn the Hermitian case, Theorem 3.6 leads to the following corol-lary.Corollary 3.3 Let ~�; ~u be an approximate eigenpair of a Her-mitian matrix A, with kuk2 = 1 and let r be the correspondingresidual vector. Then there exists an eigenvalue of A such thatj�� ~�j � krk2 : (3.22)



80 Chapter IIIThis is a remarkable result because it constitutes a simpleyet general error bound. On the other hand it is not sharp asthe next a posteriori error bound, due to Kato and Temple [84,175], shows. We start by proving a lemma that will be used toprove Kato-Temple's theorem. In the next results it is assumedthat the approximate eigenvalue ~� is the Rayleigh quotient of theapproximate eigenvector.Lemma 3.2 Let ~u be an approximate eigenvector of norm unityof A, and ~� = (A~u; ~u). Let (�; �) be an interval that contains ~�and no eigenvalue of A. Then(� � ~�)(~�� �) � krk22:Proof. This lemma uses the observation that the residual vectorr is orthogonal to ~u. Then we have((A� �I)~u; (A� �I)~u)= ((A� ~�I)~u+ (~�� �I)~u; ((A� ~�I)~u+ (~�� �I)~u)= krk22 + (~�� �I)(~�� �I);because of the orthogonality property mentioned above. On theother hand, one can expand ~u in the orthogonal eigenbasis of Aas ~u = �1u1 + �2u2 + � � �+ �nunto transform the left hand side of the expression into((A� �I)~u; (A� �I)~u) = nXi=1 j�ij2 (�i � �)(�i � �) :Each term in the above sum is nonnegative because of the as-sumptions on � and �. Therefore krk22+(�� ~�)(~���) � 0 whichis the desired result.



Perturbation Theory 81Theorem 3.8 (Kato and Temple [84, 175]) Let ~u be an ap-proximate eigenvector of norm unity of A, and ~� = (A~u; ~u). As-sume that we know an interval (a; b) that contains ~� and one andonly one eigenvalue � of A. Then� krk22~�� a � ~�� � � krk22b� ~� :Proof. Let � be the closest eigenvalue to ~�. In the case where� is located at left of ~� then take � = � and � = b in the lemmato get 0 � ~�� � � krk22b� ~� :In the opposite case where � > ~�, use � = a and � = � to get0 � �� ~� � krk22~�� a :This completes the proof.A simpli�cation of Kato-Temple's theorem consists of using aparticular interval that is symmetric about the approximation ~�,as is stated in the next corollary.Corollary 3.4 Let ~u be an approximate eigenvector of norm unityof A, and ~� = (A~u; ~u). Let � be the eigenvalue closest to ~� and �the distance from ~� to the rest of the spectrum, i.e.,� = mini fj�i � ~�j; �i 6= �g:Then, j~�� �j � krk22� : (3.23)Proof. This is a particular case of the previous theorem witha = ~�� � and b = ~�+ �.



82 Chapter IIIIt is also possible to show a similar result for the angle betweenthe exact and approximate eigenvectors.Theorem 3.9 Let ~u be an approximate eigenvector of norm unityof A, ~� = (A~u; ~u) and r = (A � ~�I)~u. Let � be the eigenvalueclosest to ~� and � the distance from ~� to the rest of the spectrum,i.e., � = minifj�i� ~�j; �i 6= �g. Then, if u is an eigenvector of Aassociated with � we havesin �(~u; u) � krk2� : (3.24)Proof. Let us write the approximate eigenvector ~u as ~u =u cos � + z sin � where z is a vector orthogonal to u. We have(A� ~�I)~u = cos � (A� ~�I)u+ sin � (A� ~�I)z= cos � (�� ~�I)u+ sin � (A� ~�I)z :The two vectors on the right hand side are orthogonal to eachother because,(u; (A� ~�I)z) = ((A� ~�I)u; z) = (�� ~�)(u; z) = 0 :Therefore,krk22 = k(A� ~�I)~uk2 = sin2 � k(A� ~�I)zk22 + cos2 � j�� ~�j2 :Hence, sin2 � k(A� ~�I)zk22 � krk22 :The proof follows by observing that since z is orthogonal to uthen k(A� ~�I)zk2 is larger than the smallest eigenvalue of A� ~�Irestricted to the subspace orthogonal to u, which is precisely �.Although the above bounds for the Hermitian case are sharpthey are still not computable since � involves a distance from the`next closest' eigenvalue of A to ~� which is not readily available.



Perturbation Theory 83In order to be able to use these bounds in practical situationsone must provide a lower bound for the distance �. One mightsimply approximate � by ~�� ~�j where ~�j is some approximationto the next closest eigenvalue to ~�. The result would no longerbe an actual upper bound on the error but rather an `estimate'of the error. This may not be safe however. To ensure that thecomputed error bound used is rigorous it is preferable to exploitthe simpler inequality provided by Corollary 3.3 in order to �nda lower bound for the distance �, for example� = j~�� �jj � j(~�� ~�j) + (�j � ~�j)j� j~�� ~�jj � j�j � ~�jj� j~�� ~�jj � krjk2:where krjk2 is the residual norm associated with the eigenvalue�j. Now the above lower bound of � is computable. In order forthe resulting error bound to have a meaning, krjk2 must be smallenough to ensure that there are no other potential eigenvalues �kthat might be closer to � than is �j. The above error boundswhen used cautiously can be quite useful.Example 3.3 LetA = 0BBBBB@ 1:0 2:02:0 1:0 2:02:0 1:0 2:02:0 1:0 2:02:0 1:0
1CCCCCA :The eigenvalues of A are f3;�1; 1; 1 � 2p3; 1 + 2p3gAn eigenvector associated with the eigenvalue � = 3 isu = 0BBBBB@ �0:5�0:50:00:50:5

1CCCCCA :



84 Chapter IIIConsider the vector ~u = 0BBBBB@ �0:49�0:50:00:50:5
1CCCCCA :The Rayleigh quotient of ~u with respect to A is ~� = 2:9998::. Theclosest eigenvalue is � = 3:0 and the corresponding actual error is2:02 � 10�4. The residual norm is found to bek(A� ~�I)~uk2 � 0:0284 :The distance � here is� = j2:9998 � 4:464101:::j � 1:46643 :So the error bound for the eigenvalue 2:9998 found is(0:0284::)21:4643 � 5:5177 � 10�4:For the eigenvector, the angle between the exact and approximateeigenvector is such that cos � = 0:999962, giving an angle � � 0:0087and the sine of the angle is approximately sin � � 0:0087. The erroras estimated by (3.9) issin � � 0:02841:4643 � 0:01939which is about twice as large as the actual error.We now consider a slightly more realistic situation. There areinstances in which the o�-diagonal elements of a matrix are small.Then the diagonal elements can be considered approximations tothe eigenvalues of A and the question is how good an accuracycan one expect? We illustrate this with an example.Example 3.4 LetA = 0BBBBB@ 1:00 0:0055 0:10 0:10 0:000:0055 2:00 �0:05 0:00 �0:100:10 �0:05 3:00 0:10 0:050:10 0:00 0:10 4:00 0:000:00 �0:10 0:05 0:00 5:00

1CCCCCA :



Perturbation Theory 85The eigenvalues of A rounded to 6 digits are�(A) = f0:99195; 1:99443; 2:99507; 4:01386; 5:00466g :A natural question is how accurate is each of the diagonal elements ofA as an approximate eigenvalue? We assume that we know nothingabout the exact spectrum. We can take as approximate eigenvectorsthe ei's, i = 1; � � � ; 5 and the corresponding residual norms are0:141528 ; 0:1119386 ; 0:1581139 ; 0:1414214 ; 0:1118034respectively. The simplest residual bound (3.22) tells us thatj�� 1:0j � 0:141528; j�� 2:0j � 0:111939;j�� 3:0j � 0:158114; j�� 4:0j � 0:141421;j�� 5:0j � 0:111803:The intervals de�ned above are all disjoint. As a result, we can get areasonable idea of �i the distance of each of the approximations fromthe eigenvalues not in the interval. For example,�1 � ja11 � �2j � j1� (2:0� 0:1119386)j � 0:88806and �2 = minfja22 � �3j; ja22 � �1jg� minfj2:0 � (3:0� 0:15811)j; j2:0 � (1:0 + 0:14153)jg= 0:8419:::We �nd similarly �3 � 0:8585, �4 � 0:8419, and �5 � 0:8586.We now get from the bounds (3.23) the following inequalities,j�� 1:0j � 0:0226; j�� 2:0j � 0:0149;j�� 3:0j � 0:0291; j�� 4:0j � 0:0238;j�� 5:0j � 0:0146:whereas the actual errors arej�� 1:0j � 0:0080; j�� 2:0j � 0:0056;j�� 3:0j � 0:0049; j�� 4:0j � 0:0139;j�� 5:0j � 0:0047:



86 Chapter III2.3. The Kahan-Parlett-Jiang TheoremWe now return to the general non-Hermitian case. The resultsseen for the Hermitian case in the previous section can be veryuseful in practical situations. For example they can help develope�cient stopping criteria in iterative algorithms. In contrast,those seen in Section 2.1 for the general non-Hermitian case arenot too easy to exploit in practice. The question that one mightask is whether or not any residual bounds can be established thatwill provide information similar to that provided in the Hermi-tian case. There does not seem to exist any such result in theliterature. A result established by Kahan, Parlett and Jiang [82],which we now discuss, seems to be the best compromise betweengenerality and sharpness. However, the theorem is of a di�erenttype. It does not guarantee the existence of, say, an eigenvaluein a given interval whose size depends on the residual norm. Itonly gives us the size of the smallest perturbation that must beapplied to the original data (the matrix), in order to transformthe approximate eigenpair into an exact one (for the perturbedproblem).To explain the nature of the theorem we begin with a verysimple result which can be regarded as a one-sided version of theone proved by Kahan, Jiang and Parlett, in that it only considersthe right eigenvalue { eigenvector pair instead of the eigen-tripletconsisting of the eingenvalue and the right and left eigenvectors.Proposition 3.4 Let a square matrix A and a unit vector u begiven. For any scalar 
 de�ne the residual vector,r = Au� 
u;and let E = fE : (A� E)u = 
ug. ThenminE2E kEk2 = krk2 : (3.25)



Perturbation Theory 87Proof. From the assumptions we see that each E is in E if andonly if it satis�es the equalityEu = r : (3.26)Since kuk2 = 1 the above equation implies that for any such EkEk2 � krk2;which in turn implies thatminE2E kEk2 � krk2: (3.27)Now consider the matrix E0 = ruH which is a member of E sinceit satis�es (3.26). The 2-norm of E0 is such thatkE0k22 = �maxfruHurHg = �maxfrrHg = krk22:As a result the minimum in the left hand side of (3.27) is reachedfor E = E0 and the value of the minimum is equal to krk2.We now state a simple version of the Kahan-Parlett-Jiang the-orem [82].Theorem 3.10 (Kahan, Parlett, and Jiang) Let a square ma-trix A and two unit vectors u; w with (u; w) 6= 0 be given. For anyscalar 
 de�ne the residual vectors,r = Au� 
u s = AHw � �
wand let E = fE : (A� E)u = 
u; (A� E)Hw = �
wg. ThenminE2E kEk2 = max fkrk2; ksk2g : (3.28)



88 Chapter IIIProof. We proceed in the same way as for the proof of thesimpler result of the previous proposition. The two conditionsthat a matrix E must satisfy in order to belong to E translateinto Eu = r and EHw = s: (3.29)By the same argument used in the proof of Proposition 2.4, anysuch E satis�eskEk2 � krk2 and kEk2 � ksk2: (3.30)which proves the inequalityminE2E kEk2 � maxfkrk2; ksk2g: (3.31)We now de�ne, � = sHu = wHr (3.32)x = r � � wy = s� �� uand consider the particular set of matrices of the formE(�) = ruH + wsH � � wuH � � xyH (3.33)where � is a parameter. It is easy to verify that these matricessatisfy the constraints (3.29) for any �.We distinguish two di�erent cases depending on whether ksk2is larger or smaller than krk2. When ksk2>krk2 we rewrite E(�)in the form E(�) = x(u� � y)H + wsH (3.34)and select � in such a way thatsH(u� � y) = 0 (3.35)which leads to � = �ksk22 � j�j2 :



Perturbation Theory 89We note that the above expression is not valid when ksk2 = j�j,which occurs only when y = 0. In this situation E(�) = ruH forany �, and the following special treatment is necessary. As inthe proof of the previous proposition E(�) = krk2. On the otherhand we have ksk2 = j�j = jwHrj � krk2which shows that maxfkrk2; ksk2g = krk2 and establishes theresult that the minimum in the theorem is reached for E(�) inthis very special case.Going back to the general case where ksk2 6= j�j, with theabove choice of � the two vectors x and w in the range of E(�) asde�ned by (3.34) are orthogonal and similarly, the vectors u� �yand s are also orthogonal. In this situation the norm of E(�) isequal to [See problem P-2.14]:kE(�)k2 = maxfksk2; kxk2kkuH � � yk2g:Because of the orthogonality of x and w, we havekxk22 = krk22 � j�j2 :Similarly, exploiting the orthogonality of the pair u; y, and usingthe de�nition of � we getku� � yk22 = 1 + �2kyk22= 1 + �2[ksk22 � j�j2]= ksk22ksk22 � j�j2 :The above results yieldkE(�)k22 = max (ksk22; ksk22krk22 � j�j2ksk22 � j�j2) = ksk22:This shows from (3.31) that the equality (3.28) is satis�ed for thecase when ksk2>krk2.



90 Chapter IIITo prove the result for the case ksk2<krk2, we proceed in thesame manner, writing this time E(�) asE(�) = ruH + (�w � � x)yHand choosing � such that uH(w � � x) = 0. A special treatmentwill also be necessary for the case where krk2 = j�j which onlyoccurs when x = 0.The actual result proved by Kahan, Parlett and Jiang is es-sentially a block version of the above theorem and includes resultswith other norms, such as the Frobenius norm.Example 3.5 Consider the matrix,A = 0BBBBB@ 1:0 2:11:9 1:0 2:11:9 1:0 2:11:9 1:0 2:11:9 1:0
1CCCCCA :which is obtained by perturbing the symmetric tridiagonal matrix ofExample 3.3. Consider the pair
 = 3:0; v = 0BBBBB@ �0:5�0:50:00:50:5

1CCCCCA :Then we have krk2 = k(A� 
I)uk2 � 0:1414;which tells us, using the one-sided result (Proposition 3.4), that weneed to perturb A by a matrix E of norm 0:1414 to make the pair 
; van exact eigenpair of A.Consider now v as de�ned above andw = � (0:6; 0:6; 0:0; 0:4; 0:4)T ;



Perturbation Theory 91where � is chosen to normalize w to so that its 2-norm is unity. Then,still with 
 = 3, we �ndkrk2 � 0:1414 ; ksk2 � 0:5004 :As a result of the theorem, we now need a perturbation E whose 2-norm is roughly 0:5004 to make the triplet 
; v; w an exact eigentripletof A, a much stricter requirement than with the one-sided result.The outcome of the above example was to be expected. Ifone of the left of right approximate eigen-pair, for example theleft pair (
; v), is a poor approximation, then it will take a largerperturbation on A to make the triplet 
; v; w exact, than it wouldto make the pair 
; u exact. Whether one needs to use the one-sided or the two-sided result depends on whether one is interestedin the left and right eigenvectors simultaneously or in the right(or left) eigenvector only.3. Conditioning of Eigen-problemsWhen solving a linear system Ax = b, an important question thatarises is how sensitive is the solution x to small variations of theinitial data, namely to the matrix A and the right-hand side b.A measure of this sensitivity is called the condition number of Ade�ned by Cond(A) = kAkkA�1krelative to some norm.For the eigenvalue problem we raise a similar question but wemust now de�ne similar measures for the eigenvalues as well asfor the eigenvectors and the invariant subspaces.3.1. Conditioning of EigenvaluesLet us assume that � is a simple eigenvalue and consider thefamily of matrices A(t) = A + tE. We know from the previous



92 Chapter IIIsections that there exists a branch of eigenvalues �(t) of A(t) thatis analytic with respect to t, when t belongs to a small enoughdisk centered at the origin. It is natural to call conditioning ofthe eigenvalue � of A relative to the perturbation E the modulusof the derivative of �(t) at the origin t = 0. Let us writeA(t)u(t) = �(t)u(t) (3.36)and take the inner product of both members with a left eigenvec-tor w of A associated with � to get((A + tE)u(t); w) = �(t)(u(t); w)or, �(t)(u(t); w) = (Au(t); w) + t(Eu(t); w)= (u(t); AHw) + t(Eu(t); w)= �(u(t); w) + t(Eu(t); w):Hence, �(t)� �t (u(t); w) = (Eu(t); w)and therefore by taking the limit at t = 0,�0(0) = (Eu;w)(u; w)Here we should recall that the left and right eigenvectors associ-ated with a simple eigenvalue cannot be orthogonal to each other.The actual conditioning of an eigenvalue, given a perturbation \inthe direction of E"is the modulus of the above quantity. In prac-tical situations, one often does not know the actual perturbationE but only its magnitude, e.g., as measured by some matrix normkEk. Using the Cauchy-Schwartz inequality and the 2-norm, wecan derive the following upper bound,j�0(0)j � kEuk2kwk2j(u; w)j � kEk2kuk2kwk2j(u; w)j



Perturbation Theory 93In other words the actual condition number of the eigenvalue � isbounded from above by the norm of E divided by the cosine of theacute angle between the left and the right eigenvectors associatedwith �. Hence the following de�nition.De�nition 3.1 The condition number of a simple eigenvalue �of an arbitrary matrix A is de�ned byCond(�) = 1cos �(u; w)in which u and w are the right and left eigenvectors, respectively,associated with �.Example 3.6 Consider the matrixA = 0B@ �149 �50 �154537 180 546�27 �9 �25 1CAThe eigenvalues of A are f1; 2; 3g. The right and left eigenvectors ofA associated with the eigenvalue �1 = 1 are approximatelyu = 0B@ 0:3162�0:94870:0 1CA and w = 0B@ 0:68100:22530:6967 1CA (3.37)and the corresponding condition number is approximatelyCond(�1) � 603:64A perturbation of order 0.01 may cause perturbations of magnitudeup to 6. Perturbing a11 to �149:01 yields the spectrum:f0:2287; 3:2878; 2:4735g:For Hermitian, or more generally normal, matrices every sim-ple eigenvalue is well-conditioned, since Cond(�) = 1. On theother hand the condition number of a non-normal matrix can beexcessively high, in fact arbitrarily high.



94 Chapter IIIExample 3.7 As an example simply consider the matrix0BBBBB@�1 �1�2 �1: :: �1�n
1CCCCCA (3.38)with �1 = 0 and �i = 1=(i�1) for i > 1. A right eigenvector associatedwith the eigenvalue �1 is the vector e1. A left eigenvector is the vectorw whose i-th component is equal to (i � 1)! for i = 1; : : : ; n. A littlecalculation shows that the condition number of �1 satis�es(n� 1)! � Cond(�1) � (n� 1)! pn:Thus, this example shows that the condition number can be quite largeeven for modestly sized matrices.An important comment should be made concerning the aboveexample. The eigenvalues of A are explicitly known in terms of thediagonal entries of the matrix, whenever the structure of A staysthe same. One may wonder whether it is sensible to discuss theconcept of condition number in such cases. For example, if we per-turb the (1,1) elements by 0.1 we know exactly that the eigenvalue�1 will be perturbed likewise. Is the notion of condition numberuseless in such situations? The answer is no. First, the argumentis only true if perturbations are applied in speci�c positions ofthe matrix, namely its upper triangular part. If perturbationstake place elsewhere then some or all of the eigenvalues of theperturbed matrix may not be explicitly known. Second, one canthink of applying an orthogonal similarity transformation to A.If Q is orthogonal then the eigenvalues of the matrix B = QHAQhave the same condition number as those of the original matrixA, (see Problem P-3.15). The resulting matrix B may be denseand the dependence of its eigenvalues with respect to its entriesis no longer explicit.



Perturbation Theory 953.2. Conditioning of EigenvectorsTo properly de�ne the condition number of an eigenvector weneed to use the notion of reduced resolvent. Although the resol-vent operator R(z) has a singularity at an eigenvalue � it can stillbe de�ned on the restriction to the invariant subspace Ker(P ).More precisely, consider the restriction of the mapping A � �Ito the subspace (I � P )Cn = Ker(P ), where P is the spectralprojector associated with the eigenvalue �. This mapping is in-vertible because if x is an element of Ker(P ) then (A� �I)x = 0,i.e., x is in Ker(A � �I) which is included in Ran(P ) and this isonly possible when x = 0. We will call reduced resolvent at �the inverse of this linear mapping and we will denote it by S(�) .Thus, S(�) = h(A� �I)jKer(P )i�1 :The reduced resolvent satis�es the relation,S(�)(A��I)x = S(�)(A��I)(I�P )x = (I�P )x 8 x (3.39)which can be viewed as an alternative de�nition of S(�).We now consider a simple eigenvalue � of a matrix A withan associated eigenvector u, and write that a pair �(t); u(t) is aneigenpair of the matrix A + tE,(A+ tE)u(t) = �(t)u(t) : (3.40)Subtracting Au = �u from both sides we have,A(u(t)�u)+tEu(t) = �(t)u(t)��u = �(u(t)�u)+(�(t)��)u(t)or, (A� �I)(u(t)� u) + tEu(t) = (�(t)� �)u(t) :We then multiply both sides by the projector I � P to obtain(I � P )(A� �I)(u(t)� u) + t(I � P )Eu(t)= (�(t)� �)(I � P )u(t)= (�(t)� �)(I � P )(u(t)� u)



96 Chapter IIIThe last equality holds because (I�P )u = 0 since u is in Ran(P ).Hence, (A� �I)(I � P )(u(t)� u) =(I � P ) [�tEu(t) + (�(t)� �)(u(t)� u)] :We now multiply both sides by S(�) and use (3.39) to get(I � P )(u(t)� u) = (3.41)S(�)(I � P ) [�tEu(t) + (�(t)� �)(u(t)� u)]In the above development we have not scaled u(t) in any way. Wenow do so by requiring that its projection onto the eigenvector ube exactly u, i.e., Pu(t) = u for all t. With this scaling, we have(I � P )(u(t)� u) = u(t)� u:As a result, equality (3.42) becomesu(t)� u = S(�) [�t(I � P )Eu(t) + (�(t)� �)(u(t)� u); ]from which we �nally get, after dividing by t and taking the limit,u0(0) = �S(�)(I � P )Eu : (3.42)Using the same argument as before, we arrive at the followinggeneral de�nition of the condition number of an eigenvector.De�nition 3.2 The condition number of an eigenvector u asso-ciated with an eigenvalue � of an arbitrary matrix A is de�ned byCond(u) = kS(�)(I � P )k2: (3.43)in which S(�) is the reduced resolvent of A at �.In the case where the matrix A is Hermitian it is easy to verifythat the condition number simpli�es to the followingCond(u) = 1dist[�; �(A)� f�g] : (3.44)



Perturbation Theory 97In the general non-Hermitian case, it is di�cult to assess the sizeof Cond(u).To better understand the nature of the operator S(�)(I �P ),consider its spectral expansion in the particular case where A isdiagonalizable and the eigenvalue �i of interest is simple.S(�i)(I � Pi) = pXj=1j 6=i 1�j � �iPjSince we can write each projector as a sum of outer product ma-trices Pj = P�ik=1 ukwHk where the left and right eigenvectors ukand wk are normalized such that (uj; wj) = 1, the expression (2.9)can be rewritten asu0(0) = nXj=1j 6=i 1�j � �iujwHj Eui = nXj=1j 6=i wHj Eui�j � �iujwhich is the standard expression developed in Wilkinson's book[183].What the above expression reveals is that when eigenvalues getclose to one another then the eigenvectors are not too well de�ned.This is predictable since a multiple eigenvalue has typically severalindependent eigenvectors associated with it, and we can rotatethe eigenvector arbitrarily in the eigenspace while keeping it aneigenvector of A. As an eigenvalue gets close to being multiple, thecondition number for its associated eigenvector deteriorates. Infact one question that follows naturally is whether or not one cande�ne the notion of condition number for eigenvectors associatedwith multiple eigenvalues. The above observation suggests thata more realistic alternative is to try to analyze the sensitivity ofthe invariant subspace. This is taken up in the next section.Example 3.8 Consider the matrix seen in example 3.6A = 0B@ �149 �50 �154537 180 546�27 �9 �25 1CA :



98 Chapter IIIThe matrix is diagonalizable since it has three distinct eigenvalues andA = X 0B@ 1 0 00 2 00 0 3 1CA X�1 :One way to compute the reduced resolvent associated with �1 = 1 isto replace in the above equality the diagonal matrix D by the `inverse'of D � �1I obtained by inverting the nonzero entries (2; 2) and (3; 3)and placing a zero in entry (1; 1), i.e.,S(�1) = X 0B@ 0 0 00 1 00 0 12 1CA X�1 = 0B@ �118:5 �39:5 �122:5316:5 105:5 325:513:5 4:5 14:5 1CAWe �nd that the 2-norm of kS(�1)k2 is kS(�1)k2 = 498:27. Thus,a perturbation of order 0.01 may cause changes of magnitude up to4.98 on the eigenvector. This turns out to be a pessimistic overes-timate. If we perturb a11 from �149:00 to �149:01 the eigenvec-tor u1 associated with �1 is perturbed from u1 = (�1=3; 1; 0)T to~u1 = (�0:3170; 1;�0:0174)T . A clue as to why we have a poor esti-mate is provided by looking at the norms of X and X�1.kXk2 = 1:709 and kX�1k2 = 754:100 ;which reveals that the eigenvectors are poorly conditioned.3.3. Conditioning of Invariant SubspacesOften one is interested in the invariant subspace rather than theindividual eigenvectors associated with a given eigenvalue. Inthese situations the condition number for eigenvectors as de�nedbefore is not su�cient. We would like to have an idea on how thewhole subspace behaves under a given perturbation.We start with the simple case where the multiplicity of theeigenvalue under consideration is one, and we de�ne some nota-tion. Referring to (3.40), let Q(t) be the orthogonal projectoronto the invariant subspace associated with the simple eigenvalue



Perturbation Theory 99�(t) and Q(0) � Q be the orthogonal projector onto the invariantsubspace of A associated with �. The orthogonal projector Q ontothe invariant subspace associated with � has di�erent propertiesfrom those of the spectral projector. For example A and Q do notcommute. All we can say is thatAQ = QAQ or (I �Q)AQ = 0 ;leading to (I �Q)A = (I �Q)A(I �Q) (3.45)(I �Q)(A� �I) = (I �Q)(A� �I)(I �Q)Note that the linear operator (A��I) when restricted to the rangeof I � Q is invertible. This is because if (A � �I)x = 0 then xbelongs to Ran(Q) whose intersection with Ran(I�Q) is reducedto f0g. We denote by S+(�) the inverse of (A � �I) restrictedto Ran(I � Q). Note that although both S(�) and S+(�) areinverses of (A � �I) restricted to complements of Ker(A � �I),these inverses are quite di�erent.Starting from (3.40), we subtract �u from each side to get,(A� �I)u(t) = �tEu(t) + (�(t)� �)u(t)Now multiply both sides by the orthogonal projector I �Q,(I �Q)(A� �I)u(t) = �t(I �Q)Eu(t) + (�(t)� �)(I �Q)u(t)to obtain from (3.45),[(I �Q)(A� �I)(I �Q)](I �Q)u(t)= �t(I �Q)Eu(t) + (�(t)� �)(I �Q)u(t):Therefore,(I �Q)u(t) = S+(�) [�t(I �Q)Eu(t) + (�(t)� �)(I �Q)u(t)] :


