
100 Chapter IIIWe now write the vector u(t) as u(t) = Q(t)x for an arbitraryvector x,(I �Q)Q(t)x = S+(�) [�t(I �Q)EQ(t)x+(�(t)� �)(I �Q)Q(t)x] :The above equation yields an estimate of the norm of (I�Q)Q(t),which is the sine of the angle between the invariant subspacesM = Ran(Q) and M(t) = Ran(Q(t)).Proposition 3.5 Assume that � is a simple eigenvalue of A.When the matrix A is perturbed by the matrix tE, then the sineof the angle between the invariant subspaces M and M(t) of Aand A+ tE associated with the eigenvalues � and �(t) is approx-imately, sin �(M;M(t)) � jtjkS+(�)(I �Q)EQ(t)kthe approximation being of second order with respect to t.Thus, we can de�ne the condition number for invariant subspacesas being the (spectral) norm of S+(�).The more interesting situation is when the invariant subspaceis associated with a multiple eigenvalue. What was just donefor one-dimensional invariant subspaces can be generalized tomultiple-dimensional invariant subspaces. The notion of condi-tion numbers here will require some knowledge about generalizedsolutions to Sylvester's equations. A Sylvester equation is a ma-trix equation of the formAX �XR = B (3.46)where A is n�n, X and B are n�r and R is r�r. The importantobservation which we would like to exploit is that (3.46) is nothingbut a linear system of equations with n r unknowns. It can beshown that the mapping X ! AX �XR is invertible under thesimple condition that the spectra of A and R have no point incommon.



Perturbation Theory 101We now proceed in a similar manner as for simple eigenvaluesand write, AU = UR(A+ tE)U(t) = U(t)R(t)in which U and U(t) are n � r unitary matrices and R and R(t)are r � r upper triangular. Subtracting U(t)R from the secondequation we obtainAU(t)� U(t)R = �tEU(t) + U(t)(R(t)� R)Multiplying both sides by I � Q and using again the relation(3.45), (I �Q)A(I �Q)U(t)� (I �Q)U(t)R= (I �Q)[�tEU(t) + U(t)(R(t)�R)]Observe that the operatorX ! (I �Q)A(I �Q)X �XRis invertible because the eigenvalues of (I�Q)A(I�Q) and thoseof R form disjoint sets. Therefore, we can de�ne its inverse whichwe call S+(�), and we have(I �Q)U(t) = S+(�) [t(I �Q)EU(t) + (I �Q)U(t)(R(t)� R)]As a result, up to lower order terms, the sine of the angle be-tween the two subspaces is jtjkS+(�)(I�Q)EU(t)k, a result thatconstitutes a direct generalization of the previous theorem.4. Localization TheoremsIn some situations one wishes to have a rough idea of where theeigenvalues lie in the complex plane, by directly exploiting someknowledge on the entries of the matrix A. We already know a



102 Chapter IIIsimple localization result that uses any matrix norm, since wehave j�ij � kAki.e., any eigenvalue belongs to the disc centered at the origin andof radius kAk. A more precise localization result is provided byGerschgorin's theorem.Theorem 3.11 (Gerschgorin [58]) Any eigenvalue � of a ma-trix A is located in one of the closed discs of the complex planecentered at aii and having the radiusj=nXj=1j 6=i jaijj :In other words,8 � 2 �(A); 9 i such that j�� aiij � j=nXj=1j 6=i jaijj : (3.47)Proof. The proof is by contradiction. Assume that (3.47)does not hold. Then there is an eigenvalue � such that for i =1; 2; : : : ; n we have j�� aiij > j=nXj=1;j 6=i jaijj : (3.48)We can write A � �I = D � �I + H, where D = diag faiigand H is the matrix obtained from A by replacing its diagonalelements by zeros. Since D � � is invertible we haveA� �I = (D � �I)(I + (D � �I)�1H) : (3.49)The elements in row i of the matrix C = (D � �I)�1H are cij =aij=(aii� �) for j 6= i and cii = 0, and so the sum of their moduliare less than unity by (3.48). Hence�((D � �I)�1H) � k(D � �I)�1Hk1 < 1



Perturbation Theory 103and as a result the matrix I +C = (I + (D� �I)�1H) is nonsin-gular. Therefore, from (3.49) (A� �I) would also be nonsingularwhich is a contradiction.Since the result also holds for the transpose of A, we can for-mulate a version of the theorem based on column sums instead ofrow sums,8 � 2 �(A); 9 j such that j�� ajjj � i=nXi=1i6=j jaijj : (3.50)The discs de�ned in the theorem are called Gerschgorin discs.There are n Gerschgorin discs and their union contains the spec-trum of A. The above results can be especially useful when thematrix is almost diagonal, as is often the case when an algorithmis used to diagonalize a matrix and the process is nearing conver-gence. However, in order to better exploit the theorem, we needto show the following additional result.Theorem 3.12 . Suppose that there are m Gerschgorin discswhose union S is disjoint from all other discs. Then S containsexactly m eigenvalues, (counted with their multiplicities).Proof. Let A(t) = D + tH where 0 � t � 1, and D;H arede�ned in the proof of Gerschgorin's theorem. Initially when t = 0all eigenvalues of A(t) are at the discs of radius 0, centered ataii. By a continuity argument, as t increases to 1, the branches ofeigenvalues �i(t) will stay in their respective discs as long as thesediscs stay disjoint. This is because the image of the connectedinterval [0,1] by �i(t) must be connected. More generally, if theunion of m of the discs are disjoint from the other discs, theunion S(t) of the corresponding discs as t varies, will contain meigenvalues.



104 Chapter IIIAn important particular case is that when one disc is disjoint fromthe others then it must contain exactly one eigenvalue.There are other ways of estimating the error of aii regarded asan eigenvalue of A. For example, if we take as approximate eigen-vector the i-th column of the identity matrix we get the followingresult from a direct application of Kato-Temple's theorem in theHermitian case.Proposition 3.6 Let i be any integer between 1 and n and let� be the eigenvalue of A closest to aii, and � the next closesteigenvalue to aii. Then if we call �i the 2-norm of the (n � 1)-vector obtained from the i� th column of A by deleting the entryaii we have j�� aiij � �2ij�� aiij :Proof. The proof is a direct application of Kato-Temple's the-orem.Thus, in the Hermitian case, the Gerschgorin bounds are nottight in general since the error is of the order of the square of thevector of the o�-diagonal elements in a row (or column), whereasGerschgorin's result will provide an error estimate of the sameorder as the 1-norm of the same vector (in the ideal situationwhen the discs are disjoint). However, we note that the isolatedapplication of the above proposition in practice may not be toouseful since we may not have an estimate of j�� aiij. A simpler,though less powerful, bound is j��aiij � �i. These types of resultsare quite di�erent in nature from those of Gerschgorin's theorem.They simply tell us how accurate an approximation a diagonalelement can be when regarded as an approximate eigenvalue. Itis an isolated result and does not tell us anything on the othereigenvalues. Gerschgorin's result on the other hand is a globalresult, in that it tells where all the eigenvalues are located, as agroup. This distinction between the two types of results, namely



Perturbation Theory 105the (local) a-posteriori error bounds on the one hand, and theglobal localizations results such as Gerschgorin's theorem on theother, is often misunderstood.ProblemsP-3.1 If P is a projector onto M along S then PH is a projector ontoS? along M?. [Hint: see proof of Proposition 3.1].P-3.2 Show that for two orthogonal bases V1; V2 of the same subspaceM of Cn we have V1V H1 x = V2V H2 x 8x.P-3.3 What are the eigenvalues of a projector? What about its eigen-vectors?P-3.4 Let P be a projector and V = [v1; v2; � � � ; vm] a basis of Ran(P ).Why does there always exist a basis W = [w1; w2; � � � ; wm] of L =Ker(P )? such that the two sets form a biorthogonal basis? In generalgiven two subspacesM and S of the same dimensionm, is there alwaysa biorthogonal pair V;W such that V is a basis of M and W a basisof S?P-3.5 Let P be a projector, V = [v1; v2; � � � ; vm] a basis of Ran(P ),and U a matrix the columns of which form a basis of Ker(P ). Showthat the system U; V forms a basis of Cn. What is the matrix repre-sentation of P with respect to this basis?P-3.6 Show that if two projectors P1 and P2 commute then theirproduct P = P1P2 is a projector. What are the range and kernel ofP ?P-3.7 Consider the matrix seen in Example 3.6. We perturb the terma33 to �25:01. Give an estimate in the changes of the eigenvalues ofthe matrix. Use any FORTRAN library or interactive tool to computethe eigenvectors/ eigenvalues of the perturbed matrix.P-3.8 Let �(X;Y ) � maxx 2 X;kxk2=1dist(u; Y ):



106 Chapter IIIShow that !(M1;M2) = maxf�(M1;M2); �(M2;M1)g :P-3.9 Given two subspaces M and S with two orthogonal bases Vand W show that the singular values of V HW are between zero andone. The canonical angles between M and S are de�ned as the acutesangles whose cosines are the singular values �i, i.e., cos �i = �i(V HW ).The angles are labeled in descending order. Show that this de�nitiondoes not depend on the order of the pair M;S (in other words thatthe singular values of WHV are identical with those of V HW ).P-3.10 Show that the largest canonical angle between two subspaces(see previous problem) is �=2 i� the intersection of M and the orthog-onal of S is not reduced to f0g.P-3.11 Let P1; P2 be two orthogonal projectors with ranges M1 andM2 respectively of the same dimension m � n=2 and let Vi; i = 1; 2be an orthogonal basis of Mi; i = 1; 2. Assuming at �rst that thethe columns of the system [V1; V2] are linearly independent what isthe matrix representation of the projector P1�P2 with respect to thebasis obtained by completing V1; V2 into a basis of Cn? Deduce thatthe eigenvalues of P1�P2 are � sin �i, where the �i's are the canonicalangles between M1 and M2 as de�ned in the previous problems. Howcan one generalize this result to the case where the columns of [V1; V2]are not linearly independent?P-3.12 Use the previous result to show that!(M1;M2) = sin �maxwhere �max is the largest canonical angle between the two subspaces.P-3.13 Prove the second equality in equation (3.32) of the proof ofTheorem 3.10.P-3.14 Let E = xpH + yqH where x ? y and p ? q. What is the2-norm of E? [Hint: Compute EHE and then �nd the singular valuesof E.]P-3.15 Show that the condition number of an eigenvalue � of a ma-trix A does not change if A is transformed by an orthogonal similarity



Perturbation Theory 107transformation. Is this true for any similarity transformation? Whatcan be said of the condition number of the corresponding eigenvector?P-3.16 Consider the matrix obtained from that of example 3.7 inwhich the elements �1 above the diagonal are replaced by ��, where� is a constant. Find bounds similar to those in Example 3.7 for thecondition number of the eigenvalue �1 of this matrix.P-3.17 Under the same assumptions as those of Theorem 3.6, estab-lish the improved errorsin �(~u; u) � skrk22 � �2�2 � �2in which � � j�� ~�j. [Hint: Follow proof of theorem 3.6]Notes and References. Some of the material in this chapter is basedon [85] and [14]. A broader and more detailed view of perturbation analysisfor matrix problems is the recent book by Stewart and Sun [172]. The treat-ment of the equivalence between the projectors as de�ned from the Jordancanonical form and the one de�ned from the Dunford integral seems to benew. The results of Section 2.3 are simpler versions of those found in [82],which should be consulted for more detail. The notion of condition numberfor eigenvalue problems is discussed in detail in Wilkinson [183] who seemsto be at the origin of the notion of condition numbers for eigenvalues andeigenvectors. �
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Chapter IV
The Tools of SpectralApproximationMany of the algorithms used to approximate spectra of large ma-trices consist of a blend of a few basic mathematical or algorith-mic tools, such as projection methods, Chebyshev acceleration,de
ation, shift-and-invert strategies, to name just a few. Wehave grouped together these tools and techniques in this chap-ter. We start with some background on well-known proceduresbased on single vector iterations. These have historically providedthe starting point of many of the more powerful methods. Oncean eigenvalue-eigenvector pair is computed by one of the singlevector iterations, it is often desired to extract another pair. Thisis done with the help of a standard technique known as de
a-tion which we discuss in some detail. Finally, we will presentthe common projection techniques which constitute perhaps themost important of the basic techniques used in approximatingeigenvalues and eigenvectors.



110 Chapter IV1. Single Vector IterationsOne of the oldest techniques for solving eigenvalue problems is theso-called power method. Simply described this method consists ofgenerating the sequence of vectors Akv0 where v0 is some nonzeroinitial vector. A few variants of the power method have beendeveloped which consist of iterating with a few simple functionsof A. These methods involve a single sequence of vectors and wedescribe some of them in this section.1.1. The Power MethodThe simplest of the single vector iteration techniques consists ofgenerating the sequence of vectors Akv0 where v0 is some nonzeroinitial vector. This sequence of vectors when normalized appropri-ately, and under reasonably mild conditions, converges to a dom-inant eigenvector, i.e., an eigenvector associated with the eigen-value of largest modulus. The most commonly used normalizationis to ensure that the largest component of the current iterate isequal to one. This yields the following algorithm.Algorithm 4.1 (The Power Method.)� 1. Start: Choose a nonzero initial vector v0.� 2. Iterate: for k = 1; 2; : : : until convergence, computevk = 1�kAvk�1where �k is a component of the vector Avk�1 which has themaximum modulus.The following theorem establishes a convergence result for theabove algorithm.



Tools of Spectral Approximation 111Theorem 4.1 Assume that there is one and only one eigenvalue�1 of A of largest modulus and that �1 is semi-simple. Then eitherthe initial vector v0 has no component in the invariant subspaceassociated with �1 or the sequence of vectors generated by Algo-rithm 4.1 converges to an eigenvector associated with �1 and �kconverges to �1.Proof. Clearly, vk is nothing but the vector Akv0 normalizedby a certain scalar �̂k in such a way that its largest component isunity. Let us decompose the initial vector v0 asv0 = pXi=1 Piv0 (4.1)where the Pi's are the spectral projectors associated with the dis-tinct eigenvalues �i; i = 1; : : : ; p. Recall from (1.19) of Chapter 1,that APi = Pi(�iPi +Di) where Di is a nilpotent of index li, andmore generally, by induction we have AkPi = Pi(�iPi +Di)k. Asa result we obtain,vk = 1̂�kAk pXi=1 Piv0 = 1̂�k pXi=1 AkPiv0 = 1̂�k pXi=1 Pi(�iI+Di)kv0 :Hence, noting that D1 = 0 because �1 is semi-simple,vk = 1̂�k pXi=1 Pi(�iPi +Di)kv0= 1̂�k  �k1P1v0 + pXi=2 Pi(�iPi +Di)kv0!= �k1�̂k  P1v0 + pXi=2 1�k1 (�iPi +Di)kPiv0 :! (4.2)The spectral radius of each operator (�iPi + Di)=�1 is less thanone since j�i=�1j < 1 and therefore, its k-th power will convergeto zero. If P1v0 = 0 the theorem is true. Assume that P1v0 6=0. Then it follows immediately from (4.2) that vk converges to



112 Chapter IVP1v0 normalized so that its largest component is one. That �kconverges to the eigenvalue �1 is an immediate consequence ofthe relation Avk�1 = �kvk and the fact the sequence of vectors vkconverges.The proof suggests that the convergence factor of the methodis given by �D = j�2jj�1jwhere �2 is the second largest eigenvalue in modulus. This ratiorepresents the spectral radius of the linear operator 1�1A restrictedto the subspace that excludes the invariant subspace associatedwith the dominant eigenvalue. It is a common situation that theeigenvalues �1 and �2 are very close from one another. As a resultconvergence may be extremely slow.Example 4.1 Consider the Markov Chain matrix Mark(10) whichhas been described in Chapter 2. This is a matrix of size n = 55which has two dominant eigenvalues of equal modulus namely � = 1and � = �1. As is to be expected the power method applied directlyto A does not converge. To obtain convergence we can for exampleconsider the matrix I + A whose eigenvalues are those of A shiftedto the right by one. The eigenvalue � = 1 is then transformed intothe eigenvalue � = 2 which now becomes the (only) dominant eigen-value. The algorithm then converges and the convergence history isshown in Table 4.1. In the �rst column of the table we show the iter-ation number. The results are shown only every 20 steps and at thevery last step when convergence has taken place. The second columnshows the 2-norm of the di�erence between two successive iterates, i.e.,kxi+1 � xik2 at teration i, while the third column shows the residualnorm kAx� �(x)xk2, in which �(x) is the Rayleigh quotient of x andx is normalized to have a 2-norm unity. The algorithm is stopped assoon at the 2-norm of the di�erence between two successive iteratesbecomes less than � = 10�7. Finally, the last column shows the corre-sponding eigenvalue estimates. Note that what is shown is simply thecoe�cient �k, shifted by �1 to get an approximation to the eigenvalue



Tools of Spectral Approximation 113of Mark(10) instead of Mark(10)+I. The initial vector in the iterationis the vector x0 = (1; 1; : : : ; 1)T .Iteration Norm of di�. Res. norm Eigenvalue20 0.639D-01 0.276D-01 1.0259163640 0.129D-01 0.513D-02 1.0068078060 0.192D-02 0.808D-03 1.0010214580 0.280D-03 0.121D-03 1.00014720100 0.400D-04 0.174D-04 1.00002078120 0.562D-05 0.247D-05 1.00000289140 0.781D-06 0.344D-06 1.00000040161 0.973D-07 0.430D-07 1.00000005Table 4.1 Power iteration with A = Mark(10) + I.If the eigenvalue is multiple, but semi-simple, then the algo-rithm provides only one eigenvalue and a corresponding eigen-vector. A more serious di�culty is that the algorithm will notconverge if the dominant eigenvalue is complex and the originalmatrix as well as the initial vector are real. This is because forreal matrices the complex eigenvalues come in complex pairs andas result there will be (at least) two distinct eigenvalues that willhave the largest modulus in the spectrum. Then the theoremwill not guarantee convergence. There are remedies to all thesedi�culties and some of these will be examined later.1.2. The Shifted Power MethodIn Example 4.1 we have been lead to use the power method noton the original matrix but on the shifted matrix A + I. Oneobservation is that we could also have iterated with a matrix ofthe form B(�) = A + �I for any positive � and the choice � = 1is a rather arbitrary choice. There are better choices of the shiftas is suggested by the following example.Example 4.2 Consider the same matrix as in the previous example,in which the shift � is replaced by � = 0:1. The new convergence



114 Chapter IVhistory is shown in Table 4.2, and indicates a much faster convergencethan before.Iteration Norm of di�. Res. Norm Eigenvalue20 0.273D-01 0.794D-02 1.0052400140 0.729D-03 0.210D-03 1.0001675560 0.183D-04 0.509D-05 1.0000044680 0.437D-06 0.118D-06 1.0000001188 0.971D-07 0.261D-07 1.00000002Table 4.2 Power iteration on A =Mark(10) + 0:1� I.More generally, when the eigenvalues are real it is not too dif-�cult to �nd the optimal value of �, i.e., the shift that maximizesthe asymptotic convergence rate, see Problem P-4.5. The scalars� are called shifts of origin. The important property that is usedis that shifting does not alter the eigenvectors and that it doeschange the eigenvalues in a simple known way, it shifts them by�.1.3. Inverse IterationThe inverse power method, or inverse iteration, consists simplyof iterating with the matrix A�1 instead of the original matrix A.In other words, the general iterate vk is de�ned byvk = 1�kA�1vk�1 : (4.3)Fortunately it is not necessary to compute the matrix A�1 explic-itly as this could be rather expensive for large problems. Instead,all that is needed is to carry out the LU factorization of A prior tostarting the vector iteration itself. Subsequently, one must solvean upper and lower triangular system at each step. The vectorvk will now converge to the eigenvector associated with the dom-inant eigenvalue of A�1. Since the eigenvalues of A and A�1 arethe inverses of each other while their eigenvectors are identical,the iterates will converges to the eigenvector of A associated with



Tools of Spectral Approximation 115the eigenvalue of smallest modulus. This may or may not be whatis desired but in practice the method is often combined with shiftsof origin. Indeed, a more common problem in practice is to com-pute the eigenvalue of A that is closest to a certain scalar � andthe corresponding eigenvector. This is achieved by iterating withthe matrix (A � �I)�1. Often, � is referred to as the shift. Thecorresponding algorithm is as follows.Algorithm 4.2 : Inverse Power Method1. Start: Compute the LU decomposition A � �I = LU andchoose an initial vector v0.2. Iterate: for k = 1; 2; : : : ; until convergence computevk = 1�k (A� �I)�1vk�1 = 1�kU�1L�1vk�1 (4.4)where �k is a component of the vector (A��I)�1vk�1 whichhas the maximum modulus.Note that each of the computations of y = L�1vk�1 and thenv = U�1y can be performed by a forward and a backward trian-gular system solve, each of which costs only O(n2=2) operationswhen the matrix is dense. The factorization in step 1 is muchmore expensive whether the matrix is dense or sparse.If �1 is the eigenvalue closest to � then the eigenvalue of largestmodulus of (A��I)�1 will be 1=(�1��) and so �k will converge tothis value. An important consideration that makes Algorithm 4.2quite attractive is its potentially high convergence rate. If �1 isthe eigenvalue of A closest to the shift � and �2 is the next closetone then the convergence factor is given by�I = j�1 � �jj�2 � �j (4.5)which indicates that the convergence can be very fast if � is muchcloser to the desired eigenvalue �1 than it is to �2.



116 Chapter IVFrom the above observations, one can think of changing theshift � occasionally into a value that is known to be a betterapproximation of �1 than the previous �. For example, one canreplace occasionally � by the estimated eigenvalue of A that isderived from the information that �k converges to 1=(�1 � �),i.e., we can take �new = �old + 1�k :Strategies of this sort are often referred to as shift-and-invert tech-niques.Another possibility, which may be very e�cient in the Hermi-tian case, is to take the new shift to be the Rayleigh quotient ofthe latest approximate eigenvector vk. One must remember how-ever, that the LU factorization is expensive so it is desirable tokeep such shift changes to a minimum. At one extreme where theshift is never changed, we obtain the simple inverse power methodrepresented by Algorithm 4.2. At the other extreme, one can alsochange the shift at every step. The algorithm corresponding tothis case is called Rayleigh Quotient Iteration (RQI) and has beenextensively studied for Hermitian matrices.Algorithm 4.3 Rayleigh Quotient Iteration1. Start: Choose an initial vector v0 such that kv0k2 = 1.2. Iterate: for k = 1; 2; : : : ; until convergence compute�k = (Avk�1; vk�1) ;vk = 1�k (A� �kI)�1vk�1;where �k is chosen so that the 2-norm of the vector vk isone.It is known that this process is globally convergent for Her-mitian matrices, in the sense that �k converges and the vectorvk either converges to an eigenvector or alternates between two



Tools of Spectral Approximation 117eigenvectors. Moreover, in the �rst case �k converges cubicallytowards an eigenvalue, see Parlett [118]. In the case where vk os-cillates, between two eigenvectors, then �k converges towards themid-point of the corresponding eigenvalues. In the non-Hermitiancase, the convergence can be at most quadratic and there are noknown global convergence results except in the normal case. Thisalgorithm is not much used in practice despite these nice proper-ties, because of the high cost of the frequent factorizations.2. De
ation TechniquesSuppose that we have computed the eigenvalue �1 of largest mod-ulus and its corresponding eigenvector u1 by some simple algo-rithm, say algorithm (A), which always delivers the eigenvalueof largest modulus of the input matrix, along with an eigenvec-tor. For example, algorithm (A) can simply be one of the singlevector iterations described in the previous section. It is assumedthat the vector u1 is normalized so that ku1k2 = 1. The problemis to compute the next eigenvalue �2 of A. An old technique forachieving this is what is commonly called a de
ation procedure.Typically, a rank one modi�cation is applied to the original matrixso as to displace the eigenvalue �1, while keeping all other eigen-values unchanged. The rank one modi�cation is chosen so thatthe eigenvalue �2 becomes the one with largest modulus of themodi�ed matrix and therefore, algorithm (A) can now be appliedto the new matrix to extract the pair �2; u2.2.1. Wielandt De
ation with One VectorIn the general procedure known as Wielandt's de
ation only theknowledge of the right eigenvector is required. The de
ated ma-trix is of the form A1 = A� �u1vH (4.6)where v is an arbitrary vector such that vHu1 = 1, and � is anappropriate shift. It can be shown that the eigenvalues of A1



118 Chapter IVare the same as those of A except for the eigenvalue �1 which istransformed into the eigenvalue �1 � �.Theorem 4.2 (Wielandt) The spectrum of A1 as de�ned by(4.6) is given by�(A1) = f�1 � �; �2; �3; : : : ; �pg :Proof. For i 6= 1 the left eigenvectors of A satisfy(AH � ��vuH1 )wi = �iwibecause wi is orthogonal to u1. On the other hand for i = 1, wehave A1u1 = (�1 � �)u1.The above proof reveals that the left eigenvectors w2; : : : ; wpare preserved by the de
ation process. Similarly, the right eigen-vector u1 is preserved. It is also important to see what becomesof the other right eigenvectors. For each i, we seek a right eigen-vector of A1 in the form of ûi = ui � 
iu1. We have,A1ûi = (A� �u1vH)(ui � 
iu1)= �iui � [
i�1 + �vHui � �
i]u1: (4.7)Taking 
1 = 0 shows, as is already indicated by the proposition,that any eigenvector associated with the eigenvalue �1 remains aneigenvector of A1, associated with the eigenvalue �1��. For i 6= 1,it is possible to select 
i so that the vector ûi is an eigenvector ofA1 associated with the eigenvalue �i,
i(v) � vHui1� (�1 � �i)=� : (4.8)Observe that the above expression is not de�ned when the de-nominator vanishes. However, it is known in this case that theeigenvalue �i = �1 � � is already an eigenvalue of A1, i.e., the



Tools of Spectral Approximation 119eigenvalue �1�� becomes multiple, and we only know one eigen-vector namely u1.There are in�nitely many di�erent ways of choosing the vectorv. One of the most common choices is to take v = w1 the lefteigenvector. This is referred to as Hotelling's de
ation. It has theadvantage of preserving both the left and right eigenvectors of Aas is seen from the fact that 
i = 0 in this situation. Anothersimple choice is to take v = u1. In the next section we willconsider these di�erent possibilities and try to make a rationalchoice between them.Example 4.3 As a test we consider again the matrix Mark(10) seenis Example 4.1. For u1 we use the vector computed from the shiftedpower method with shift 0:1. If we take v to be a random vector andx0 to be a random vector, then the algorithm converges in 135 stepsand yields �2 � 0:93715016. The stopping criterion is identical withthe one used in Example 4.1. If we take v = u1 or v = (1; 1; : : : ; 1)T ,then the algorithm converges in 127 steps.2.2. Optimality in Wieldant's De
ationAn interesting question that we wish to answer is: among all thepossible choices of v, which one is likely to yield the best possiblecondition number for the next eigenvalue �2 to be computed? Thisis certainly a desirable goal in practice. We will distinguish theeigenvalues and eigenvectors associated with the matrix A1 fromthose of A by denoting them with a tilde. The condition numberof the next eigenvalue ~�2 to be computed is, by de�nition,Cond(~�2) = k~u2k2k ~w2k2j(~u2; ~w2)jwhere ~u2; ~w2 are the right and left eigenvectors of A1 associatedwith the eigenvalue ~�2. From what we have seen before, we knowthat ~w2 = w2 while ~u2 = u2 � 
2(v)u1 where 
2(v) is given by(4.8). Assuming that kw2k2 = 1 we get,Cond(~�2) = ku2 � 
2(v)u1k2j(u2; w2)j (4.9)



120 Chapter IVwhere we have used the fact that (u1; w2) = 0. It is then clearfrom (4.9) that the condition number of �2 is minimized whenever
2(v) = uH1 u2 � cos �(u1; u2) : (4.10)Substituting this result in (4.8) we obtain the equivalent conditionvHu2 =  1� �1 � �2� ! uH1 u2 ; (4.11)to which we add the normalization condition,vHu1 = 1: (4.12)There are still in�nitely many vectors v that satisfy the above twoconditions. However, we can seek a vector v which is spanned bytwo speci�c vectors. There are two natural possibilities; we caneither take v in the span of (u1; w1) or in the span of (u1; u2). Thesecond choice does not seem natural since the eigenvector u2 isnot assumed to be known; it is precisely what we are trying tocompute. However, it will illustrate an interesting point, namelythat the choice v = u1 may be nearly optimal in realistic situ-ations. Thus, we will now consider the case v 2 spanfu1; u2g.The other interesting case, namely v 2 spanfu1; w1g, is left as anexercise, see Exercise P-4.3.We can write v as v = �u1 + �z in which z is obtained byorthonormalizing u2 against u1, i.e., z = ẑ=kẑk2, ẑ = u2�uH1 u2u1.From (4.12) we immediately get � = 1 and from (4.11) we obtain� = ��1 � �2� uH1 u2zHu2 ;which leads to the expression for the optimal v,vopt = u1 � �1 � �2� cotan �(u1; u2)z : (4.13)We also get thatCond(~�2) = Cond(�2) sin �(u1; u2) : (4.14)



Tools of Spectral Approximation 121Interestingly enough, when (�2��1) is small with respect to � orwhen � is close to �=2 , the choice v = u1 is nearly optimal.This particular choice has an interesting additional property:it preserves the Schur vectors.Proposition 4.1 Let u1 be an eigenvector of A of norm 1, as-sociated with the eigenvalue �1 and let A1 � A � �u1uH1 . Thenthe eigenvalues of A1 are ~�1 = �1� � and ~�j = �j; j = 2; 3 : : : ; n.Moreover, the Schur vectors associated with ~�j; j = 1; 2; 3 : : : ; nare identical with those of A.Proof. Let AU = UR be the Schur factorization of A, where Ris upper triangular and U is orthonormal. Then we haveA1U = [A� �u1uH1 ]U = UR � �u1eH1 = U [R � �e1eH1 ] :The result follows immediately.Example 4.4 We take again as a test example the matrix Mark(10)seen is Example 4.1 and Example 4.3. We use the approximate eigen-vectors u1 and u2 as computed from Example 4.3. We then computethe left eigenvector ŵ2 using again the power method on the de
atedand transposed matrix AH��uH1 v. This is done fpur times: �rst withv = w1 = (1; 1; :::; 1)T , then v = u1,v = (1;�1; 1;�1; 1; : : : ; (�1)n)T ;and �nally v = a random vector. The condition numbers obtained forthe second eigenvalue for each of these choices are shown in Table 4.3.See Problem P-4.7 for additional facts concerning this example.v Cond(�2)w1 1.85153958u1 1.85153958(1;�1; : : :)T 9.87049400Random 2.27251031Table 4.3 Condition numbers of the second eigenvaluefor di�erent v's.



122 Chapter IVAs is observed here the best condition numbers are obtained forthe �rst two choices. Note that the vector (1; 1; : : : ; 1) is a left eigen-vector associated with the eigenvalue �1. Surprisingly, these best twocondition numbers are equal. In fact computing the inner product ofu1 and u2 we �nd that it is zero, a result that is probably due to thesymmetries in the physical problem. The relation (4.14) indicates thatin this situation the two condition numbers are equal to the conditionnumber for the unde
ated matrix.2.3. De
ation with Several Vectors.Let q1; q2; : : : qj be a set of Schur vectors associated with the eigen-values �1; �2; : : : �j. We denote by Qj the matrix of column vec-tors q1; q2; : : : qj. Thus,Qj � [q1; q2; : : : ; qj]is an orthonormal matrix whose columns form a basis of theeigenspace associated with the eigenvalues �1; �2; : : : �j. We donot assume here that these eigenvalues are real, so the matrix Qjmay be complex. An immediate generalization of Proposition 4.1is the following.Proposition 4.2 Let �j be the j � j diagonal matrix�j = diag (�1; �2; : : : �j);and Qj an n� j orthogonal matrix consisting of the Schur vectorsof A associated with �1; : : : ; �j. Then the eigenvalues of the matrixAj � A�Qj�jQHj ;are ~�i = �i � �i for i � j and ~�i = �i for i>j. Moreover, itsassociated Schur vectors are identical with those of A.



Tools of Spectral Approximation 123Proof. Let AU = UR be the Schur factorization of A. We haveAjU = [A�Qj�jQHj ]U = UR �Qj�jEHj ;where Ej = [e1; e2; : : : ej]: HenceAjU = U [R � Ej�jEHj ]and the result follows.Clearly, it is not necessary that �j be a diagonal matrix. Wecan for example select it to be a triangular matrix. However, it isnot clear how to select the nondiagonal entries in such a situation.An alternative technique for de
ating with several Schur vectorsis described in Exercise P-4.6.2.4. Partial Schur Decomposition.It is interesting to observe that the preservation of the Schur vec-tors is analogous to the preservation of the eigenvectors underHotelling's de
ation in the Hermitian case. The previous propo-sition suggests a simple incremental de
ation procedure consistingof building the matrix Qj one column at a time. Thus, at the j-thstep, once the eigenvector ~uj+1 of Aj is computed by the appro-priate algorithm (A) we can orthonormalize it against all previousqi's to get the next Schur vector qj+1 which will be appended toqj to form the new de
ation matrix Qj+1. It is a simple exerciseto show that the vector qj+1 thus computed is a Schur vector as-sociated with the eigenvalue �j+1 and therefore at every stage ofthe process we have the desired decompositionAQj = QjRj; (4.15)where Rj is some j � j upper triangular matrix.More precisely we may consider the following algorithm, inwhich the successive shifts �i are chosen so that for example �i =�i.



124 Chapter IVAlgorithm 4.4 Schur Wielandt De
ationFor i = 0; 1; 2; : : : ; j � 1 do:1. De�ne Ai � Ai�1 � �i�1qi�1qHi�1 (initially de�ne A0 � A)and compute the dominant eigenvalue �i of Ai and the cor-responding eigenvector ~ui.2. Orthonormalize ~ui against q1; q2; : : : ; qi�1 to get the vectorqi.With the above implementation, we may have to perform mostof the computation in complex arithmetic even when A is real.Fortunately, when the matrix A is real, this can be avoided. Inthis case the Schur form is traditionally replaced by the quasi-Schur form, in which one still seeks for the factorization (4.2)but simply requires that the matrix Rj, be quasi-triangular, i.e.one allows for 2 � 2 diagonal blocks. In practice, if �j+1 is com-plex, most algorithms do not compute the complex eigenvectoryj+1 directly but rather deliver its real and imaginary parts yR; yIseparately. Thus, the two eigenvectors yR � iyI associated withthe complex pair of conjugate eigenvalues �j+1; �j+2 = ��j+1 areobtained at once.Thinking in terms of bases of the invariant subspace insteadof eigenvectors, we observe that the real and imaginary parts ofthe eigenvector generate the same subspace as the two conjugateeigenvectors and therefore we can work with these two real vectorsinstead of the (complex) eigenvectors. Hence if a complex pairoccurs, all we have to do is orthogonalize the two vectors yR; yIagainst all previous qi's and pursue the algorithm in the sameway. The only di�erence is that the size of Qj increases by twoinstead of just one in these instances.2.5. Practical De
ation ProceduresTo summarize, among all the possible de
ation procedures wecan use to compute the next pair �2; u2, the following ones arethe most useful in practice.



Tools of Spectral Approximation 1251. v = w1 the left eigenvector. This has the disadvantage ofrequiring the left and right eigenvector. On the other handboth right and left eigenvectors of A1 are preserved.2. v = u1 which is often nearly optimal and preserves the Schurvectors.3. Use a block of Schur vectors instead of a single vector.From the point of view of the implementation an importantconsideration is that we never need to form the matrix A1 ex-plicitly. This is important because in general A1 will be a fullmatrix. In many algorithms for eigenvalue calculations, the onlyoperation that is required is an operation of the form y := A1x.This operation can be performed as follows:(a) Compute the vector y := Ax;(b) Compute the scalar t = � vHx;(c) Compute y := y � t u1.The above procedure requires only that the vectors u1; and v bekept in memory along with the matrix A. It is possible to de
ateA1 again into A2 , and then into A3 etc. At each step of theprocess we have Ai = Ai�1 � �~uivHi :Here one only needs to save the vectors ~ui and vi along with thematrix A. However, one should be careful about the usage ofde
ation in general. It should not be used to compute more thana few eigenvalues and eigenvcectors. This is especially true inthe non Hermitian case because of the fact that the matrix Aiwill accumulate errors from all previous computations and thiscould be disastrous if the currently computed eigenvalue is poorlyconditioned.



126 Chapter IV3. General Projection MethodsMost eigenvalue algorithms employ in one way or another a pro-jection technique. The projection process can be the body of themethod itself or it might simply be used within a more complexalgorithm to enhance its e�ciency. A simple illustration of thenecessity of resorting to a projection technique is when one usesthe power method in the situation when the dominant eigenvalueis complex but the matrix A is real. Although the usual sequencexj+1 = �jAxj where �j is a normalizing factor, does not con-verge a simple analysis shows that the subspace spanned by thelast two iterates xj+1; xj will contain converging approximationsto the complex pair of eigenvectors. A simple projection tech-nique onto those vectors will extract the desired eigenvalues andeigenvectors, see Exercise P-4.2 for details.A projection method consists of approximating the exact eigen-vector u, by a vector ~u belonging to some subspace K referred toas the subspace of approximants or the right subspace, by impos-ing the so-called Petrov-Galerkin method that the residual vectorof ~u be orthogonal to some subspace L, referred to as the leftsubspace. There are two broad classes of projection methods: or-thogonal projection methods and oblique projection methods. Inan orthogonal projection technique the subspace L is the same asK. In an oblique projection method L is di�erent from K and canbe totally unrelated to it.Not surprisingly, if no vector of the subspace K comes closeto the exact eigenvector u, then it is impossible to get a goodapproximation ~u to u from K and therefore the approximationobtained by any projection process based on K will be poor. If,on the other hand, there is some vector in K which is at a smalldistance � from u then the question is: what accuracy can weexpect to obtain? The purpose of this section is to try to answerthis question.



Tools of Spectral Approximation 1273.1. Orthogonal Projection MethodsLet A be an n � n complex matrix and K be an m-dimensionalsubspace of Cn. As a notational convention we will denote by thesame symbol A the matrix and the linear application in Cn that itrepresents. We consider the eigenvalue problem: �nd u belongingto Cn and � belonging to C such thatAu = �u: (4.16)An orthogonal projection technique onto the subspace K seeksan approximate eigenpair ~�; ~u to the above problem, with ~� in Cand ~u in K, such that the following Galerkin condition is satis�ed:A~u� ~�~u ? K ; (4.17)or, equivalently, (A~u� ~�~u; v) = 0 ; 8 v 2 K: (4.18)Assume that some orthonormal basis fv1; v2; : : : ; vmg of Kis available and denote by V the matrix with column vectorsv1; v2; : : : ; vm. Then we can solve the approximate problem nu-merically by translating it into this basis. Letting~u = V y; (4.19)equation (4.19) becomes(AV y � ~�V y; vj) = 0; j = 1; : : : ; m:Therefore, y and ~� must satisfyBmy = ~�y (4.20)with Bm = V HAV:If we denote by Am the linear transformation of rankm de�ned byAm = PKAPK then we observe that the restriction of this operator



128 Chapter IVto the subspace K is represented by the matrix Bm with respect tothe basis V . The following is a procedure for computing numeri-cally the Galerkin approximations to the eigenvalues/eigenvectorsof A known as the Rayleigh-Ritz procedure.Algorithm 4.5 Rayleigh-Ritz Procedure:1. Compute an orthonormal basis fvigi=1;:::;m of the subspaceK. Let V = [v1; v2; : : : ; vm].2. Compute Bm = V HAV ;3. Compute the eigenvalues of Bm and select the k desired ones~�i; i = 1; 2; : : : ; k, where k � m.4. Compute the eigenvectors yi; i = 1; : : : ; k, of Bm associatedwith ~�i; i = 1; : : : ; k, and the corresponding approximateeigenvectors of A, ~ui = V yi; i = 1; : : : ; k.The above process only requires basic linear algebra computa-tions. The numerical solution of the m � m eigenvalue problemin steps 3 and 4 can be treated by standard library subroutinessuch as those in EISPACK. Another important note is that instep 4 one can replace eigenvectors by Schur vectors to get ap-proximate Schur vectors ~ui instead of approximate eigenvectors.Schur vectors yi can be obtained in a numerically stable way and,in general, eigenvectors are more sensitive to rounding errors thanare Schur vectors.We can reformulate orthogonal projection methods in terms ofprojection operators as follows. De�ning PK to be the orthogonalprojector onto the subspace K, then the Galerkin condition (4.17)can be rewritten asPK(A~u� ~�~u) = 0 ; ~� 2 C ; ~u 2 Kor, PKA~u = ~�~u ; ~� 2 C ; ~u 2 K : (4.21)



Tools of Spectral Approximation 129Note that we have replaced the original problem (4.16) by aneigenvalue problem for the linear transformation PKAjK which isfrom K to K. Another formulation of the above equation isPKAPK ~u = ~�~u ; ~� 2 C ; ~u 2 Cn (4.22)which involves the natural extensionAm = PKAPKof the linear operator A0m = PKAjK to the whole space. In additionto the eigenvalues and eigenvectors of A0m, Am has zero as a trivialeigenvalue with every vector of the orthogonal complement of K,being an eigenvector. Equation (4.21) will be referred to as theGalerkin approximate problem.The following proposition examines what happens in the par-ticular case when the subspace K is invariant under A.Proposition 4.3 If K is invariant under A then every approxi-mate eigenvalue / (right) eigenvector pair obtained from the or-thogonal projection method onto K is exact.Proof. An approximate eigenpair ~�; ~u is de�ned byPK(A~u� ~�~u) = 0 ;where ~u is a nonzero vector in K and ~� 2 C. If K is invariantunder A then A~u belongs to K and therefore PKA~u = A~u. Thenthe above equation becomesA~u� ~�~u = 0 ;showing that the pair ~�; ~u is exact.An important quantity for the convergence properties of pro-jection methods is the distance k(I � PK)uk2 of the exact eigen-vector u, supposed of norm 1, from the subspace K. This quantity



130 Chapter IVplays a key role in the analysis of projection methods. First, it isclear that the eigenvector u cannot be well approximated from Kif k(I � PK)uk2 is not small because we havek~u� uk2 � k(I � PK)uk2:The fundamental quantity k(I � PK)uk2 can also be interpretedas the sine of the acute angle between the eigenvector u and thesubspace K. It is also the gap between the space K and the linearspan of u. The following theorem establishes an upper boundfor the residual norm of the exact eigenpair with respect to theapproximate operator Am, using this angle.Theorem 4.3 Let 
 = kPKA(I�PK)k2. Then the residual normsof the pairs �;PKu and �; u for the linear operator Am satisfyrespectively k(Am � �I)PKuk2 � 
k(I � PK)uk2 (4.23)k(Am � �I)uk2 � q�2 + 
2 k(I � PK)uk2 : (4.24)Proof. For the �rst inequality we use the de�nition of Am to getk(Am � �I)PKuk2 = kPK(A� �I)(u� (I � PK)u)k2= kPK(A� �I)(I � PK)uk2= kPK(A� �I)(I � PK)(I � PK)uk2� 
k(I � PK)uk2 :As for the second inequality we simply notice that(Am � �I)u = (Am � �I)PKu+ (Am � �I)(I � PK)u= (Am � �I)PKu� �(I � PK)u :Using the previous inequality and the fact that the two vectorson the right hand side are orthogonal to each other we getk(Am � �I)uk22 = k(Am � �I)PKuk22 + j�j2k(I � PK)uk22� (
2 + j�j2)k(I � PK)uk22which completes the proof.



Tools of Spectral Approximation 131Note that 
 is bounded from above by kAk2. A good ap-proximation can therefore be achieved by the projection methodin case the distance k(I � PK)uk2 is small, provided the approxi-mate eigenproblem is well conditioned. Unfortunately, in contrastwith the Hermitian case the fact that the residual norm is smalldoes not in any way guarantee that the eigenpair is accurate, be-cause of potential di�culties related to the conditioning of theeigenvalue.If we translate the inequality (4.23) into matrix form by ex-pressing everything in an orthonormal basis V of K, we wouldwrite PK = V V H and immediately obtaink(V HAV � �I)V Huk2 � 
k(I � V V H)uk2;which shows that � can be considered as an approximate eigen-value for Bm = V HAV with residual of the order of (I �PK)u. Ifwe scale the vector V Hu to make it of 2-norm unity, and denotethe result by yu we can rewrite the above equality ask(V HAV � �I)yuk2 � 
k(I � PK)uk2kPKuk2 � 
 tan �(u;K):The above inequality gives a more explicit relation between theresidual norm and the angle between u and the subspace K.3.2. The Hermitian CaseThe approximate eigenvalues computed from orthogonal projec-tion methods in the particular case where the matrix A is Her-mitian, satisfy strong optimality properties which follow fromthe Min-Max principle and the Courant characterization seen inChapter 1. These properties follow by observing that (Amx; x) isthe same as (Ax; x) when x runs in the subspace K. Thus, if welabel the eigenvalues decreasingly, i.e., �1 � �2 � : : : � �n, wehave ~�1 = maxx2K;x6=0 (PK APKx; x)(x; x) = maxx2K;x6=0 (PKAx;PKx)(x; x)



132 Chapter IV= maxx2K; x6=0 (Ax; x)(x; x) (4.25)This is because PKx = x for any element in K. Similarly, we canshow that ~�m = minx2K;x6=0 (Ax; x)(x; x) :More generally, we have the following result.Proposition 4.4 The i�th largest approximate eigenvalue of aHermitian matrix A, obtained from an orthogonal projectionmethod onto a subspace K, satis�es,~�i = maxS�Kdim(S)=i minx2S;x 6=0 (Ax; x)(x; x) : (4.26)As an immediate consequence we obtain the following corol-lary.Corollary 4.1 For i = 1; 2; : : : ; m the following inequality holds�i � ~�i : (4.27)Proof. This is because,~�i = maxS�Kdim(S)=i minx2S;x 6=0 (Ax; x)(x; x) � maxS�Cndim(S)=i minx2S;x 6=0 (Ax; x)(x; x) = �i :
A similar argument based on the Courant characterization re-sults in the following theorem.Theorem 4.4 The approximate eigenvalue ~�i and the correspond-ing eigenvector ~ui are such that~�1 = (A~u1; ~u1)(~u1; ~u1) = maxx2K;x6=0 (Ax; x)(x; x) :



Tools of Spectral Approximation 133and for i > 1:~�i = (A~ui; ~ui)(~ui; ~ui) = maxx2K;x6=0;~uH1 x=:::=~uHi�1x=0 (Ax; x)(x; x) (4.28)One may suspect that the general bounds seen earlier for non-Hermitian matrices may be improved for the Hermitian case. Thisis indeed the case. We begin by proving the following lemma.Lemma 4.1 Let A be a Hermitian matrix and u an eigenvectorof A associated with the eigenvalue �. Then the Rayleigh quotient� � �A(PKu) satis�es the inequalityj�� �j � kA� �Ikk(I � PK)uk22kPKuk22 : (4.29)Proof. From the equality(A� �I)PKu = (A� �I)(u� (I � PK)u) = �(A� �I)(I � PK)uand the fact that A is Hermitian we get,j�� �j = j((A� �I)PKu;PKu)(PKu;PKu) j= j((A� �I)(I � PK)u; (I � PK)u)(PKu;PKu) j :The result follows from a direct application of the Cauchy-Schwartzinequality.Assuming as usual that the eigenvalues are labeled decreas-ingly, and letting �1 = �A(PKu1), we can get from (4.25) that0 � �1 � ~�1 � �1 � �1 � kA� �1Ik2k(I � PK)u1k22kPKu1k22 :



134 Chapter IVA similar result can be shown for the smallest eigenvalue. Wecan extend this inequality to the other eigenvalues at the priceof a little complication in the equations. In what follows we willdenote by ~Qi the sum of the spectral projectors associated withthe approximate eigenvalues ~�1; ~�2; : : : ; ~�i�1. For any given vectorx, (I � ~Qi)x will be the vector obtained by orthogonalizing xagainst the �rst i � 1 approximate eigenvectors. We consider acandidate vector of the form (I � ~Qi)PKui in an attempt to usean argument similar to the one for the largest eigenvalue. Thisis a vector obtained by projecting ui onto the subspace K andthen stripping it o� its components in the �rst i� 1 approximateeigenvectors.Lemma 4.2 Let ~Qi be the sum of the spectral projectors associ-ated with the approximate eigenvalues ~�1; ~�2; : : : ; ~�i�1 and de�ne�i = �A(xi), where xi = (I � ~Qi)PKuik(I � ~Qi)PKuik2 :Thenj�i � �ij � kA� �iIk2 k ~Qiuik22 + k(I � PK)uik22k(I � ~Qi)PKuik22 : (4.30)Proof. To simplify notation we set � = 1=k(I � ~Qi)PKuik2.Then we write,(A� �iI)xi = (A� �iI)(xi � �ui) ;and proceed as in the previous case to get,j�i��ij = j((A��iI)xi; xi))j = j((A��iI)(xi��ui); (xi��ui))j :Applying Cauchy-Schwartz inequality to the above equation, weget j�i � �ij = kA� �iIk2kxi � �uik22 :



Tools of Spectral Approximation 135We can rewrite kxi � �uik22 askxi � �uik22 = �2k(I � ~Qi)PKui � uik22= �2k(I � ~Qi)(PKui � ui)� ~Qiuik22 :Using the orthogonality of the two vectors inside the norm bars,this equality becomeskxi � �uik22 = �2 �k(I � ~Qi)(PKui � ui)k22 + k ~Qiuik22�� �2 �k(I � PK)uik22 + k ~Qiuik22� :This establishes the desired result.The vector xi has been constructed in such a way that it is orthog-onal to all previous approximate eigenvectors ~u1; : : : ; ~ui�1. We cantherefore exploit the Courant characterization (4.28) to prove thefollowing result.Theorem 4.5 Let ~Qi be the sum of the spectral projectors asso-ciated with the approximate eigenvalues ~�1; ~�2; : : : ; ~�i�1. Then theerror between the i-th exact and approximate eigenvalues �i and~�i is such that0 � �i � ~�i � kA� �iIk2k ~Qiuik22 + k(I � PK)uik22k(I � ~Qi)PKuik22 : (4.31)Proof. By (4.28) and the fact that xi belongs to K and is orthog-onal to the �rst i � 1 approximate eigenvectors we immediatelyget 0 � �i � ~�i � �i � �i:The result follows from the previous lemma.We point out that the above result is valid for i = 1, providedwe de�ne ~Q1 = 0. The quantities k ~Qiuik2 represent the cosines



136 Chapter IVof the acute angle between ui and the span of the previous ap-proximate eigenvectors. In the ideal situation this should be zero.In addition, we should mention that the error bound is semi-a-priori, since it will require the knowledge of previous eigenvectorsin order to get an idea of the quantity k ~Qiuik2.We now turn our attention to the eigenvectors.Theorem 4.6 Let 
 = kPKA(I�PK)k2, and consider any eigen-value � of A with associated eigenvector u. Let ~� be the approxi-mate eigenvalue closest to � and � the distance between � and theset of approximate eigenvalues other than ~�. Then there exists anapproximate eigenvector ~u associated with ~� such thatsin [�(u; ~u)] � s1 + 
2�2 sin [�(u;K)] (4.32)Proof.

K
u

z ~u v cos�w sin�� !�
Figure 4.1 Projections of the eigenvector u onto Kand then onto ~u.Let us de�ne the two vectorsv = PKukPKuk2 and w = (I � PK)uk(I � PK)uk2 (4.33)



Tools of Spectral Approximation 137and denote by � the angle between u and PKu, as de�ned bycos� = kPKuk2. Then, clearlyu = v cos�+ w sin�;which, upon multiplying both sides by (A� �I) leads to(A� �I)v cos�+ (A� �I)w sin� = 0 :We now project both sides onto K, and take the norms of theresulting vector to obtainkPK(A� �I)vk2 cos � = kPK(A� �I)wk2 sin� : (4.34)For the-right-hand side note thatkPK(A� �I)wk2 = kPK(A� �I)(I � PK)wk2= kPKA(I � PK)wk2 � 
 : (4.35)For the left-hand-side, we decompose v further asv = ~u cos! + z sin!;in which ~u is a unit vector from the eigenspace associated with ~�,z is a unit vector in K that is orthogonal to ~u, and ! is the acuteangle between v and ~u. We then obtain,PK(A� �I)v = PK(A� �I)[cos!~u+ sin!z]= ~u(~�� �) cos! + PK(A� �I)z sin!:(4.36)The eigenvalues of the restriction of PK(A��I) to the orthogonalof ~u are ~�j � �, for j = 1; 2; : : :m, and ~�j 6= ~�. Therefore, since zis orthogonal to ~u, we havekPK(A� �I)zk2 � �>0: (4.37)The two vectors in the right hand side of (4.36) are orthogonaland by (4.37),kPK(A� �I)vk22 = j~�� �j2 cos2 ! + sin2 !kPK(A� �I)zk22� �2 sin2 ! (4.38)



138 Chapter IVTo complete the proof we refer to Figure 4.1. The projectionof u onto ~u is the projection onto ~u of the projection of u ontoK. Its length is cos� cos! and as a result the sine of the angle �between u and ~u is given bysin2 � = 1� cos2 � cos2 != 1� cos2 � (1� sin2 !)= sin2 �+ sin2 ! cos2 � : (4.39)Combining (4.34), (4.35), (4.38) we obtain thatsin! cos � � 
� sin�which together with (4.39) yields the desired result.This is a rather remarkable result given that it is so general.It tells us among other things that the only condition we needin order to guarantee that a projection method will deliver goodapproximation in the Hermitian case is that the angle betweenthe exact eigenvector and the subspace K be su�ciently small.As a consequence of the above result we can establish boundson eigenvalues that are somewhat simpler than those of Proposi-tion 4.5. This results from the following proposition.Proposition 4.5 The eigenvalues � and ~� in Theorem 4.6 aresuch that j�� ~�j � kA� �Ik2 sin2 �(u; ~u) : (4.40)Proof. We start with the simple observation that ~� � � =((A� �I)~u; ~u). Letting � = (u; ~u) = cos �(u; ~u) we can write~�� � = ((A� �I)(~u� �u); ~u) = ((A� �I)(~u� �u); ~u� �u)The result follows immediatly by taking absolute values, exploit-ing the Cauchy-Schwartz inequality, and observing that k~u ��uk2 = sin �(u; ~u).



Tools of Spectral Approximation 1393.3. Oblique Projection MethodsIn an oblique projection method we are given two subspaces Land K and seek an approximation ~u 2 K and an element ~� of Cthat satisfy the Petrov-Galerkin condition,((A� ~�I)~u; v) = 0 8 v 2 L : (4.41)The subspace K will be referred to as the right subspace and Las the left subspace. A procedure similar to the Rayleigh-Ritzprocedure can be devised by again translating in matrix formthe approximate eigenvector ~u in some basis and expressing thePetrov-Galerkin condition (4.41). This time we will need twobases, one which we denote by V for the subspace K and theother, denoted by W , for the subspace L. We assume that thesetwo bases are biorthogonal, i.e., that (vi; wj) = �ij; orWHV = Iwhere I is the identity matrix. Then, writing ~u = V y as before,the above Petrov-Galerkin condition yields the same approximateproblem as (4.20) except that the matrix Bm is now de�ned byBm = WHAV:We should however emphasize that in order for a biorthogonalpair V;W to exist the following additional assumption for L andK must hold.For any two bases V and W of K and L respectively,det(WHV ) 6= 0 : (4.42)In order to interpret the above condition in terms of operatorswe will de�ne the oblique projector QLK onto K and orthogonal toL. For any given vector x in Cn, the vector QLKx is de�ned by8<:QLKx 2 Kx�QLKx ? L:



140 Chapter IVNote that the vector QLKx is uniquely de�ned under the assump-tion that no vector of the subspace L is orthogonal to K. Thisfundamental assumption can be seen to be equivalent to assump-tion (4.42). When it holds the Petrov-Galerin condition (4.18)can be rewritten as QLK(A~u� ~�~u) = 0 (4.43)or QLKA~u = ~�~u :Thus, the eigenvalues of the matrix A are approximated by thoseof A0 = QLKAjK. We can de�ne an extension Am of A0m analogousto the one de�ned in the previous section, in many di�erent ways.For example introducing QLK before the occurrences of ~u in theabove equation would lead to Am = QLKAQLK . In order to be ableto utilize the distance k(I � PK)uk2 in a-priori error bounds amore useful extension isAm = QLKAPK :With this notation, it is trivial to extend the proof of Propo-sition 4.3 to the oblique projection case. In other words, when Kis invariant, then no matter which left subspace L we choose, theoblique projection method will always extract exact eigenpairs.We can establish the following theorem which generalizes The-orem 4.3 seen for the orthogonal projection case.Theorem 4.7 Let 
 = kQLK(A � �I)(I � PK)k2. Then the fol-lowing two inequalities hold:k(Am � �I)PKuk2 � 
k(I � PK)uk2 (4.44)k(Am � �I)uk2 � qj�j2 + 
2 k(I � PK)uk2 : (4.45)



Tools of Spectral Approximation 141Proof. For the �rst inequality, since the vector PKy belongs toK we have QLKPK = PK and therefore(Am � �I)PKu = QLK(A� �I)PKu= QLK(A� �I)(PKu� u)= �QLK(A� �I)(I � PK)u :Since (I � PK) is a projector we now have(Am � �I)PKu = �QLK(A� �I)(I � PK)(I � PK)u:Taking Euclidean norms of both sides and using the Cauchy-Schwartz inequality we immediately obtain the �rst result.For the second inequality, we write(Am � �I)u = (Am � �I) [PKu+ (I � PK)u]= (Am � �I)PKu+ (Am � �I)(I � PK)u :Noticing that Am(I � PK) = 0 this becomes(Am � �I)u = (Am � �I)PKu� �(I � PK)u :Using the orthogonality of the two terms in the right hand side,and taking the Euclidean norms we get the second result.In the particular case of orthogonal projection methods, QLK isidentical with PK, and we have kQLKk2 = 1. Moreover, the term 
can then be bounded from above by kAk2. It may seem that sincewe obtain very similar error bounds for both the orthogonal andthe oblique projection methods, we are likely to obtain similarerrors when we use the same subspace. This is not the case ingeneral. One reason is that the scalar 
 can no longer be boundedby kAk2 since we have kQLKk2 � 1 and kQLKk2 is unknown in gen-eral. In fact the constant 
 can be quite large. Another reasonwhich was pointed out earlier is that residual norm does not pro-vide enough information. The approximate problem can have a



142 Chapter IVmuch worse condition number if non-orthogonal transformationsare used, which may lead to poorer results. This however is onlybased on intuition as there are no rigorous results in this direction.The question arises as to whether there is any need for obliqueprojection methods since dealing with oblique projectors may benumerically unsafe. Methods based on oblique projectors cano�er some advantages. In particular they may allow to computeapproximations to left as well as right eigenvectors simultaneously.There are methods based on oblique projection techniques thatrequire also far less storage than similar orthogonal projectionsmethods. This will be illustrated in Chapter VI.4. Chebyshev PolynomialsChebyshev polynomials are crucial in the study of the Lanczosalgorithm and more generally of iterative methods in numericallinear algebra, such as the conjugate gradient method. They areuseful both in theory, when studying convergence, and in practice,as a means of accelerating single vector iterations or projectionprocesses.4.1. Real Chebyshev PolynomialsThe Chebyshev polynomial of the �rst kind of degree k is de�nedby Ck(t) = cos[k cos�1(t)] for � 1 � t � 1 : (4.46)That this is a polynomial with respect to t can be easily shownby induction from the trigonometric relationcos[(k + 1)�] + cos[(k � 1)�] = 2 cos � cos k�;and the fact that C1(t) = t; C0(t) = 1. Incidentally, this alsoshows the important three-term recurrence relationCk+1(t) = 2 tCk(t)� Ck�1(t) :



Tools of Spectral Approximation 143It is important to extend the de�nition (4.46) to cases where jtj >1 which is done with the following formula,Ck(t) = cosh [k cosh�1(t)]; jtj � 1 : (4.47)This is readily seen by passing to complex variables and using thede�nition cos � = (ei�+e�i�)=2: As a result of (4.47) we can derivethe expression,Ck(t) = 12 ��t+pt2 � 1�k + �t +pt2 � 1��k� ; (4.48)which is valid for jtj � 1 but can also be extended to the casejtj<1. As a result, one may use the following approximation forlarge values of kCk(t) �� 12 �t+pt2 � 1�k for jtj � 1 : (4.49)In what follows we denote by Pk the set of all polynomials ofdegree k. An important result from approximation theory, whichwe state without proof, is the following theorem.Theorem 4.8 Let [�; �] be a non-empty interval in R and let 
be any real scalar such with 
 � �. Then the minimumminp2 Pk;p(
)=1 maxt2[�;�] jp(t)jis reached by the polynomialĈk(t) � Ck �1 + 2 t������Ck �1 + 2 
������ :For a proof see [16]. The maximum of Ck for t in [�1; 1] is 1and as a corollary we haveminp2 Pk; p(
)=1 maxt2[�;�] jp(t)j = 1jCk(1 + 2 
�����)j = 1jCk(2 
�����)j :in which � � (�+ �)=2 is the middle of the interval. Clearly, theresults can be slightly modi�ed to hold for the case where 
 � �,i.e., when 
 is to the left of the interval.



144 Chapter IV4.2. Complex Chebyshev PolynomialsThe standard de�nition given in the previous section for Cheby-shev polynomials of the �rst kind, see equation (4.46), extendswithout di�culty to complex variables. First, as was seen be-fore, when t is real and jtj > 1 we can use the alternative de�-nition, Ck(t) = cosh[k cosh�1(t)]; 1 � jtj : More generally, onecan unify these de�nitions by switching to complex variables andwriting Ck(z) = cosh(k�); where cosh(�) = z :De�ning the variable w = e� , the above formula is equivalent toCk(z) = 12[wk + w�k] where z = 12[w + w�1]: (4.50)We will use the above de�nition for Chebyshev polynomials inC. Note that the equation 12(w + w�1) = z has two solutions wwhich are inverses of each other, and as a result the value of Ck(z)does not depend on which of these solutions is chosen. It can beveri�ed directly that the Ck's de�ned by the above equations areindeed polynomials in the z variable and that they satisfy thethree term recurrenceCk+1(z) = 2 zCk(z)� Ck�1(z); (4.51)with C0(z) � 1 and C1(z) � z.As is now explained, Chebyshev polynomials are intimatelyrelated to ellipses in the complex plane. Let C� be the circleof center the origin and radius �. Then the so-called Joukowskimapping J(w) = 12[w + w�1]transforms C� into an ellipse of center the origin, foci �1; 1 andmajor semi-axis 12 [� + ��1] and minor semi-axis 12 j� � ��1j. Thisis illustrated in Figure 4.2.
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-6 <e(w)=m(w) w = �ei�� -J(w)

-6 <e(z)=m(z) z = w+w�12�
Figure 4.2 The Joukowski mapping transforms a cir-cle into an ellipse in the complex plane.There are two circles which have the same image by the map-ping J(w), one with the radius � and the other with the radius��1. So it su�ces to consider those circles with � � 1. Note thatthe case � = 1 is a degenerate case in which the ellipse E(0; 1;�1)reduces the interval [�1; 1] traveled through twice.One important question we now ask is whether or not a min-max result similar to the one of Theorem 4.8 holds for the complexcase. Here the maximum of jp(z)j is taken over the ellipse bound-ary and 
 is some point not enclosed by the ellipse. A 1963 paperby Clayton [19] was generally believed for quite some time to haveestablished the result, at least for the special case where the ellipsehas real foci and 
 is real. It was recently shown by Fischer andFreund that in fact Clayton's result was incorrect in general [46].On the other hand, Chebyshev polynomials are asymptoticallyoptimal and in practice that is all that is needed.To show the asymptotic optimality, we start by stating alemma due to Zarantonello, which deals with the particular casewhere the ellipse reduces to a circle. This particular case is im-portant in itself.Lemma 4.3 (Zarantonello) Let C(0; �) be a circle of center theorigin and radius � and let 
 a point of C not enclosed by C(0; �).



146 Chapter IVThen, minp2 Pk; p(
)=1 maxz 2 C(0;�) jp(z)j =  �j
j!k ; (4.52)the minimum being achieved for the polynomial (z=
)k.Proof. See reference [132] for a proof.Note that by changing variables, shifting and rescaling thepolynomial, we also get for any circle centered at c and for anyscalar 
 such that j
j > �,minp2 Pk p(
)=1 maxz 2 C(c;�) jp(z)j =  �j
 � cj!kWe now consider the general case of an ellipse centered at theorigin, with foci 1;�1 and semi-major axis a, which can be consid-ered as mapped by J from the circle C(0; �), with the conventionthat � � 1. We denote by E� such an ellipse.Theorem 4.9 Consider the ellipse E� mapped from C(0; �) bythe mapping J and let 
 any point in the complex plane not en-closed by it. Then�kjw
jk � minp2 Pk p(
)=1 maxz 2 E� jp(z)j � �k + ��kjwk
 + w�k
 j (4.53)in which w
 is the dominant root of the equation J(w) = 
.Proof. We start by showing the second inequality. Any poly-nomial p of degree k satisfying the constraint p(
) = 1 can bewritten as, p(z) = Pkj=0 �jzjPkj=0 �j
j :



Tools of Spectral Approximation 147A point z on the ellipse is transformed by J from a certain w inC(0; �). Similarly, let w
 be one of the two inverse transforms of
 by the mapping, namely the one with largest modulus. Then,p can be rewritten asp(z) = Pkj=0 �j(wj + w�j)Pkj=0 �j(wj
 + w�j
 ) : (4.54)Consider the particular polynomial obtained by setting �k = 1and �j = 0 for j 6= k, p�(z) = wk + w�kwk
 + w�k
which is a scaled Chebyshev polynomial of the �rst kind of degreek in the variable z. It is not too di�cult to see that the maximummodulus of this polynomial is reached in particular when w = �ei�is real, i.e., when w = �. Thus,maxz2E� jp�(z)j = �k + ��kjwk
 + w�k
 jwhich proves the second inequality.To prove the left inequality, we rewrite (4.54) asp(z) =  w�kw�k
 ! Pkj=0 �j(wk+j + wk�j)Pkj=0 �j(wk+j
 + wk�j
 )and take the modulus of p(z),jp(z)j = ��kjw
j�k ������Pkj=0 �j(wk+j + wk�j)Pkj=0 �j(wk+j
 + wk�j
 ) ������ :The polynomial in w of degree 2k inside the large modulus barsin the right-hand-side is such that its value at w
 is one. ByLemma 4.3, the modulus of this polynomial over the circle C(0; �)



148 Chapter IVis not less than (�=jw
j)2k, i.e., for any polynomial, satisfying theconstraint p(
) = 1 we have,maxz2 E� jp(z)j � ��kjw
j�k �2kjw
j2k = �kjw
jk :This proves that the minimum over all such polynomials of themaximum modulus on the ellipse E� is � (�=jw
j)k.The di�erence between the left and right bounds in (4.53)tends to zero as k increases to in�nity. Thus, the important pointmade by the theorem is that, for large k, the Chebyshev polyno-mial p�(z) = wk + w�kwk
 + w�k
 ; where z = w + w�12is close to the optimal polynomial. In other words these polyno-mials are asymptotically optimal.For a more general ellipse centered at c, and with focal dis-tance d, a simple change of variables shows that the near-bestpolynomial is given by Ck �z � cd � :We should point out that an alternative result, which is morecomplete, has been proven by Fischer and Freund in [45].ProblemsP-4.1 What are the eigenvalues and eigenvectors of (A��I)�1. Whatare all the shifts � that will lead to a convergence towards a giveneigenvalue �?P-4.2 Consider a real nonsymmetric matrix A. The purpose of thisexercise is to develop a generalization of the power method that canhandle the case where the dominant eigenvalue is complex (i.e., we have



Tools of Spectral Approximation 149a complex conjugate pair of dominant eigenvalues). Show that by aprojection process onto two successive iterates of the power methodone can achieve convergence towards the dominant pair of eigenvalues[Consider the diagonalizable case only]. Without giving a proof, statewhat the rate of convergence toward the pair of complex conjugateeigenvectors should be. Develop a simple version of a correspondingalgorithm and then a variation of the algorithm that orthonormalizestwo successive iterates at every step, i.e., starting with a vector x of2-norm unity, the iterates are as follows,xnew := x̂kx̂k2 where x̂ := Axold � (Axold; xold)xold :Does the orthogonalization have to be done at every step?P-4.3 By following a development similar to that subsection 4.2, �ndthe v vector for Wielandt de
ation, which minimizes the conditionnumber for A1, among all vectors in the span of u1; w1. Show againthat the choice v = u1 is nearly optimal when �1��2 is small relativeto �.P-4.4 Consider the generalized eigenvalue problem Ax = �Bx. Howcan one generalize the power method? The shifted power method?and the shift-and-invert power method?P-4.5 Assume that all the eigenvalues of a matrix A are real and thatone uses the shifted power method for computing the largest, i.e., therightmost eigenvalue of a given matrix. What are all the admissibleshifts, i.e., those that will lead to convergence toward the rightmosteigenvalue? Among all the admissible choices which one leads to thebest convergence rate?P-4.6 Consider a de
ation technique which would compute the eigen-values of the matrix A1 = (I �QjQHj )Ain which Qj = [q1; q2; : : : ; qj ] are previously computed Schur vectors.What are the eigenvalues of the de
ated matrix A1? Show that aneigenvector of A1 is a Schur vector for A. The advantage of thistechnique is that there is no need to select shifts �j. What are thedisadvantages if any?



150 Chapter IVP-4.7 Show that in example 4.4 any linear combination of the vectorsu1 and w1 is in fact optimal.P-4.8 Nothing was said about the left eigenvector ~w1 of the de
atedmatrix A1 in Section 4.2. Assuming that the matrixA is diagonalizable�nd an eigenvector ~w1 of A1 associated with the eigenvalue �1 � �.[Hint: Express the eigenvector in the basis of the left eigenvectorsof A.] How can this be generalized to the situation where A is notdiagonalizable?P-4.9 Assume that the basis V of the subspace K used in an or-thogonal projection process is not orthogonal. What matrix problemdo we obtain if we translate the Galerkin conditions using this ba-sis. Same question for the oblique projection technique, i.e., assumingthat V;W does not form a bi-orthogonal pair. Ignoring the cost ofthe small m-dimensional problems, how do the computational costscompare? What if we include the cost of the orthonormalization (bymodi�ed Gram-Schmidt) for the approach which uses orthogonal bases(Assuming that the basis V is obtained from orthonormalizing a setof m basis vectors).P-4.10 Let A be Hermitian and let ~ui; ~uj two Ritz eigenvectors as-sociated with two di�erent eigenvalues ~�i; ~�j respectively. Show that(A~ui; ~uj) = ~�j�ij .P-4.11 Prove from the de�nition (4.50) that the Ck's are indeed poly-nomials in z and that they satisfy the three-term recurrence (4.51).Notes and References. Much of the material on projection methodspresented in this chapter is based on the papers [141, 138] and the sectionon de
ation procedures is from [147] and some well-known results in Wilkin-son [183]. Suggested additional reading on projection methods are Chatelin[14] and Krasnoselskii et al. [87]. A good discussion of Chebyshev polyno-mials in the complex plane is given in the book by Rivlin [132]. De
ationfor non Hermitian eigenvalue problems is not that much used in the liter-ature. I found Schur-Wielandt and related de
ation procedures (based onSchur vectors rather than eigenvectors) to be essential in the design of robusteigenvalue algorithms. �



Chapter V
Subspace IterationAmong the best known methods for solving large sparse eigen-value problems, the subspace iteration algorithm is undoubtedlythe simplest. This method can be viewed as a block generalizationof the power method. Although the method is not competitivewith other projections methods to be covered in later chapters,it still is one of the most important methods used in structuralengineering. It also constitutes a good illustration of the materialcovered in the previous chapter.



152 Chapter V1. Simple Subspace IterationThe original version of subspace iteration was introduced by Bauerunder the name of Treppeniteration (staircase iteration). Bauer'sTreppeniteration Bauer's method consists of starting with an ini-tial system ofm vectors forming an n�mmatrixX0 = [x1; : : : ; xm]and computing the matrixXk = AkX0: (5.1)for a certain power k. If we normalized the column vectors sepa-rately in the same manner as for the power method, then in typicalcases each of these vectors will converge to the same eigenvectorassociated with the dominant eigenvalue. Thus the systemXk willprogressively loose its linear independence. The idea of Bauer'smethod is to reestablish linear independence for these vectors bya process such as the LR or the QR factorization. Thus, if we usethe more common QR option, we get the following algorithm.Algorithm 5.1 Simple Subspace Iteration1. Start: Choose an initial system of vectorsX0 = [x1; : : : ; xm].2. Iterate: Until convergence do,(a) Compute Xk := AXk�1(b) Compute the QR factorization Xk = QR of Xk, andset Xk := Q.This algorithm can be viewed as a direct generalization ofthe power method seen in the previous Chapter. Step 2-(b) is anormalization process that is much similar to the normalizationused in the power method, and just as for the power methodthere are many possible normalizations that can be used. Animportant observation is that the subspace spanned by the vectorsXk is the same as that spanned by AkX0. Since the cost of 2-(b)can be high, it is natural to orthonormalize as infrequently as



Subspace Iteration 153possible, i.e. to perform several steps at once before performingan orthogonalization. This leads to the following modi�cation.Algorithm 5.2 Multiple Step Subspace Iteration1. Start: Choose an initial system of vectorsX = [x1; : : : ; xm].Choose an iteration parameter iter.2. Iterate: Until convergence do:(a) Compute Z := AiterX.(b) Orthonormalize Z. Copy resulting matrix onto X.(c) Select a new iter.We would like to make a few comments concerning the choiceof the parameter iter. The best iter will depend on the conver-gence rate. If iter is too large then the vectors of Z in 2-(a)may become nearly linear dependent and the orthogonalizationin 2-(b) may cause some di�culties. Typically an estimation onthe speed of convergence is used to determine iter. Then iter isde�ned in such a way that, for example, the fastest convergingvector, which is the �rst one, will have converged to within a cer-tain factor, e.g., the square root of the machine epsilon, i.e., thelargest number � that causes rounding to yield 1 + � == 1 on agiven computer.Under a few assumptions the column vectors of Xk will con-verge \in direction" to the Schur vectors associated with the mdominant eigenvalues �1; : : : ; �m. To formalize this peculiar no-tion of convergence, a form of which was seen in the context ofthe power method, we will say that a sequence of vectors xk con-verges essentially to a vector x if there exists a sequence of signsei�k such that the sequence ei�kxk converges to x.Theorem 5.1 Let �1; : : : ; �m be the m dominant eigenvalues ofA labeled in decreasing order of magnitude and assume that j�ij >j�i+1j; 1 � i � m. Let Q = [q1; q2; : : : ; qm] be the Schur vectors



154 Chapter Vassociated with �j; j = 1; : : : ; m and Pi be the spectral projectorassociated with the eigenvalues �1; : : : ; �i. Assume thatrank (Pi[x1; x2; : : : ; xi]) = i; for i = 1; 2; : : : ; m :Then the i-th column of Xk converges essentially to qi, for i =1; 2; � � � ; m.Proof. Let the initial system X0 be decomposed asX0 = PmX0 + (I � Pm)X0 = QG1 +WG2 (5.2)where W is an n � (n � m) matrix whose column vectors formsome basis of the invariant basis (I � Pm)Cn and G2 is a certain(n�m)�m matrix. We know that there exists an m�m uppertriangular matrix R1 and an (n �m) � (n �m) matrix R2 suchthat AQ = QR1 ; AW = WR2 : (5.3)The column vectors of Xk are obtained by orthonormalizing thesystem Zk = AkX0. By assumption, the system of column vectorsPmX0 is nonsingular and therefore G1 is nonsingular. Applying(5.3) we get AkX0 = Ak[QG1 +WG2]= QRk1G1 +WRk2G2= [Q +WRk2G2G�11 R�k1 ]Rk1G1The term Ek � WRk2G2G�11 R�k tends to zero because the spectralradius of R�11 is equal to 1=j�mj while that of R2 is j�m+1j. Hence,AkX0G�11 = [Q + Ek]Rk1with limk!1Ek = 0. Using the QR decomposition of the matrixQ+ Ek, Q+ Ek = Q(k)R(k);



Subspace Iteration 155we obtain AkX0G�11 = Q(k)R(k)Rk1:Since Ek converges to zero, it is clear that R(k) converges to theidentity matrix while Q(k) converges to Q, and because the QRdecomposition of a matrix is unique up to scaling constants, wehave established that the Q matrix in the QR decomposition ofthe matrix AkX0G�11 converges essentially to Q. Notice thatthe span of AkX0G�11 is identical with that of Xk. As a resultthe orthogonal projector P(k)m onto spanfXkg will converge to theorthogonal projector Pm onto spanfQg.In what follows we denote by [X]j the matrix of the �rst j vec-tor columns of X. To complete the proof, we need to show thateach column converges to the corresponding column vector of Q.To this end we observe that the above proof extends to the casewhere we consider only the �rst j columns of Xk, i.e., the j �rstcolumns of Xk converge to a matrix that spans the same subspaceas [Q]j. In other words, if we let Pj be the orthogonal projectoron spanf[Q]jg and P(k)j the orthogonal projector on spanf[Xk]jgthen we have P(k)j ! Pj for j = 1; 2; : : : ; m. The proof is nowby induction. When j = 1, we have the obvious result that the�rst column of Xk converges essentially to q1. Assume that thecolumns 1 through i of Xk converge essentially to q1; : : : ; qi. Con-sider the last column x(k)i+1 of [Xk]i+1, which we express asx(k)i+1 = P(k)i+1x(k)i+1 = P(k)i x(k)i+1 + (P(k)i+1 � P(k)i )x(k)i+1 :The �rst term in the right hand side is equal to zero because byconstruction x(k)i+1 is orthogonal to the �rst i columns of [Xk]i+1.Hence, x(k)i+1 = (P(k)i+1 � P(k)i )x(k)i+1and by the above convergence results on the projectors P(k)j wesee that P(k)i+1 � P(k)i converges to the orthogonal projector ontothe span of the single vector qi+1. This is becausePi+1 � Pi = Qi+1QHi+1 �QiQHi = qi+1qHi+1 :



156 Chapter VTherefore we may write x(k)i+1 = qi+1qHi+1x(k)i+1+�k where �k convergesto zero. Since the vector x(k)i+1 is of norm unity, its orthogonalprojection onto qi+1 will essentially converge to qi+1.The proof indicates that the convergence of each column vectorto the corresponding Schur vector is governed by the convergencefactor j�i+1=�ij. In addition, we have also proved that each or-thogonal projector P(k)i onto the �rst i columns of Xk convergesunder the assumptions of the theorem.2. Subspace Iteration with ProjectionIn the subspace iteration with projection method the column vec-tors obtained from the previous algorithm are not directly used asapproximations to the Schur vectors. Instead they are employedin a Rayleigh-Ritz process to get better approximations. In factas was seen before, the Rayleigh-Ritz approximations are optimalin some sense in the Hermitian case and as a result it is sensible touse a projection process whenever possible. This algorithm withprojection is as follows.Algorithm 5.3 Subspace Iteration with Projection1. Start: Choose an initial system of vectors X = [x0; : : : ; xm]and an initial iteration parameter iter.2. Iterate: Until convergence do:(a) Compute Ẑ = AiterXold.(b) Orthonormalize Ẑ into Z.(c) Compute B = ZHAZ and use the QR algorithm tocompute the Schur vectors Y = [y1; : : : ; ym] of B.(d) Compute Xnew = ZY .(e) Test for convergence and select a new iteration param-eter iter.



Subspace Iteration 157There are many implementation details which are omitted forthe sake of clarity. Note that there is another version of thealgorithm which uses eigenvectors instead of Schur vectors (inStep 2-(c)). These two versions are obviously equivalent when Ais Hermitian.Let Sk be the subspace spanned by Xk and let us denote byPk the orthogonal projector onto the subspace Sk. Assume thatthe eigenvalues are ordered in decreasing order of magnitude andthat, j�1j � j�2j � j�3j � � � � j�mj > j�m+1j � � � � � j�nj :Again ui denotes an eigenvector of A of norm unity associatedwith �i. The spectral projector associated with the invariant sub-space associated with �1; : : : ; �m will be denoted by P . We willnow prove the following theorem.Theorem 5.2 Let S0 = spanfx1; x2; : : : ; xmg and assume thatS0 is such that the vectors fPxigi=1;:::;m are linearly independent.Then for each eigenvector ui of A, i = 1; : : : ; m, there exists aunique vector si in the subspace S0 such that Psi = ui. Moreover,the following inequality is satis�edk(I � Pk)uik2 � kui � sik2  ������m+1�i �����+ �k!k ; (5.4)where �k tends to zero as k tends to in�nity.Proof. By their assumed linear independence, the vectors Pxj,form a basis of the invariant subspace PCn and so the vector ui,which is a member of this subspace, can be written asui = mXj=1 �jPxj = P mXj=1 �jxj � Psi:The vector si is such that si = ui + w; (5.5)



158 Chapter Vwhere w = (I �P )si. Next consider the vector y of Sk de�ned byy = ( 1�i )kAksi. We have from (5.5) thaty � ui = � 1�i�k Akw : (5.6)Denoting byW the invariant subspace corresponding to the eigen-values �m+1; : : : ; �n, and noticing that w is in W , we clearly havey � ui = � 1�i�k [AjW ]kw:Hence, kui � yk2 � 




 � 1�iAjW �k




2 kwk2 : (5.7)Since the eigenvalues of AjW are �m+1; �m+2; : : : ; �n the spectralradius of [ 1�iAjW ] is simply j�m+1=�ij and from Corollary 1.1 ofChapter I, we have,




� 1�iAjW�k




2 = "������m+1�i �����+ �k#k ; (5.8)where �k tends to zero as k !1. Using the fact thatk(I � Pk)uik2 = miny2Sk ky � uik2together with inequality (5.7) and equality (5.8) yields the desiredresult (5.4).We can be a little more speci�c about the sequence �k of thetheorem by using the inequalitykBkk2 � ��kk��1; (5.9)where B is any matrix, � its spectral radius, � the dimension ofits largest Jordan block, and � some constant independent on k,



Subspace Iteration 159see Exercise P-5.6 as well as Householder's book [73]. Withoutloss of generality we assume that � � 1.Initially, consider the case where A is diagonalizable. Then� = 1, and by replacing (5.9) in (5.8) we observe that (5.4) sim-pli�es into k(I � Pk)uik2 � �kui � sik2 ������m+1�i �����k : (5.10)Still in the diagonalizable case, it is possible to get a more explicitresult by expanding the vector si in the eigenbasis of A assi = ui + nXi=m+1 �juj:Letting � = Pni=m+1 j�jj, we can reproduce the proof of the abovetheorem to obtaink(I � Pk)uik2 � �� ������m+1�i �����k : (5.11)When A is not diagonalizable, then from comparing (5.9) and(5.8) we can bound �k from above as follows:�k � ������m+1�i ����� (�1=kk(��1)=k � 1)which con�rms that �k tends to zero as k tends to in�nity.Finally, concerning the assumptions of the theorem, it can beeasily seen that the condition that fPxjgj=1;:::;r form an indepen-dent system of vectors is equivalent to the condition thatdet[UHS0] 6= 0;in which U is any basis of the invariant subspace PCn. This con-dition constitutes a generalization of a similar condition requiredfor the convergence of the power method.



160 Chapter V3. Practical ImplementationsThere are a number of implementation details that enhance theperformance of the simple methods described above. The �rst ofthese is the use of locking, a form of de
ation, which exploits theinequal convergence rates of the di�erent eigenvectors. In addi-tion, the method is rarely used without some form of acceleration.Similarly to the power method the simplest form of acceleration,is to shift the matrix to optimize the convergence rate for theeigenvalue being computed. However, there are more elaboratetechniques which will be brie
y discussed later.3.1. LockingBecause of the di�erent rates of convergence of each of the ap-proximate eigenvalues computed by the subspace iteration, it isa common practice to extract them one at a time and perform aform of de
ation. Thus, as soon as the �rst eigenvector has con-verged there is no need to continue to multiply it by A in the sub-sequent iterations. Indeed we can freeze this vector and work onlywith the vectors q2; : : : ; :::qm. However, we will still need to per-form the subsequent orthogonalizations with respect to the frozenvector q1 whenever such orthogonalizations are needed. The termused for this strategy is locking . It was introduced by Jenningsand Stewart [78]. Note that acceleration techniques and other im-provements to the basic subspace iteration desribed in Section 3can easily be combined with locking.The following algorithm describes a practical subspace iter-ation with de
ation (locking) for computing the nev dominanteigenvalues.Algorithm 5.4 Subspace Iteration with Projection andDe
ation1. Start: Choose an initial system of vectorsX := [x0; : : : ; xm]and an initial iteration parameter iter. Set j := 1.



Subspace Iteration 1612. Eigenvalue loop: While j � nev do:(a) Compute Ẑ = [q1; q2; : : : ; qj�1; AiterX] .(b) Orthonormalize the column vectors of Ẑ (starting atcolumn j) into Z.(c) Update B = ZHAZ and compute the Schur vectorsY = [yj; : : : ; ym] of B associated with the eigenvalues�j; : : : ; �m.(d) Test the eigenvalues �j; : : : ; �m for convergence. Leticonv the number of newly converged eigenvalues. Ap-pend the iconv corresponding Schur vectors to Q =[q1; ::::; qj�1] and set j := j + iconv.(e) Compute X := Z[yj; yj+1; : : : ; ym].(f) Compute a new iteration parameter iter.Example 5.1 Consider the matrix Mark(10) described in ChapterII and used in the test examples of Chapter IV. We tested a versionof the algorithm just described to compute the three dominant eigen-values of Mark(10). In this test we took m = 10 and started with aninitial set of vectors obtained from orthogonalizing v;Av; :::; Amv, inwhich v is a random vector. Table 5.1 shows the results. Each hori-zontal line separates an outer loop of the algorithm (corresponding tostep (2) in algorithm 5.4). Thus, the algorithm starts with iter = 5and in the �rst iteration (requiring 63 matrix-vector products) no neweigenvalue has converged. We will need three more outer iterations(requiring each 113 matrix-vector products) to achieve convergencefor the two dominant eigenvalues �1; 1. Another outer iteration isneeded to compute the third eigenvalue. Note that each projectioncosts 13 additional matrix by vector products, 10 for computing theC matrix and 3 for the residual vectors.



162 Chapter VMat-vec's <e(�) =m(�) Res. Norm63 0.1000349211D+01 0.0 0.820D-02-0.9981891280D+00 0.0 0.953D-02-0.9325298611D+00 0.0 0.810D-02176 -0.1000012613D+01 0.0 0.140D-030.9999994313D+00 0.0 0.668D-040.9371856730D+00 0.0 0.322D-03289 -0.1000000294D+01 0.0 0.335D-050.1000000164D+01 0.0 0.178D-050.9371499768D+00 0.0 0.177D-04402 -0.1000000001D+01 0.0 0.484D-070.1000000001D+01 0.0 0.447D-070.9371501017D+00 0.0 0.102D-05495 -0.1000000001D+01 0.0 0.482D-070.1000000000D+01 0.0 0.446D-070.9371501543D+00 0.0 0.252D-07Table 5.1 Convergence of subspace iteration with pro-jection for computing the three dominant eigenvaluesof A = Mark(10).3.2. Linear ShiftsSimilarly to the power method, there are advantages in workingwith the shifted matrix A��I instead of A, where � is a carefullychosen shift. In fact since the eigenvalues are computed one at atime, the situation is very similar to that of the power method.Thus, when the spectrum is real, and the eigenvalues are ordereddecreasingly, the best possible � is� = 12(�m+1 + �n)which will put the middle of the unwanted part of the spectrumat the origin. Note that when de
ation is used this is independent



Subspace Iteration 163of the eigenvalue being computed. In addition, we note one im-portant di�erence with the power method, namely that eigenvalueestimates are now readily available. In fact, it is common practiceto take m > nev, the number of eigenvalues to be computed, inorder to be able to obtain valuable estimates dynamically. Theseestimates can be used in various ways to accelerate convergence,such as when selecting shifts as indicated above, or when usingsome of the more sophisticated preconditioning techniques men-tioned in the next section.3.3. PreconditioningsPreconditioning is especially important for subspace iteration,since the unpreconditioned iteration may be unacceptably slowin some cases. Although we will cover preconditioning in moredetail in Chapter VIII, we would like to mention here the mainideas used to precondition the subspace iteration.� Shift-and-invert. This consists of working with the matrix(A � �I)�1 instead of A. The eigenvalues near � will con-verge fast.� Polynomial acceleration. The standard method used is toreplace the power Aiter in the usual subspace iteration algo-rithm by a polynomial Tm[(A � �I)=�] in which Tm is theChebyshev polynomial of the �rst kind of degree m.With either type of preconditioning subspace iteration maybe a reasonably e�cient method that has the advantage of beingeasy to code and understand. Some of the methods to be seen inthe next Chapter are often preferred however, because they tendto be more economical.



164 Chapter VProblemsP-5.1 In Bauer's original Treppeniteration, the linear independenceof the vectors in AkX0 are preserved by performing its LU decompo-sition. Thus, X̂ = AkX ; X̂ = LkUk; X := Lk;in which Lk is an n �m matrix with its upper m �m corner beinga unit lower triangular matrix, and Uk is an m�m upper triangularmatrix. Extend the main convergence theorem of the correspondingalgorithm, for this case.P-5.2 Assume that the matrix A is real and the eigenvalues �m; �m+1forms a complex conjugate pair. If subspace iteration with de
ation(Algorithm 5.4) is used, there will be a di�culty when computing thelast eigenvalue. Provide a few possible modi�cations to the algorithmto cope with this case.P-5.3 Write a modi�cation of Algorithm 5.4 which incorporates adynamic shifting strategy. Assume that the eigenvalues are real andconsider both the case where the rightmost or the leftmost eigenvaluesare wanted.P-5.4 Let A be a matrix whose eigenvalues are real and assume thatthe subspace iteration algorithm (with projection) is used to computesome of the eigenvalues with largest real parts of A. The questionaddressed here is how to get the best possible iteration parameteriter. We would like to choose iter in such a way that in the worst case,the vectors of X will loose a factor of p� in their linear dependence,in which � is the machine accuracy. How can we estimate such aniteration parameter iter from quantities derived from the algorithm?You may assume that m is su�ciently large compared with nev (howlarge should it be?).P-5.5 Generalize the result of the previous exercise to the case wherethe eigenvalues are not necessarily real.P-5.6 Using the Jordan Canonical form, show that for any matrixB, kBkk2 � ��kk��1; (5.12)



Subspace Iteration 165where � is the spectral radius of B, � the dimension of its largestJordan block, and � some constant.P-5.7 Implement a subspace iteration with projection to compute theeigenvalues with largest modulus of a large sparse matrix. Implementlocking and linear shifts.Notes and References. An early reference on Bauer's Treppeniteration,in addition to the original paper by Bauer [5], is Householder's book [73]. Seealso the paper by Rutishauser [137] and by Clint and Jennings [21] as well asthe book by Bath�e and Wilson [4] which all specialize to symmetric matrices.A computer code for the symmetric real case was published in Wilkinson andReinsch's handbook [184] but unlike most other codes in the handbook, neverbecame part of the Eispack library. Later, some work was done to developcomputer codes for the non-Hermitian case. Thus, a `lop-sided' version ofBauer's treppeniteration based on orthogonal projection method rather thanoblique projection was introduced by Jennings and Stewart [77] and a com-puter code was also made available [78]. However, the corresponding methoddid not incorporate Chebyshev acceleration, which turned out to be so usefulin the Hermitian case. Chebyshev acceleration was later incorporated in thepaper by Saad in [143] and some theory was proposed in [141]. G.W. Stewart[169, 170] initiated the idea of using Schur vectors as opposed to eigenvec-tors in subspace iteration. The motivation is that Schur vectors are easier tohandle numerically but there has not been any comparisons in the literaturebetween the two variants. A convergence theory of Subspace Iteration wasproposed in [169]. The convergence results of Section 2 follow the paper [141]and a modi�cation due to Chatelin (private communication). There are nopublic domain codes available as yet implementing the accelerated subspaceiteration. Jenning and Stewart's LOPSI code is available in the Transactionsfor Mathematical Software and can be obtained from Netlib. Quite recently, aChebyshev accelerated version of subspace iteration has been made availableby Rutherford Appleton laboratories [40]. �
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Chapter VI
Krylov Subspace MethodsIn this chapter we will examine one of the most important classesof methods available for computing eigenvalues and eigenvectorsof large matrices. These techniques are based on projectionsmethods, both orthogonal and oblique, onto Krylov subpaces, i.e.,subspaces spanned by the iterates of the simple power method.What may appear to be a trivial extension of a very slow algo-rithm turns out to be one of the most successful methods for ex-tracting eigenvalues of large matrices, especially in the Hermitiancase.



168 Chapter VI1. Krylov SubspacesAn important class of techniques known as Krylov subspace meth-ods extracts approximations from a subspace of the formKm � span fv; Av; A2v; :::Am�1vg (6.1)referred to as a Krylov subspace. If there is a possibility of ambi-guity, Km is denoted by Km(A; v). In contrast with subspace iter-ation, the dimension of the subspace of approximants increases byone at each step of the approximation process. A few well-knownof these Krylov subspace methods are:(1) The Hermitian Lanczos algorithm;(2) Arnoldi's method and its variations;(3) The nonhermitian Lanczos algorithm.There are also block extensions of each of these methods termedBlock Krylov Subspace methods, which we will discuss only brie
y.Arnoldi's method and Lanczos' method are orthogonal projec-tion methods while the nonsymmetric Lanczos algorithm is anoblique projection method. Before we pursue with the analysis ofthese methods, we would like to emphasize an important distinc-tion between implementation of a method and the method itself .There are several distinct implementations of Arnoldi's method,which are all mathematically equivalent. For example the arti-cles [42, 139, 177] all propose some di�erent versions of the samemathematical process.In this section we start by establishing a few elementary prop-erties of Krylov subspaces, many of which need no proof. Recallthat the minimal polynomial of a vector v is the nonzero monicpolynomial p of lowest degree such that p(A)v = 0.Proposition 6.1 The Krylov subspace Km is the subspace of allvectors in Cn which can be written as x = p(A)v, where p is apolynomial of degree not exceeding m� 1.



Krylov Subspace Methods 169Proposition 6.2 Let � be the degree of the minimal polynomialof v. Then K� is invariant under A and Km = K� for all m � �.The degree of the minimal polynomial of v is often referred to asthe grade of v with respect to A. Clearly, the grade of v does notexceed n.Proposition 6.3 The Krylov subspace Km is of dimension m ifand only if the degree of the minimal polynomial of v with respectto A is larger than m� 1.Proof. The vectors v; Av; : : :Am�1v form a basis of Km if andonly if for any complex m�tuple �i; i = 0; : : : ; m � 1, where atleast one �i is nonzero, the linear combination Pm�1i=0 �iAiv isnonzero. This condition is equivalent to the condition that therebe no polynomial of degree � m � 1 for which p(A)v = 0. Thisproves the result.Proposition 6.4 Let Qm be any projector onto Km and let Am bethe section of A to Km, that is, Am = QmAjKm. Then for any poly-nomial q of degree not exceeding m�1, we have q(A)v = q(Am)v,and for any polynomial of degree � m, we have Qmq(A)v =q(Am)v.Proof. We will �rst prove that q(A)v = q(Am)v for any poly-nomial q of degree � m� 1. It su�ces to prove the property forthe monic polynomials qi(t) � ti; i = 0; : : :m � 1. The proofis by induction. The property is clearly true for the polynomialq0(t) � 1. Assume that it is true for qi(t) � ti:qi(A)v = qi(Am)v:Multiplying the above equation by A on both sides we getqi+1(A)v = Aqi(Am)v:



170 Chapter VIIf i + 1 � m � 1 the vector on the left hand-side belongs to Kmand therefore if we multiply the above equation on both sides byQm we get qi+1(A)v = QmAqi(Am)v:Looking at the right hand side we observe that qi(Am)v belongsto Km. Henceqi+1(A)v = QmAjKmqi(Am)v = qi+1(Am)v;which proves that the property is true for i + 1 provided i +1 � m � 1. For the case i + 1 = m it remains only to showthat Qmqm(A)v = qm(Am)v, which follows from qm�1(A)v =qm�1(Am)v by simply multiplying both sides by QmA.An interesting characterization of orthogonal Krylov projec-tion methods can be formulated in terms of the characteristicpolynomial of the approximate problem. In the orthogonal pro-jection case, we de�ne the characteristic polynomial of the ap-proximate problem as that of the matrix V Hm AVm where Vm is amatrix whose column vectors form an orthonormal basis of Km.It is a simple exercise to show that this de�nition is independentof the choice of Vm, the basis of the Krylov subspace.Theorem 6.1 Let �pm be the characteristic polynomial of the ap-proximate problem resulting from an orthogonal projection methodonto the Krylov subspace Km. Then �pm minimizes the normkp(A)vk2 over all monic polynomials p of degree m.Proof. We denote by Pm the orthogonal projector onto Kmand Am the corresponding section of A. By Cayley Hamilton'stheorem we have �pm(Am) = 0 and therefore(�pm(Am)v; w) = 0; 8 w 2 Km : (6.2)By the previous proposition �pm(Am)v = Pm�pm(A)v. Hence (6.2)becomes (Pm�pm(A)v; w) = 0; 8 w 2 Km;



Krylov Subspace Methods 171or, since orthogonal projectors are self adjoint,(�pm(A)v;Pmw) = 0 = (�pm(A)v; w) 8 w 2 Km;which is equivalent to(�pm(A)v; Ajv) = 0 ; j = 0; : : :m� 1:Writing �pm(t) = tm�q(t), where q is of degree � m�1; we obtain(Amv � q(A)v; Ajv) = 0 ; j = 0; : : :m� 1:In the above system of equations we recognize the normal equa-tions for minimizing the Euclidean norm of Amv� s(A)v over allpolynomials s of degree � m� 1. The proof is complete.The above characteristic property is not intended to be usedfor computational purposes. It is useful for establishing mathe-matical equivalences between seemingly di�erent methods. Thus,a method developed by Erdelyi in 1965 [42] is based on preciselyminimizing kp(A)vk2 over monic polynomials of some degree andis therefore mathematically equivalent to any orthogonal projec-tion method on a Krylov subspace. Another such method wasproposed by Manteu�el [99, 100] for the purpose of estimatingacceleration parameters when solving linear systems by Cheby-shev method. His method named the Generalized Power Method,was essentially Erdelyi's method with a special initial vector.An important point is that this characteristic property seemsto be the only known optimality property that is satis�ed by theapproximation process in the nonsymmetric case. Other optimal-ity properties, such as the mini-max theorem which are funda-mental both in theory and in practice for symmetric problemsare no longer valid. This results in some signi�cant di�cultiesin understanding and analyzing these methods for nonsymmetriceigenvalue problems.



172 Chapter VI2. Arnoldi's MethodArnoldi's method is an orthogonal projection method onto Km forgeneral non-Hermitian matrices. The procedure was introduced in1951 as a means of reducing a dense matrix into Hessenberg form.Arnoldi introduced this method precisely in this manner and hehinted that the process could give good approximations to someeigenvalues if stopped before completion. It was later discoveredthat this strategy lead to a good technique for approximatingeigenvalues of large sparse matrices. We �rst describe the methodwithout much regard to rounding errors, and then give a fewimplementation details.2.1. The Basic AlgorithmThe procedure introduced by Arnoldi in 1951 starts by building anorthogonal basis of the Krylov subspace Km. In exact arithmetic,one variant of the algorithm is as follows.Algorithm 6.1 Arnoldi1. Start: Choose a vector v1 of norm 1.2. Iterate: for j = 1; 2; : : : ; m compute:hij = (Avj; vi); i = 1; 2; : : : ; j; (6.3)wj = Avj � jXi=1 hijvi; (6.4)hj+1;j = kwjk2 ; if hj+1;j = 0 stop (6.5)vj+1 = wj=hj+1;j: (6.6)The algorithm will stop if the vector wj computed in (6.4)vanishes. We will come back to this case shortly. We now provea few simple but important properties of the algorithm.Proposition 6.5 The vectors v1; v2; : : : ; vm form an orthonormalbasis of the subspace Km = spanfv1; Av1; : : : ; Am�1v1g.



Krylov Subspace Methods 173Proof. The vectors vj; i = 1; 2; : : :m are orthonormal by con-struction. That they span Km follows from the fact that eachvector vj is of the form qj�1(A)v1 where qj�1 is a polynomial ofdegree j � 1. This can be shown by induction on j as follows.Clearly the result is true when j = 1, since v1 = q0(A)v1 withq0(t) � 1. Assume that the result is true for all integers � j andconsider vj+1. We havehj+1vj+1 = Avj � jXi=1 hijvi = Aqj�1(A)v1 � jXi=1 hijqi�1(A)v1 (6.7)which shows that vj+1 can be expressed as qj(A)v1 where qj is ofdegree j and completes the proof.Proposition 6.6 Denote by Vm the n � m matrix with columnvectors v1; : : : ; vm and by Hm the m�m Hessenberg matrix whosenonzero entries are de�ned by the algorithm. Then the followingrelations hold: AVm = VmHm + hm+1;mvm+1eHm; (6.8)V Hm AVm = Hm : (6.9)Proof. The relation (6.8) follows from the following equalitywhich is readily derived from (6.6) and (6.4):Avj = j+1Xi=1 hijvi; j = 1; 2; : : : ; m : (6.10)Relation (6.9) follows by multiplying both sides of (6.8) by V Hmand making use of the orthonormality of fv1; : : : ; vmg.The situation is illustrated in Figure 6.1.



174 Chapter VI
Vm + wmeHm=A

HmVm
Figure 6.1 The action of A on Vm gives VmHm plusa rank one matrix.As was noted earlier the algorithm may break down in casethe norm of wj vanishes at a certain step j. In this situation thevector vj+1 cannot be computed and the algorithm stops. Thereremains to determine the conditions under which this situationoccurs.Proposition 6.7 Arnoldi's algorithm breaks down at step j (i.e.,wj = 0 in (6.4)) if and only if the minimal polynomial of v1 is ofdegree j. Moreover, in this case the subspace Kj is invariant andthe approximate eigenvalues and eigenvectors are exact.Proof. If the degree of the minimal polynomial is j, then wjmust be equal to zero. Indeed, otherwise vj+1 can be de�ned andas a result Kj+1 would be of dimension j+1, and from Proposition6.3, this would mean that � � j + 1, which is not true. To provethe converse, assume that wj = 0. Then the degree � of theminimal polynomial of v1 is such that � � j. Moreover, we cannothave � < j otherwise by the previous proof the vector w� wouldbe zero and the algorithm would have stopped at the earlier stepnumber �. The rest of the result follows from Proposition 4.3 seenin Chapter IV.



Krylov Subspace Methods 175The approximate eigenvalues �(m)i provided by the projectionprocess onto Km are the eigenvalues of the Hessenberg matrixHm.The Ritz approximate eigenvector associated with �(m)i is de�nedby u(m)i = Vmy(m)i where y(m)i is an eigenvector associated withthe eigenvalue �(m)i . A number of the Ritz eigenvalues, typicallya small fraction of m, will usually constitute good approximationsof corresponding eigenvalues �i of A and the quality of the ap-proximation will usually improve as m increases. We will examinethese `convergence' properties in detail in later sections. The orig-inal algorithm consists of increasingm until all desired eigenvaluesof A are found. This is costly both in terms of computation andstorage. For storage, we need to keep m vectors of length n plusanm�m Hessenberg matrix, a total of approximately nm+m2=2.Considering the computational cost of the j-th step, we need tomultiply vj by A, at the cost of 2� Nz, where Nz is number ofnonzero elements in A, and then orthogonalize the result againstj vectors at the cost of 4(j + 1)n; which increases with the stepnumber j.On the practical side it is crucial to be able to estimate theresidual norm inexpensively as the algorithm progresses. Thisturns out to be quite easy to do for Arnoldi's method and, in fact,for all the Krylov subspace methods described in this chapter.The result is given in the next proposition.Proposition 6.8 Let y(m)i be an eigenvector of Hm associatedwith the eigenvalue �(m)i and u(m)i the Ritz approximate eigenvec-tor u(m)i = Vmy(m)i . Then,(A� �(m)i I)u(m)i = hm+1;m eHmy(m)i vm+1and, therefore,k(A� �(m)i I)u(m)i k2 = hm+1;mjeHmy(m)i j :



176 Chapter VIProof. This follows from multiplying both sides of (6.8) by y(m)i :AVmy(m)i = VmHmy(m)i + hm+1;m eHmy(m)i vm+1= �(m)i Vmy(m)i + hm+1;meHmy(m)i vm+1 :Hence, AVmy(m)i � �(m)i Vmy(m)i = hm+1;m eHmy(m)i vm+1 :In simpler terms, the proposition states that the residual normis equal to the last component of the eigenvector y(m)i multipliedby hm+1;m. In practice, the residual norms, although not alwaysindicative of actual errors, are quite helpful in deriving stoppingprocedures.2.2. Practical ImplementationsThe description of the Arnoldi process given earlier assumed exactarithmetic. In reality, much is to be gained by using the Modi�edGram-Schmidt or the Householder algorithm in place of the stan-dard Gram-Schmidt algorithm. With the modi�ed Gram-Schmidtalternative the algorithm takes the following form.Algorithm 6.2 Arnoldi - Modi�ed Gram-Schmidt1. Start. Choose a vector v1 of norm 1.2. Iterate. For j = 1; 2; : : : ; m do:(a) w := Avj;(b) For i = 1; 2; : : : ; j do:hij = (w; vi);w := w � hijvi;



Krylov Subspace Methods 177(c) hj+1;j = kwk2 ;(d) vj+1 = w=hj+1;j .There is no di�erence in exact arithmetic between this algo-rithm and Algorithm 6.1. Although this formulation is numer-ically superior to the standard Gram Schmidt formulation, wedo not mean to imply that the above Modi�ed Gram-Schmidtis su�cient for all cases. In fact there are two alternatives thatare implemented to guard against large cancellations during theorthogonalization process.The �rst alternative is to resort to double orthogonalization.Whenever the �nal vector obtained at the end of the second loopin the above algorithm has been computed, a test is performed tocompare its norm with the norm of the initialw (which is kAvjk2).If the reduction falls below a certain threshold, an indication thatsever cancellation might have occurred, a second orthogonaliza-tion is made. It is known from a result by Kahan that additionalorthogonalizations are super
uous (see for example Parlett [118]).The second alternative is to resort to a di�erent techniquealtogether. In fact one of the most reliable orthogonalizationtechniques, from the numerical point of view, is the Householderalgorithm. This has been implemented for the Arnoldi processby Walker [181]. We do not describe the Householder algorithmhere but we would like to compare the cost of each of the threeversions.In the table shown below, GS stands for Gram-Schmidt, MGSfor Modi�ed Gram-Schmidt, MGSR for Modi�ed Gram-Schmidtwith Reorthogonalization, and HO for Householder.GS MGS MGSR HOFlops m2n m2n 2m2n 2m2n� 23m3Storage (m+ 1)n (m+ 1)n (m+ 1)n (m+ 1)n� 12m2A few comments are in order. First, the number of operationsshown for MGSR are for the worst case situation when a second



178 Chapter VIorthogonalization is needed every time. This is unlikely to takeplace and in practice the actual number of operations is muchmore likely to be close to that of the simple MGS. Concerningstorage, the little gain in storage requirement in the Householderversion comes from the fact that the Householder transformationrequires vectors whose length diminishes by 1 at every step ofthe process. However, this di�erence is negligible relative to thewhole storage requirement given that usually m � n. More-over, the implementation to take advantage of this little gain maybecome rather complicated. In spite of this we do recommendimplementing Householder orthogonalization for developing gen-eral purpose reliable software packages. A little additional cost inarithmetic may be more than o�set by the gains in robustness inthese conditions.Example 6.1 Consider the matrix Mark(10) used in the examplesin the previous two Chapters. Table 6.1 shows the convergence of therightmost eigenvalue obtained by Arnoldi's method.m <e(�) =m(�) Res. Norm5 0.9027159373 0.0 0.316D+0010 0.9987435899 0.0 0.246D-0115 0.9993848488 0.0 0.689D-0220 0.9999863880 0.0 0.160D-0325 1.000000089 0.0 0.135D-0530 0.9999999991 0.0 0.831D-08Table 6.1 Convergence of rightmost eigenvalue computedfrom a simple Arnoldi algorithm for A = Mark(10).Comparing the results shown in Table 6.1 with those of the examplesseen in Chapter IV, it is clear that the convergence is much faster thanthe power method or the shifted power method.As was mentioned earlier the standard implementations ofArnoldi's method are limited by their high storage and compu-tational requirements as m increases. Suppose that we are inter-ested in only one eigenvalue/eigenvector of A, namely the eigen-value of largest real part of A. Then one way to circumvent the



Krylov Subspace Methods 179di�culty is to restart the algorithm. After a run with m Arnoldivectors, we compute the approximate eigenvector and use it as aninitial vector for the next run with Arnoldi's method. This pro-cess, which is the simplest of this kind, is iterated to convergence.Algorithm 6.3 Iterative Arnoldi1. Start: Choose an initial vector v1 and a dimension m.2. Iterate: Perform m steps of Arnoldi's algorithm.3. Restart: Compute the approximate eigenvector u(m)1 asso-ciated with the rightmost eigenvalue �(m)1 . If satis�ed stop,else set v1 � u(m)1 and goto 2.Example 6.2 Consider the same matrix Mark(10) as above. Wenow use a restarted Arnoldi procedure for computing the eigenvectorassociated with the eigenvalue with algebraically largest real part. Weuse m = 10.m <e(�) =m(�) Res. Norm10 0.9987435899D+00 0.0 0.246D-0120 0.9999523324D+00 0.0 0.144D-0230 0.1000000368D+01 0.0 0.221D-0440 0.1000000025D+01 0.0 0.508D-0650 0.9999999996D+00 0.0 0.138D-07Table 6.2 Convergence of rightmost eigenvalue computedfrom a restarted Arnoldi procedure for A = Mark(10).Comparing the results of Table 6.2 with those of the previous exampleindicates a loss in performance, in terms of total number of matrix-vector products. However, the number of vectors used here is 10 asopposed to 50, so the memory requirement is much more modest.



180 Chapter VI2.3. Incorporation of Implicit De
ationWe now consider the following implementation which incorpo-rates a de
ation process. The previous algorithm is valid onlyfor the case where only one eigenvalue/eigenvector pair must becomputed. In case several such pairs must be computed, thenthere are two possible options. The �rst, is to take v1 to be a lin-ear combination of the approximate eigenvectors when we restart.For example, if we need to compute the p rightmost eigenvectors,we may take v̂1 = pXi=1 �i~ui;where the eigenvalues are numbered in decreasing order of theirreal parts. The vector v1 is then obtained from normalizing v̂1.The simplest choice for the coe�cients �i is to take �i = 1; i =1; : : : ; p. There are several drawbacks to this approach, the mostimportant of which being that there is no easy way of choosingthe coe�cients �i in a systematic manner. The result is that forhard problems, convergence is di�cult to achieve.An alternative is to compute one eigenpair at a time and usede
ation. We can use de
ation on the matrix A explicitly aswas described in Chapter IV. This entails constructing progres-sively the �rst k Schur vectors. If a previous orthogonal basis[u1; : : : ; uk�1] of the invariant subspace has already been com-puted, then, to compute the eigenvalue �k, we work with thematrix A� U�UH , in which � is a diagonal matrix.Another implementation, which we now describe, is to workwith a single basis v1; v2; :::; vm whose �rst vectors are the Schurvectors that have already converged. Suppose that k � 1 suchvectors have converged and call them v1; v2; :::; vk�1. Then westart by choosing a vector vk which is orthogonal to v1; ::::; vk�1and of norm 1. Next we performm�k steps of an Arnoldi processin which orthogonality of the vector vj against all previous v0is,including v1; :::; vk�1 is enforced. This generates an orthogonal



Krylov Subspace Methods 181basis of the subspacespanfv1; : : : ; vk�1; vk; Avk; : : : ; Am�kvkg : (6.11)Thus, the dimension of this modi�ed Krylov subspace is constantand equal to m in general. A sketch of this implicit de
ationprocedure combined with Arnoldi's method is the following.Algorithm 6.4 De
ated Iterative ArnoldiA. Start: Choose an initial vector v1 of norm unity. Set k := 1.B. Eigenvalue loop:1. Arnoldi Iteration. For j = k; k + 1; :::; m do:� Compute w := Avj.� Compute a set of j coe�cients hij so that w :=w � Pji=1 hijvi is orthogonal to all previous vi's,i = 1; 2; :::; j.� Compute hj+1;j = kwk2 and vj+1 = w=hj+1;j.2. Compute approximate eigenvector of A associated withthe eigenvalue ~�k and its associated residual norm es-timate �k.3. Orthonormalize this eigenvector against all previousvj's to get the approximate Schur vector ~uk and de-�ne vk := ~uk.4. If �k is small enough then (accept eigenvalue):� Compute hi;k = (Avk; vi) ; i = 1; ::; k,� Set k := k + 1,� If k � nev then stop else goto B.5. Else go to B-1.Note that in the B-loop, the Schur vectors associated withthe eigenvalues �1; :::; �k�1 are frozen and so is the corresponding



182 Chapter VIupper triangular matrix corresponding to these vectors. As a newSchur vector has converged, step B.4 computes the k-th column ofR associated with this new basis vector. In the subsequent steps,the approximate eigenvalues are the eigenvalues of the m � mHessenberg matrix Hm de�ned in the algorithm and whose k � kprincipal submatrix is upper triangular For example when m = 6and after the second Schur vector, k = 2, has converged, thematrix Hm will have the form
Hm = 0BBBBBBBB@ � � � � � �� � � � �� � � �� � � �� � �� �

1CCCCCCCCA : (6.12)Therefore in the subsequent steps, we will consider only the eigen-values that are not associated with the 2 � 2 upper triangularmatrix.It can be shown that, in exact arithmetic, the (n�k)�(n�k)Hessenberg matrix in the lower (2� 2) block is the same matrixthat would be obtained from an Arnoldi run applied to the matrix(I � Pk)A in which Pk is the orthogonal projector onto the (ap-proximate) invariant subspace that has already been computed,see Exercise P-6.3. The above algorithm although not competitivewith the more elaborate versions that use some form of precondi-tioning, will serve as a good model of a de
ation process combinedwith Arnoldi's projection.Example 6.3 We will use once more the test matrix Mark(10) forillustration. Here we test our restarted and de
ated Arnoldi procedurefor computing the three eigenvalues with algebraically largest real part.We use m = 10 as in the previous example. We do not show the runcorresponding to the �rst eigenvalue since the data is already listedin Table 6.2. The �rst column shows the eigenvalue being computed.Thus, it takes �ve outer iterations to compute the �rst eigenvalue (seeexample 6.2), 4 outer iterations to compute the second one, and �nally



Krylov Subspace Methods 1838 outer iterations to get the third one. The convergence towards thelast eigenvalue is slower than for the �rst two. This could be attributedto poorer separation of �3 from the other eigenvalues but also to thefact that m has implicitly decreased from m = 10 when computing the�rst eigenvalue to m = 8 when computing the third one.Eig. Mat-Vec's <e(�) =m(�) Res. Norm2 60 0.9370509474 0.0 0.870D-0369 0.9371549617 0.0 0.175D-0478 0.9371501442 0.0 0.313D-0687 0.9371501564 0.0 0.490D-083 96 0.8112247133 0.0 0.210D-02104 0.8097553450 0.0 0.538D-03112 0.8096419483 0.0 0.874D-04120 0.8095810281 0.0 0.181D-04128 0.8095746489 0.0 0.417D-05136 0.8095721868 0.0 0.753D-06144 0.8095718575 0.0 0.231D-06152 0.8095717167 0.0 0.444D-07Table 6.3 Convergence of three rightmost eigenvalues com-puted from a de
ated Arnoldi procedure forA = Mark(10).3. The Hermitian Lanczos AlgorithmThe Hermitian Lanczos algorithm can be viewed as a simpli�ca-tion of Arnoldi's method for the particular case when the matrixis Hermitian. The principle of the method is therefore the same inthat it is a projection technique on a Krylov subspace. However,there are a number of interesting properties that will cause thealgorithm to simplify. On the theoretical side there is also muchmore that can be said on the Lanczos algorithm than there is onArnoldi's method.



184 Chapter VI3.1. The AlgorithmTo introduce the algorithm we start by making the observationstated in the following theorem.Theorem 6.2 Assume that Arnoldi's method is applied to a Her-mitian matrix A. Then the coe�cients hij generated by the algo-rithm are real and such thathij = 0; for 1 � i < j � 1 ; (6.13)hj;j+1 = hj+1;j ; j = 1; 2; : : : ; m: (6.14)In other words the matrix Hm obtained from the Arnoldi processis real, tridiagonal, and symmetric.Proof. The proof is an immediate consequence of the fact thatHm = V Hm AVm is a Hermitian matrix which is also a Hessen-berg matrix by construction. Therefore, Hm must be a Hermitiantridiagonal matrix. In addition, observe that by its de�nition thescalar hj+1;j is real and that hjj = (Avj; vj) is also real if A is Her-mitian. Therefore, the Hessenberg matrix Hm is a real tridiagonaland symmetric matrix.The standard notation used to describe the Lanczos algorithm,is obtained by setting �j � hjj ;�j � hj�1;j ;which leads to the following form of the Modi�ed Gram Schmidtvariant of Arnoldi's method, namely Algorithm 6.2.Algorithm 6.5 The Lanczos Algorithm1. Start: Choose an initial vector v1 of norm unity. Set �1 �0; v0 � 0.



Krylov Subspace Methods 1852. Iterate: for j = 1; 2; : : : ; m dowj := Avj � �jvj�1 (6.15)�j := (wj; vj) (6.16)wj := wj � �jvj (6.17)�j+1 := kwjk2 (6.18)vj+1 := wj=�j+1 (6.19)An important and rather surprising property is that the abovesimple algorithm guarantees, at least in exact arithmetic, that thevectors vi; i = 1; 2; : : : ; are orthogonal. In reality, exact orthog-onality of these vectors is only observed at the beginning of theprocess. Ultimately, the vi's start losing their global orthogonal-ity very rapidly. There has been much research devoted to �ndingways to either recover the orthogonality, or to at least diminish itse�ects by partial or selective orthogonalization, see Parlett [118].The major practical di�erences with Arnoldi's method are thatthe matrix Hm is tridiagonal and, more importantly, that we onlyneed to save three vectors, at least if we do not resort to any formof reorthogonalization.3.2. Relation with Orthogonal PolynomialsIn exact arithmetic the equation (6.17) in the algorithm takes theform �j+1vj+1 = Avj � �jvj � �jvj�1:This three term recurrence relation is reminiscent of the standardthree term recurrence relation of orthogonal polynomials. In factas we will show in this section, there is indeed a strong relationshipbetween the Lanczos algorithm and orthogonal polynomials. Westart by recalling that if the grade of v1 is � m then the subspaceKm is of dimensionm and consists of all vectors of the form q(A)v1with degree(q) � m�1. In this case there is even an isomorphismbetween Km and Pm�1, the space of polynomials of degree �



186 Chapter VIm� 1, which is de�ned byq 2 Pm�1 ! x = q(A)v1 2 KmMoreover, we can consider that the subspace Pm�1 is providedwith the inner product< p; q >v1= (p(A)v1; q(A)v1) (6.20)which is indeed a nondegenerate bilinear form under the assump-tion that m does not exceed �, the grade of v1. Now observe thatthe vectors vi are of the formvi = qi�1(A)v1and the orthogonality of the vi's translates into the orthogonalityof the polynomials with respect to the inner product (6.20). More-over, the Lanczos procedure is nothing but the Stieltjes algorithm(see, for example, Gautschi [55]) for computing a sequence of or-thogonal polynomials with respect to the inner product (6.20).From Theorem 6.1 the characteristic polynomial of the tridiagonalmatrix produced by the Lanczos algorithm minimizes the normk:kv1 over the monic polynomials. It is easy to prove by usinga well-known recurrence for determinants of tridiagonal matrix,that the Lanczos recurrence computes the characteristic polyno-mial of Hm times the initial vector v1. This is another way ofrelating the vi's to the orthogonal polynomials.4. Non-Hermitian Lanczos algorithmThis is an extension of the algorithm seen in the previous sectionto the non-Hermitian case. We already know of one such exten-sion namely Arnoldi's procedure which is an orthogonal projec-tion method. However, the non-Hermitian Lanczos algorithm isan oblique projection technique and is quite di�erent in conceptfrom Arnoldi's method.



Krylov Subspace Methods 1874.1. The AlgorithmThe algorithm proposed by Lanczos for non-Hermitian matricesdi�ers from Arnoldi's method in one essential way: instead ofbuilding an orthogonal basis ofKm, it builds a pair of biorthogonalbases for the two subspacesKm(A; v1) = spanfv1; Av1; : : : ; Am�1v1gand Km(AH ; w1) = spanfw1; AHw1; : : : ; (AH)m�1w1g:The algorithm to achieve this is as follows.Algorithm 6.6 The non-Hermitian Lanczos Algorithm1. Start: Choose two vectors v1; w1 such that (v1; w1) = 1. Set�1 � 0; w0 = v0 � 0.2. Iterate: for j = 1; 2; : : : ; m do�j = (Avj; wj) (6.21)v̂j+1 = Avj � �jvj � �jvj�1 (6.22)ŵj+1 = AHwj � ��jwj � �jwj�1 (6.23)�j+1 = j(v̂j+1; ŵj+1)j1=2 (6.24)�j+1 = (v̂j+1; ŵj+1)=�j+1 (6.25)wj+1 = ŵj+1=�j+1 (6.26)vj+1 = v̂j+1=�j+1 (6.27)We should point out that there is an in�nity of ways of choos-ing the scalars �j+1; �j+1 in (6.24){(6.25). These two parametersare scaling factors for the two vectors vj+1 and wj+1 and can beselected in any manner to ensure that (vj+1; wj+1) = 1. As aresult of (6.26), (6.27) all that is needed is to choose two scalars�j+1; �j+1 that satisfy the equality�j+1�j+1 = (v̂j+1; ŵj+1) (6.28)



188 Chapter VIThe choice made in the above algorithm attempts to scale the twovectors so that they are divided by two scalars having the samemodulus. Thus, if initially v1 and w1 have the same norm, all ofthe subsequent vi's will have the same norms as the wi's. One canscale both vectors by their 2-norms, so that the inner product ofvi and wi is no longer equal to one. A modi�ed algorithm canbe written with these constraint. In this situation a generalizedeigenvalue problem Tmz = �Dmz must be solved to compute theRitz values where Dm is a diagonal matrix, whose entries are theinner products (vi; wi). The modi�ed algorithm is the subject ofExercise P-6.9.In what follows we will place ourselves in the situation wherethe pair of scalars �j+1; �j+1 is any pair that satis�es the relation(6.28), instead of restricting ourselves to the particular case de-�ned by (6.24) { (6.25). A consequence is that �j can be complexand in fact the formula de�ning ŵj+1 in (6.23) should then bemodi�ed to ŵj+1 = AHwj � ��jwj � ��jwj�1 :We will denote by Tm the tridiagonal matrix
Tm = 0BBBBBBBBB@

�1 �2�2 �2 �3: : :�m�1 �m�1 �m�m �m
1CCCCCCCCCA :

Note that in the particular case where A is real as well as theinitial vectors v1; w1, and if (6.24) { (6.25) are used then the �j'sare real positive and �j = ��j.Our �rst observation from the algorithm is that the vectors vibelong to Km(A; v1) while the wj 's are in Km(AH ; w1). In factwe can show the following proposition.Proposition 6.9 If the algorithm does not break down before stepm then the vectors vi; i = 1; : : : ; m, and wj; j = 1; : : : ; m, form a



Krylov Subspace Methods 189biorthogonal system, i.e.,(vj; wi) = �ij 1 � i; j � m :Moreover, fvigi=1;2;:::;m is a basis of Km(A; v1) and fwigi=1;2;:::;mis a basis of Km(AH ; w1) and we have the relations,AVm = VmTm + �m+1vm+1eHm; (6.29)AHWm =WmTHm + ��m+1wm+1eHm; (6.30)WHmAVm = Tm : (6.31)Proof. The biorthogonality of the vectors vi; wi will be shownby induction. By assumption (v1; w1) = 1. Assume now that thevectors v1; : : : vj and w1; : : : wj are biorthogonal, and let us estab-lish that the vectors v1; : : : vj+1 and w1; : : : wj+1 are biorthogonal.We show �rst that (vj+1; wi) = 0 for i � j. When i = j wehave(vj+1; wj) = ��1j+1[(Avj; wj)� �j(vj; wj)� �j(vj�1; wj)] :The last inner product in the above expression vanishes by theinduction hypothesis. The two other terms cancel each other bythe de�nition of �j and the fact that (vj; wj) = 1. Consider now(vj+1; wj�1) = ��1j+1[(Avj; wj�1)� �j(vj; wj�1)� �j(vj�1; wj�1)] :Again from the induction hypothesis the middle term in the righthand side vanishes. The �rst term can be rewritten as(Avj; wj�1) = (vj; AHwj�1)= (vj; ��jwj + ��j�1wj�1 + ��j�1wj�2)= �j(vj; wj) + �j�1(vj; wj�1) + �j�1(vj; wj�2)= �jand as a result,(vj+1; wj�1) = ��1j+1[(Avj; wj�1)� �j(vj�1; wj�1)] = 0 :



190 Chapter VIMore generally, consider an inner product (vj+1; wi) with i < j�1,(vj+1; wi) = ��1j+1[(Avj; wi)� �j(vj; wi)� �j(vj�1; wi)]= ��1j+1[(vj; AHwi)� �j(vj; wi)� �j(vj�1; wi)]= ��1j+1[(vj; ��i+1wi+1 + ��iwi + ��iwi�1)� �j(vj; wi)��j(vj�1; wi)] :By the induction hypothesis, all of the inner products in the aboveexpression vanish. We can show in the same way that (vi; wj+1) =0 for i � j. Finally, we have by construction (vj+1; wj+1) = 1.This completes the induction proof.The proof of the other matrix relations is identical with theproof of the similar relations in Arnoldi's method.The relation (6.31) is key to understanding the nature of themethod. From what we have seen in Chapter IV on generalprojection methods, the matrix Tm is exactly the projection ofA obtained from an oblique projection process onto Km(A; v1)and orthogonally to Km(AH ; w1). The approximate eigenvalues�(m)i provided by this projection process are the eigenvalues ofthe tridiagonal matrix Tm. A Ritz approximate eigenvector of Aassociated with �(m)i is de�ned by u(m)i = Vmy(m)i where y(m)i is aneigenvector associated with the eigenvalue �(m)i of Tm. Similarlyto Arnoldi's method, a number of the Ritz eigenvalues, typically asmall fraction of m, will constitute good approximations of corre-sponding eigenvalues �i of A and the quality of the approximationwill improve as m increases.We should mention that the result of Proposition 6.8, whichgives a simple and inexpensive way to compute residual normscan readily be extended as follows:(A� �(m)i I)u(m)i = �m+1eHmy(m)i vm+1 (6.32)and, as a result k(A� �(m)i I)u(m)i k2 = j�m+1eHmy(m)i j .An interesting new feature here is that the operators A andAH play a dual role in that we perform similar operations with



Krylov Subspace Methods 191them. We can therefore expect that if we get good approximateeigenvectors for A we should in general get as good approxima-tions for the eigenvectors of AH . In fact we might also view thenon-Hermitian Lanczos procedure as a method for approximatingeigenvalues and eigenvectors of the matrix AH by a projectionmethod onto Lm = spanfw1; AHw1; : : : ; (AH)m�1w1g and orthog-onally to Km(A; v1). As a consequence, both the left and righteigenvectors of A will be well approximated by the process. Incontrast Arnoldi's method only computes approximations to theright eigenvectors. The approximations to the left eigenvectorsare of the form Wmz(m)i where z(m)i is a left eigenvector of Tmassociated with the eigenvalue �(m)i . This constitutes one of themajor di�erences between the two methods. There are applica-tions where both left and right eigenvectors may be needed. Inaddition, when estimating errors and condition numbers of thecomputed eigenpair it might be crucial that both the left and theright eigenvectors be available.From the practical point of view, another big di�erence be-tween the non-Hermitian Lanczos procedure and the Arnoldi meth-ods is that we now only need to save a few vectors in memoryto execute the algorithm if no reorthogonalization is performed.More precisely, we need 6 vectors of length n plus some storage forthe tridiagonal matrix, no matter how large m is. This is clearlya signi�cant advantage.On the other hand there are more risks of breakdown with thenon-Hermitian Lanczos method. The algorithm will break downwhenever (v̂j+1; ŵj+1) = 0 which can be shown to be equivalentto the existence of a vector in Km(A; v1) that is orthogonal tothe subspace Km(AH ; w1). In fact this was seen to be a necessaryand su�cient condition for the oblique projector onto Km(A; v1)orthogonally to Km(AH ; w1) not to exist. In the case of Arnoldi'smethod a breakdown is actually a favorable situation since we areguaranteed to obtain exact eigenvalues in this case as was seenbefore. The same is true in the case of the Lanczos algorithmwhen either v̂j+1 = 0 or ŵj+1 = 0. However, when v̂j+1 6= 0



192 Chapter VIand ŵj+1 6= 0 then this is non-longer true. In fact the seriousproblem is not as much caused by the exact occurrence of thisphenomenon which Wilkinson [183] calls serious breakdown, as itis its near occurrence. A look at the algorithm indicates that wemay have to scale the Lanczos vectors by small quantities whenthis happens and the consequence after a number of steps may beserious. This is further discussed in the next subsection.Since the subspace from which the approximations are taken isidentical with that of Arnoldi's method, we have the same boundsfor the distance k(I � Pm)uik2. However, this does not mean inany way that the approximations obtained by the two methods arelikely to be of similar quality. One of the weaknesses of the methodis that it relies on oblique projectors which may su�er from poornumerical properties. Moreover, the theoretical bounds shownin Chapter IV do indicate that the norm of the projector mayplay a signi�cant role. The method has been used successfully byCullum and Willoughby [24, 22] to compute eigenvalues of verylarge matrices. We will discuss these implementations in the nextsection.4.2. Practical ImplementationsThere are various ways of improving the standard non-HermitianLanczos algorithm which we now discuss brie
y. A major focusof researchers in this area is to �nd ways of circumventing the po-tential breakdowns or `near breakdowns' in the algorithm. Otherapproaches do not attempt to deal with the breakdown but rathertry to live with it. We will weigh the pros and cons of both ap-proaches after we describe the various existing scenarios.4.2.1 Look-Ahead Lanczos AlgorithmsAs was already mentioned, a problem with the Lanczos algorithmis the potential of breakdown in the normalization steps (6.26)



Krylov Subspace Methods 193and (6.27). Such a break down will occur whenever(v̂j+1; ŵj+1) = 0; (6.33)which can arise in two di�erent situations. Either one of the twovectors v̂j+1 or ŵj+1 vanishes or they are both nonzero but theirinner product is zero. In the �rst case, we have again the `luckybreakdown' scenario which we have seen in the case of Hermitianmatrices. Thus, if v̂j+1 = 0 then spanfVjg is invariant and allapproximate eigenvalues and associated right eigenvectors will beexact, while if ŵj+1 = 0 then spanfWjg will be invariant andthe approximate eigenvalues and associated left eigenvectors willbe exact. The second case, when neither of the two vectors iszero but their inner product is zero is termed serious breakdownby Wilkinson (see [183], p. 389). Fortunately, there are somecures, that will allow one to continue the algorithm in most cases.The corresponding modi�cations of the algorithm are often putunder the denomination Look-Ahead Lanczos algorithms . Thereare also rare cases of `incurable' breakdowns which will not bediscussed here (see [125] and [174]). The main idea of Look-Ahead variants of the Lanczos algorithm is that even though thepair vj+1; wj+1 cannot be de�ned it is often the case that the pairvj+2; wj+2 can be de�ned. The algorithm can then be pursuedfrom that iterate as before until a new breakdown is encountered.If the pair vj+2; wj+2 cannot be de�ned then one can try the pairvj+3; wj+3 and so on.To be more precise on why this is possible, we need to go backto the connection with orthogonal polynomials mentioned earlierfor the Hermitian case. We can extend the relationship to thenon-Hermitian case by de�ning the bilinear form on the subspacePm�1 < p; q >= (p(A)v1; q(AH)w1): (6.34)Unfortunately, this can constitute an `inde�nite inner product'since < p; p > can now be zero or even negative. We note thatthere is a polynomial pj of degree j such that v̂j+1 = pj(A)v1



194 Chapter VIand in fact the same polynomial intervenes in the equivalent ex-pression of wj+1. More precisely, there is a scalar 
j such thatŵj+1 = 
jpj(AH)v1. Similarly to the Hermitian case the non-Hermitian Lanczos algorithm attempts to compute a sequence ofpolynomials that are orthogonal with respect to the inde�nite in-ner product de�ned above. If we de�ne the moment matrixMk = f< xi�1; xj�1 >gi;j=1:::kthen this process is mathematically equivalent to �nding a factor-ization Mk = LkUkof the moment matrix Mk, in which Uk is upper triangular andLk is lower triangular. Note that this matrix is a Hankel matrix,i.e., aij is constant for i + j = constant.Because < pj; pj >= �
j(pj(A)v1; pj(AH)w1)we observe that there is a serious breakdown at step j if and onlyif the inde�nite norm of the polynomial pj at step j vanishes.The main idea of the Look-Ahead Lanczos algorithms is that ifwe skip this polynomial it may still be possible to compute pj+1and continue to generate the sequence. To explain this simply, weconsider qj(x) = xpj�1 and qj+1(x) = x2pj�1(x) :It is easy to verify that both qj and qj+1 are orthogonal to thepolynomials p1; :::; pj�2. We can, for example, de�ne (somewhatarbitrarily) pj = qj, and get pj+1 by orthogonalizing qj+1 againstpj�1 and pj. It is clear that the resulting polynomial will thenbe orthogonal against all polynomials of degree � j, see ExerciseP-6.11. Therefore we can continue the algorithm from step j + 1in the same manner. Exercise P-6.11 generalizes this to the casewhere we need to skip k polynomials rather than just one. This



Krylov Subspace Methods 195simplistic description gives the main mechanism that lies behindthe di�erent versions of Look-Ahead Lanczos algorithms proposedin the literature. In the Parlett-Taylor-Liu implementation [125],it is observed that the reason for the break down of the algorithmis that the pivots encountered during the LU factorization of themoment matrixMk vanish. Divisions by zero are then avoided byimplicitly performing a pivot with a 2 � 2 matrix rather than ausing a 1� 1 pivot.The drawback of Look-Ahead implementations is the nonneg-ligible added complexity. In addition to the di�culty of decidingwhen to consider that one has a near break-down situation, onemust cope with the fact that the matrix Tm is no longer tridiago-nal. It is easy to see that whenever a step is skipped, we introducea `bump', as it it termed in [125], above the superdiagonal ele-ment. This further complicates the issue of the computation ofthe eigenvalues of the Ritz values.4.2.2 The Issue of ReorthogonalizationJust as in the Hermitian case, the vectors wj and vi will tend toloose their bi-orthogonality. Techniques that perform some formof `partial' or `selective' reorthogonalization can be developed fornon-Hermitian Lanczos algorithm as well. One di�culty here isthat selective orthogonalization, which typically requires eigenvec-tors, will su�er from the fact that eigenvectors may be inaccurate.Another problem is that we now have to keep two sets of vectors,typically in secondary storage, instead of only one.An alternative to reorthogonalization is to live with the loss oforthogonality. Although the theory is not as well understood inthe non-Hermitian case as it is in the Hermitian case, it has beenobserved that despite the loss of orthogonality, convergence is stillobserved in general, at the price of a few practical di�culties.More precisely, a converged eigenvalue may appear several times,and monitoring extraneous eigenvalues becomes important. Cul-lum and Willoughby [25] suggest precisely such a technique basedon a few heuristics. The technique is based on a comparison of



196 Chapter VIthe eigenvalues of the successive tridiagonal matrices Tk.5. Block Krylov MethodsIn many circumstances it is desirable to work with a block ofvectors instead of a single vectors. For example, in out-of core�nite-element codes it is a good strategy to exploit the presenceof a block of the matrix A in fast memory, as much as possible.This can easily done with a method such as the subspace iterationfor example, but not the usual Arnoldi/Lanczos algorithms. Inessence, the block Arnoldi method is to the Arnoldi method whatthe subspace iteration is to the usual power method. Thus, theblock Arnoldi can be viewed as an acceleration of the subspaceiteration method. There are many possible implementations ofthe algorithm three of which are described next.Algorithm 6.7 Block Arnoldi1. Start: Choose a unitary matrix V1 of dimension n� r.2. Iterate: for j = 1; 2; : : : ; m compute:Hij = V Hi AVj i = 1; 2; : : : ; j; (6.35)Wj = AVj � jXi=1 ViHij ; (6.36)Wj = Vj+1Hj+1;j Q-R decomposition of Wj: (6.37)The above algorithm is a straightforward block analogue of Algo-rithm 6.1. By construction, the blocks constructed by the algo-rithm will be orthogonal blocks that are orthogonal to each other.In what follows we denote by Ik the k�k identity matrix and usethe following notationUm = [V1; V2; : : : ; Vm] ;Hm = (Hij)1�i;j�m; Hij � 0; i>j + 1 ;Em = matrix of the last r columns of Inr:



Krylov Subspace Methods 197Then, the analogue of the relation (6.8) isAUm = UmHm + Vm+1Hm+1;mEHm :Thus, we obtain a relation analogous to the one we had beforeexcept that the matrix Hm is no longer Hessenberg but band-Hessenberg, in that we have r� 1 additional diagonals below thesubdiagonal.A second version of the algorithm would consist of using amodi�ed block Gram-Schmidt procedure instead of the simpleGram-Schmidt procedure used above. This leads to a block gen-eralization of Algorithm 6.2, the Modi�ed Gram-Schmidt versionof Arnoldi's method.Algorithm 6.8 Block Arnoldi { MGS version1. Start: Choose a unitary matrix V1 of size n� r.2. Iterate: For j = 1; 2; : : : ; m do:� Compute Wj := AVj� For i = 1; 2; : : : ; j do:Hij := V Hi WjWj := Wj � VjHij:� Compute the Q-R decomposition Wj = Vj+1Hj+1;jAgain, in practice the above algorithm is more viable than itspredecessor. Finally, a third version, developed by A. Ruhe, seereference [134], for the symmetric case (Block Lanczos algorithm),yields an algorithm that is quite similar to the original Arnoldialgorithm.Algorithm 6.9 Block Arnoldi - Ruhe's variant1. Start: Choose r initial orthonormal vectors fvigi=1;:::;r.



198 Chapter VI2. Iterate: for j = r; r + 1; ; : : : ; m� r do:(a) Set k := j � r + 1;(b) Compute w := Avk;(c) For i = 1; 2; : : : ; j do� hi;k := (w; vi)� w := w � hi;kvi(d) Compute hj+1;k := kwk2 and vj+1 := w=hj+1;k.Observe that the particular case r = 1 coincides with the usualArnoldi process. That the two algorithms 6.8 and 6.9 are mathe-matically equivalent is straightforward to show. The advantage ofthe above algorithm, is its simplicity. On the other hand a slightdisadvantage is that we give up some potential for parallelism. Inthe original version the columns of the matrix AVj can be com-puted in parallel whereas in the new algorithm, we must computethem in sequence.Generally speaking, the block methods are of great practicalvalue in some applications but they are not as well studied fromthe theoretical point of view. One of the reasons is possibly thelack of any convincing analogue of the relationship with orthogo-nal polynomials established in Subsection 3.2 for the single vectorLanczos algorithm. We have not covered the block versions ofthe two Lanczos algorithms (Hermitian and non-Hermitian) butthese generalizations are straightforward.6. Convergence of the Lanczos ProcessIn this section we examine the convergence properties of the Her-mitian Lanczos algorithm, from a theoretical point of view. Well-known results from approximation theory will be used to derivea convergence analysis of the method. In particular Chebyshevpolynomials play an important role and we refer the readers tothe end of Chapter IV for some background on these polynomials.



Krylov Subspace Methods 1996.1. Distance between Km and an EigenvectorIn the following we will assume that the eigenvalues of the Her-mitian matrix A are labeled in decreasing order, i.e.,�1 � �2 � � � � � �n ;and that the approximate eigenvalues are labeled similarly. Wewill now state the main result of this section, starting with thefollowing lemma.Lemma 6.1 Let Pi be the spectral projector associated with theeigenvalue �i. Then, if Piv1 6= 0, we havetan �(ui;Km) = minp2 Pm�1; p(�i)=1 kp(A)yik2 tan �(ui; v1) (6.38)in which yi = ( (I�Pi)v1k(I�Pi)v1k2 if (I � Pi)v1 6= 0 ;0 otherwise.Proof. The subspace Km consists of all vectors of the formx = q(A)v1 where q is any polynomial of degree � m � 1. Wehave the orthogonal decompositionx = q(A)v1 = q(A)Piv1 + q(A)(I � Pi)v1and the angle between x and ui is de�ned bytan �(x; ui) = kq(A)(I � Pi)v1k2kq(A)Piv1k2= kq(A)yik2jq(�i)j k(I � Pi)v1k2kPiv1k2 :If we let p(�) � q(�)=q(�i) we gettan �(x; ui) = kp(A)yik2 tan �(v1; ui)which shows the result by taking the minimum over all x's in Km.


