200 CHAPTER VI

Theorem 6.3 Let the eigenvalues \; of A be ordered decreas-
ingly. Then the angle 0(u;, KC,) between the exact eigenvector u;
associated with \; and the m — th Krylov subspace IC,, satisfies
the inequality,

tan 0(u;, k) < m tan 0(vy, u;) , (6.39)
where
i—1 s — )\n
rmi=1 k=] 3 for i>1 (6.40)
e lD VISPV
]_
and,
Ai = Ai1
= . 6.41
T N (641

Proof. To prove the theorem for the case ¢ = 1 we start by
expanding the vector y; defined in the previous lemma in the
eigenbasis {u;} as

n
h= Z QU
j=2

n
where the «;’s are such that 3 |a;|? = 1. From this we get,
i=2

Aplz=3 Da? < )P < 2.
Ip(A)y 3 ;Ip(%)%l < max [p(A)FF < max ()

The result follows by a direct use of theorem 4.8 stated in Chap-
ter IV. For the general case (i # 1), we can use the upper bound
obtained by restricting the polynomials to be of the form

(A= A) - (Aim1 = )
Cn = n) w1 =g 1Y

p(A) =

where ¢ is now any polynomial of degree k —i such that g(\;) = 1.
Proceeding as for the case ¢« = 1, we arrive at the inequality,

i—1
Aj— A
q(A)
Hl N — A

Ay, <
[p(Ayill < \ethax, | !
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i—1 i —
2 ma A
jl:Il i — N\ )\e[)\i+1}f)\n} g

The result follows by minimizing this expression over all polyno-
mials ¢ satisfying thr constraint ¢();) = 1. n

6.2. Convergence of the Eigenvalues

We now turn our attention to the approximate eigenvalues. The
following error bounds concerning the approximate eigenvalues
)\Em) actually show that these converge to the corresponding eigen-
values of A if exact arithmetic were used.

Theorem 6.4 The difference between the i—th exact and approx-
. . . (m) . . )
imate eigenvalues \; and ;" satisfies the double inequality,

(m) 2
Y tan 0 i
0< A= A™ < (A = A) (’“’"’C T f;;?) (6.42)

(m)

where v; is defined in the previous theorem and k; "’ is given by
i—1 (m) )\
M =1, @ i>1.
]:1 ] %

Proof. We prove the result only for the case i = 1. The first
inequality is one of the properties proved for general projection
methods when applied to Hermitian matrices. For the second, we
note that
(m) _
A= xio{gg%{mil(Ax, z)/(z,x)

and hence,

A =A™= min (M — Az, 2)/(z,2) .

T£0EK -1
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Remembering that K,,_; is the set of all vectors of the form g(A)v,
where ¢ runs in the space [P,,_; of polynomials of degree not
exceeding m — 1 this becomes

)\1 . )\gm) _ min (()\1 - A)Q(A)Ulaq(A)vl) ) (643)

ozqe Ppi (a(A)vr, g(A)on)

Expanding the initial vector v; in an orthonormal eigenbasis {u,}
as

n
v = Z QU
j=1

we find that

> (M - A)lajg(Ag)[?
)\1 _ )\gm> = min = n
0ge [Py > ag(Ag)

from which we obtain the upper bound

)\ 2

)\1 - )\gm) S ()\1 - )\n) min ] =2 |O{]q( ])|2
0#£¢€ [Py 3 1|aJQ()\J)|

E |O‘JQ()‘J)|2

< (A — A\, min -
SGi=d) min Sy

S ()\1 - )\n) : |Q()‘J)| J=

min  max
0#qe P, 1 5=23,-m

Defining p(A) = ¢(A)/q(A1) and observing that the set of all
p’s when ¢ runs in the space [P,,_; is the set of all polynomials of
degree not exceeding m — 1 satisfying the constraint p(\;) = 1,
we obtain

A=A <=, min max [p(A)|*tan? O(uy, vy) .
1= A < (M )pe p, 0 AdhE, Ip(A)| (1, v1)
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The result follows by expressing the min-max quantity in the
above expression using Chebyshev polynomials according to The-
orem 4.8.

The general case ¢ > 1 can be proved by using the Courant-
Fisher characterization of )\Em). The i-th eigenvalue is the max-
imum of the Rayleigh quotient over the subspace of K, that is
orthogonal to the first ¢« — 1 approximate eigenvectors. This sub-
space can be shown to be the same as the subspace of all vectors
of the form ¢(A)v; where ¢ is a polynomial of degree not exceeding

m — 1 such that q()\gm)) = q()\gm)) == (I()\Z(Tl)) = 0. u

6.3. Convergence of the Eigenvectors

To get a bound for the angle between the exact and approximate
eigenvectors produced by the Lanczos algorithm, we exploit the
general result of Theorem 4.6 seen in Chapter IV. The theorem
tells us that for any eigenpair A;, u; of A there is an approximate
eigenpair \, @; such that,

sin [0(ui, U;)] < /14 g—z sin [0(u;, ICpr,)] (6.44)

were 0; is the distance between \; and the set of approximate
eigenvalues other than \; and v = ||P,, A(I — P,,)||>. We notice
that in the present situation we have

(I —Pn)AP,, = (I-V,VEHAV, VE
= (I =V VY ViuHp + Bri1Vm )V

H
= But1Vms1Vy,

in which we used the relation (6.8). As a result
V= WNPuA = Pu)llz = (I = Pu) APmll2 = Bt -

Since the angle between u; and the Krylov subspace has been
majorized in Theorem 6.3, a bound on the angle 0(u;, ;) can be
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readily obtained by combining these two results. For example, we

can write
\/m sin [0(ug, ;)]

< 1+ B4 /07 tan [0(us, K]

\/ ﬂ +1/ tan @

<

sin [Q(Uz, ﬂz)]

IN

(v1, u;)

where the constants x; and ~; are defined in Theorem 6.3.

7. Convergence of the Arnoldi Process

In this section we will analyze the speed of convergence of an ap-
proximate eigenvalue/ eigenvector obtained by Arnoldi’s method
to the exact pair. This will be done by considering the distance of
a particular eigenvector u; from the subspace K,,,. We will assume
for simplicity that A is diagonalizable and define

(m)

i

min max A, 6.45
min e O)) (6.45)

where [P; | represents the set of all polynomials of degree not
exceeding m — 1 such that p(\;) = 1. The following lemma relates
the distance ||({ — Py,)uil|2 to the above quantity.

Lemma 6.2 Assume that A is diagonalizable and that the initial
vector vy in Arnoldi’s method has the expansion vy = Z’,ﬁj” Uy,
with respect to the eigenbasis {uktr—1, n in which ||uglls =1,k =
1,2,...,n and a; # 0. Then the following inequality holds:

I =Pouills < &e™

where
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Proof. From the relation between X, and [P,,_; we have

I = Pr)aiuill = min [lau; — g(A)vfl;
q€

< min |l — q(A)v1l]2,
qe |Pm717 Q()‘l)zl

and therefore, calling p the polynomial realizing the minimum on
the right-hand-side

(I = Pm)aiuills < | Z ap(A;)ujll2 < max |p(A;)] Z ||
7=1
j#i J#z
which follows by using the triangle inequality and the fact that
the component in the eigenvector u; is zero. The result is then
established by dividing both members by |a;]. |

The question has been therefore converted into that of es-
timating the quantity (6.45) on which we will now focus. The
quantity egm) represents the smallest possible infinity norm over
the set o(A), of all polynomials of the form 1 — (2 — A;)s(2),
with s of degree not exceeding m — 1. We seek an exact expres-
sion for ez(m) or, equivalently for the best uniform approximation
of the function unity on the set o(A), by polynomials of degree
< m, satisfying the constraint that they vanish at the point A;.
Without loss of generality we Wlll restrlct ourselves to the case
t =1, i.e., we are interested in el . We will need the following
lemma frorn approximation theory see, for example Cheney [16].
We recall that a set of functions satisfy the Haar condition on the
points x1, s, . .., xy if any linear combination f of these functions
vanishes when f(x;) =0,i=1,...,k.

Lemma 6.3 Let q be the best uniform approximation of a con-
tinuous function f by a set of m polynomaials satisfying the Haar
condition on a compact set o consisting of at least m + 1 points.
Then there exist at least m + 1 points Ao, ..., A\ of 0 such that
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the error e(z) = f(2) — 4(2) reaches its mazimum modulus at the
Aj’s , i.e., such that:

)| = max|e(z) j=0,1,...,m
Such points are called critical points.

Recall that we denote by [P, the set of polynomials p of degree
< m such that p(A;) = 1. In our case the function f is the
function unity f(z) = 1 and the set of polynomials by which it is
approximated is the set of polynomials of degree < m, satisfying
the constraint that they vanish at the point A;. This set is nothing
but the set of polynomials —1 + [P;, which constitutes a vector
space of polynomials, of dimension m. Let Ay, ..., A1 be the
critical points corresponding to this best approximation as defined
by the lemma. Then a useful basis of this space of polynomials is
the basis consisting of the polynomials

~

wi(z) = (z = A)(2), j=2,...,m+1, (6.46)

where l}- is the Lagrange polynomial of degree 7 — 1,

lA _m+1z_)\k o

i) =11 SV j=2,...,m+ L. (6.47)
k=2 7\ k
k#j

With this we can prove the following lemma.

Lemma 6.4 The underdetermined linear system of m equations

and m + 1 unknowns z;,t =2,...,m+ 2
m—+2
Y wiN)z =0, j=2,3,...,m+1 (6.48)
i=2

admits the nontrivial solution

m+2 )‘1_)\19

k=2
ki
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Proof. Because of the Haar condition, the system of polyno-
mials {w;};=2 _m+1, forms a basis and therefore there exists a
nontrivial solution to the above linear system. By the definition
of the Lagrange polynomials, all the terms in the :—th equation
vanish except those corresponding to j = ¢ and to j = m + 2.
Thus, the i equation can be rewritten as

L

()\Z — )\I)Zz + Zm+2()\m+2 - )\1) H —F =0.
k=2 )\’L - )\k
k#i

The unknown z,,., can be assigned an arbitrary nonzero value
(since the system is underdetermined) and then the other un-
knowns are determined uniquely by:

“m+2 ()‘1 - )‘1) k=2, Ai — Ak kel ()\z — )‘k)
k#£i k#i

Multiplying numerator and denominator by (A; — A, 42) we get

C m+2 1

A=A s A= A
k#i

Zi =

where C' is the following constant, which depends on the choice

of Zmi2,
m+2

= Zm+2 H m+2 )\k

The result follows by choosing 2,2 so that,

m+2

= H()‘l_
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We should point out that the solution {z;} does not depend
on the basis chosen for the space of polynomials —1 + [P, . For
example choosing the usual power basis (z—A;)z/"!, 7 =1,...,m,
yields the same set {z;}; see Exercise P-6.12. The basis {w;} is
far more convenient than the power basis for determining this
solution because of the simplicity of the resulting linear system
(6.48). The following lemma will now be proved.

Lemma 6.5 Let p be the (unique) polynomial of degree m sat-
isfying the constraint p(A1) = 1, and having the smallest infinity
norm on a compact set o consisting of at least m + 1 points.
Let the m + 1 critical points as defined by Lemma 6.3 be labeled
A2y ooy Ao Let zi, k= 2,...,m+2 be any solution of the linear
system (6.48) and write each zy in the form z, = dre~% where
0 18 real and positive and 0 is real. Then, p can be expressed as

m+2 .
> e (2)
R (6.49)

> ekl ()

k=2

where l 1s the Lagrange polynomaial of degree m

m+2 2 — s

lk(Z) == J .
;Ez Ae = A,
J#k

Proof. By the equations (6.48) that define the z;’s we have
for any v belonging to the space of polynomials —1 + P, =

span{w; }i—2,..m+1,
m+2 .
Z 6]96710“)()\19) = 0. (650)

k=2

Let p the polynomial defined by (6.49). We must show that

17+ vlloo 2= 1Pl (6.51)
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for any v in —1 + IP;,, where ||.|[ represents the infinity norm

over the set o. Let us set
m+2 ) -1
p= lz ew’“lk()\l)] : (6.52)
k=2

Notice that |p| is the uniform norm of p in o. From (6.50) it is
clear that for some k' we have

Je {pe’wk’v()\k/)] > 0.

Therefore,
P+olse = _max  p(4) +o(d)P
> (k) +v(Aw)[?
> |pe” % o) [?
= oI+ [o(w) P + 2 Re {pe™ ¥ v(A)}
> ol = I7ll%
which shows that (6.51) is true and completes the proof. n

We are now ready to state the main result of this section.

Theorem 6.5 Let m < n. Then there exist m eigenvalues of A
which can be labeled Ao, A3, A1 Such that:

m+1  m+l -1
=13 11 Pu = M) (6.53)
J=2 k=2,k#j Ak = Ay

Proof. Observe that the solution of the linear system (6.48)
satisfies z; = [;(A1). The proof is obtained by simply replacing
this solution in the expression of p defined in (6.52). Note that
the polynomials for the lemmas are of degree m whereas the the
candidate polynomials in (6.45) are of degree m — 1. n
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For the case where the eigenvalue is in the outermost part of
the spectrum, the above expression can be interpreted as follows.
In general, the distances |\ — A;| are larger than the correspond-
ing distances |\, — A;| of the denominator. This is illustrated in
Figure (6.2). Therefore, many of the products will be large when
m is large and the inverse of their sum will be small. This is in-
dependent of the actual locations of the critical points which are
not known. The conclusion is that the eigenvalues that are in the
outermost part of the spectrum are likely to be well approximated.

Sm(z)

Ak
A1

Re(z)

Ape

Figure 6.2 Illustration of Theorem 6.5 for A\; in the
outermost part of the spectrum of A.

We can illustrate the above theorem with a few examples.

Example 6.4 Assume that

k—1
Ak = , k=1,2,...n,
n—1

and consider the special case when m = n — 1. Then,

(my 1
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Indeed, since m = n — 1 there is no choice for the A;’s in the theorem
but to be the remaining eigenvalues and (6.53) yields,

m+1m+1 |k _ 1|

11 |k = Jl

]2k2
k#j

m+1

—

AN
3
=

~—
L

m!

B Z(J—l)(m+1—1)
_ i(;):zm—l.

i=1

Example 6.5 Consider now a uniform distribution of eigenvalues
over a circle instead of a real line,

Z~2(k'71)‘rr
Ap=¢€e""n [ k=12,....n.

To prove the above formula, we utilize again the fact that the eigenval-
ues involved in the theorem are known to be Ag, As, ..., Ap,. We define
w = e™/™ and write each product term in the formula (6.53) as

m+1 k71_1| - |w _1|
H |wk 1 _ 0 1| - H |wk—w9|
k;é] k#]

-1

- [Hw—u] 1= w| T lo# — o
k=1 =1

ki

Recalling that the w®’s are the powers of the n-th root of unity, we
observe that a simple renumbering of the products in the denominator
will show that the numerator and denominator have the same modulus.
Hence the above product term is equal to one and by summing these
products and inverting, we will get the desired result.
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The above two examples show a striking difference in behavior
between two seemingly similar situations. The complex uniform
distribution of eigenvalues over a circle is a much worse situation
than that of the uniform distribution over a line segment. It in-
dicates that there are cases where the eigenvalues will converge
extremely slowly. Note that this poor convergence scenario may
even occur if the matrix A is normal, since it is only the distribu-
tion of the eigenvalues that cause the difficulty.

Apart from the qualitative interpretation given above, it is
also possible to give a simple explicit upper bounds for ez(m).

Proposition 6.10 Let C(c, p) be a circle of center ¢ and radius
p that encloses all the eigenvalues of A except \y. Then,

m—1
(m)< P
o —(|A1—c|> |

Proof. An upper bound is obtained by using the particular
polynomial ¢(z) = (z — ¢)™ 1 /(Ay — ¢)™ ! from which we get

(m) J m—1 _ am—1
s (i) =

It was seen in Chapter IV (Lemma 4.3) that the polynomial used
in the proof is actually optimal.

Sm(z)

c-a C-€ c ct+e ct+a

| | | Re(z)

Figure 6.3 Ellipse containing the spectrum of A.
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Still from what was seen on Chebyshev polynomials in Chap-
ter IV. we may be able to get a better estimate of egm) if we can
enclose the eigenvalues of the matrix A in an ellipse centered at
¢ with focal distance e and major semi-axis a, as is illustrated in
Figure 6.3. In this situation the results on the Chebyshev poly-
nomials of the first kind allow us to state the following theorem.

Theorem 6.6 Assume that all the eigenvalues of A expect \ lie
inside the ellipse centered at ¢, with foci c+e, c—e and with major
semi axis a. Then,

oy COmi(8)
S G ()

where C,,_1 is the Chebyshev polynomial of degree m — 1 of the
first kind. In addition, the relative difference between the left and
the right hand sides tends to zero as m tends to infinity.

(6.54)

PROBLEMS

P-6.1 To measure the degree of invariance of a subspace X with
respect to a matrix A, we define the measure v(X, A) = ||(I — P)AP||2
where P is the orthogonal projector onto the subspace. (1) Show that
if X is invariant then v(X, A) = 0. (2) Show that when X is the m-th
Krylov subspace generated from some initial vector v, then v(X, A) =
Bm+1- (3) Let 7,72 = 1,...,m be the residual vectors associated with
the approximate eigenvalues obtained from an orthogonal projection
process onto X, and let R = [ry,...,7p]. Show that v(X, A) = || R]|2.

P-6.2 Consider the matrix

0 1
1 0
1 0
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(1) What are eigenvalues of A7 (2) What is the m-th Krylov sub-
space associated with A when vy = ey, the first column of the identity
matrix? (3) What are the approximate eigenvalues obtained from
Arnoldi’s method in this case? How does this relate to Example 6.57

P-6.3 Assume that k& Schur vectors have already been computed and
let P be an orthogonal projector associated with the corresponding in-
variant subspace. Assume that Arnoldi’s method is applied to the ma-
trix (I — P)A starting with a vector that is orthogonal to the invariant
subspace. Show that the Hessenberg matrix thus obtained is the same
as the lower (m — k) x (m — k) principal submatrix obtained from an
implicit deflation procedure. Show that an approximate Schur vector
associated with the corresponding projection procedure is an approx-
imate Schur vector for A. This suggests another implementation of
the implicit deflation procedure seen in Section 2.3 in which only the
(m—Fk) x (m—k) Hessenberg matrix is used. Give a corresponding new
version of Algorithm 6.4. What are the advantages and disadvantages
of this approach?

P-6.4 Show that for the Lanczos algorithm one has the inequality

2 2 g2 11/2
i:{flffm[ﬂiﬂ +of + 42,2 < jmax A

Show a similar result in which max is replaced by min.

P-6.5 Consider a matrix A that is skew-Hermitian. (1) Show that
the eigenvalues of A are purely imaginary. What additional property
do they satisfy in the particular case when A is real skew-symmetric?
[Hint: eigenvalues of real matrices come in complex conjugate pairs...]
What can you say of a real skew-symmetric matrix of odd dimension
n? (2) Assume that Arnoldi’s procedure is applied to A starting with
some arbitrary vector v;. Show that the algorithm will produce scalars
hij such that

hijZO, for 1<y —1
Relhj;l =0,7 =1,2,....,m
hj,j-l—l = _hj-i-l,jj =1,2,..,m

(3) From the previous result show that in the particular where A is
real skew-symmetric and v; is real, then the Arnoldi vectors v; satisfy
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a two term recurrence of the form
Bj+1vj+1 = Avj + Bjuj-1

(4) Show that the approximate eigenvalues of A obtained from the
Arnoldi process are also purely imaginary. How do the error bounds
of the Lanczos algorithm (Hermitian case) extend to this case?

P-6.6 How do the results of the previous problem extend to the case
where A = ool + S where « is a real scalar and S is skew-Hermitian or
skew symmetric real?

P-6.7 We counsider the following tridiagonal matrix A,, of size n x n
2 1
1 2
1 1
2 1
1 2
(1) Consider the vector z of length n whose j — th component is sin j6
where 0 is a real parameter such that 0 < § < 7/2. Show that

(2(1 + cosO)I — A,)z = sin((n + 1)0)e,

where e, = (0,0,...0,1). (2) Using the previous question find all the
eigenvalues and corresponding eigenvectors of A,. (3) Assume now
that m steps of the Lanczos algorithm are performed on A, with the
starting vector v; = e; = (1,0,...,0)%. (3.a) Show that the Lanczos
vectors v; are such that v; = e; ,j = 1,2,...,m. (3.b) What is the
matrix T}, obtained from the Lanczos procedure? What are the ap-
proximate eigenvalues and eigenvectors? (Label all the eigenvalues in
decreasing order). (3.c) What is the residual vector and the residual

norm associated with the first approximate eigenvalue )\gm) 7 [Hint:
It will be admitted that
mm m+1

sin L—I—sin2277r—l— + sin? = ]
(m+1) (m+1) (m+1) 2

How would you explain the fact that convergence is much slower than
expected?
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P-6.8 Show that the vector v,,,1 obtained at the last step of Arnoldi’s
method is of the form v,,+1 = yppy(A)vy, in which « is a certain nor-
malizing scalar and p,, is the characteristic polynomial of the Hessen-
berg matrix H,,.

P-6.9 Develop a modified version of the non-Hermitian Lanczos al-
gorithm that produces a sequence of vectors v;, w; that are such that
each v; is orthogonal to every w; with j # ¢ and ||v;||2 = ||w;[|2 = 1 for
all 2. What does the projected problem become?

P-6.10 Develop a version of the non-Hermitian Lanczos algorithm
that produces a sequence of vectors v;, w; which satisfy

(vi,v;) = £6ij,

but such that the matrix 7, is Hermitian tridiagonal. What does the
projected problem become in this situation? How can this version be
combined with the version defined in the previous exercise?

P-6.11 Using the notation of Section 3.2 prove that gjx(z) = z¥p;(z)
is orthogonal to the polynomials py,po,...,p; , assuming that k£ < j.
Show that if we orthogonalized ¢, against p1,p2,...,pj_k, we would
obtain a polynomial that is orthogonal to all polynomials of degree
<j + k. Derive a general look-ahead non-Hermitian Lanczos proce-
dure based on this observation.

P-6.12 It was stated after the proof of Lemma (6.4) that the solu-
tion of the linear system (6.48) is independent of the basis chosen to
establish the result in the proof of the lemma. 1) Prove that this is
the case. 2) Compute the solution directly using the power basis, and
exploiting Vandermonde determinants.

NoTES AND REFERENCES.  There has been several papers published on
Arnoldi’s method and its variants for solving eigenproblems. The original
paper by Arnoldi [2] came out about one year after Lanczos’ breakthrough
paper [89] and is quite different in nature. The author hints that his method
can be viewed as a projection method and that it might be used to approxi-
mate eigenvalues of large matrices. Note that the primary goal of the method
is to reduce an arbitrary (dense) matrix to Hessenberg form. At the time,
the QR algorithm was not yet invented, so the Hessenberg form was desired
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only because it leads to a simlpe recurrence for the characteristic polyno-
mial. The 1980 paper by Saad [139] showed that the method could indeed be
quite useful as a projection method to solve large eigenproblems, and gave a
few variations of it. Later, sophisticated versions have been developed and
used in realistic applications, see [17, 105, 106, 115, 123, 154], among others.
During roughly the same period, much work was devoted to exploiting the
basic non-Hermitian Lanczos algorithm by Parlett and co-workers [125] and
by Cullum and Willoughby [24, 26] and Cullum, Kerner and Willoughby [22].
The first successful application of the code in a real life problem seems to be
in the work by Carnoy and Geradin [12] who used a version of the algorithm
in a finite element model.

The block Lanczos algorithm seems to have been developed first by Golub
and Underwood [61]. The equivalent Block Arnoldi algorithm, has not been
given much attention, except in control problems where it is closely associated
with the notion of controllability for the multiple-input case [6]. In fact
Arnoldi’s method (single input case) and its block analogue (multiple input
case) are useful in many areas in control, see for example [149, 150].

The error bounds on the Hermitian Lanczos algorithm are from [138].
Bounds of a different type have been proposed by Kaniel [83] (however there
were a few errors for the case ¢>1 in Kaniel’s original paper and some of
these errors were later corrected by Paige [112]). We have omitted to discuss
similar bounds for the Block Lanczos algorithm but these were also developed
in Saad [138]. The convergence theory for the Arnoldi process is adapted from
Saad [141].

The various implementations of the Lanczos algorithm in the Hermitian
case are covered in detail in Parlett’s book [118]. Implementations on mas-
sively parallel machines have recently been discussed by Petiton [126] on the
CM-2 and by Scott [161] on the iPSC/2.

Concerning software, there is little that is publically available. Cullum
and Willoughby offer a FORTRAN code for the Hermitian case in their book
[25] based on the Lanczos algorithm without any form of reorthogonaliza-
tion. A similar (research) code was also developed by Parlett and Reid [122].
Recently, Freund, Gutknecht, and Nachtigal published a FORTRAN imple-
mentation of their Look-Ahead Lanczos algorithm [49]. We know of no other
codes based on the Lanczos algorithm with or without reorthogonalization.
There has been a few implementations of the Hermitian Lanczos and the
Block Lanczos algorithm with some form of reorthogonalization. We refer to
the survey by Parlett concerning software availability in 1984 [119]. Interest-
ingly enough, there has been very little new happening in the software scene
since then, so this survey seems almost up to date, in 1991. A
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Chapter VII

Acceleration Techniques
and Hybrid Methods

Many of the early algorithms for eigenvalue extraction were based
on using the powers of the matrix A. The prototype of these tech-
niques is the power method, a technique that is attractive because
of its simplicity but whose convergence rate may be unacceptably
slow. Acceleration methods can be valuable tools for speeding up
the convergence of this and other algorithms. In this chapter we
will present a number of techniques that are commonly termed
polynomial acceleration techniques for vector iterations. They
are based on an interesting blend of approximation theory and
numerical linear algebra. A polynomial iteration takes the form
2k, = pr(A)zo where py, is a polynomial which is determined from
some knowledge on the distribution of the eigenvalues of A. A
fundamental problem, which will utilize ideas from approximation
theory, lies in computing a good polynomial p,. By combining a
basic method such as Arnoldi’s method, with polynomial acceler-
ation, efficient algorithms for computing an eigenvector or a few
eigenvectors of a large sparse matrix can be derived.
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1. The Basic Chebyshev Iteration

Let A be a real nonsymmetric (or non Hermitian complex) matrix
of dimension n and consider the eigenvalue problem,

Au = Au. (7.1)

Let A\q,---, A\, be the eigenvalues of A labeled in decreasing order
of their real parts, and suppose that we are interested in A; which
is initially assumed to be real.

We consider a polynomial iteration of the form: z; = pg(A)z2o,
where z; is some initial vector and where p; is a polynomial of
degree k.  We would like to choose p; in such a way that the
vector zj converges rapidly towards an eigenvector of A associated
with \; as k£ tends to infinity. Assuming for simplicity that A is
diagonalizable, we expand zj in the eigenbasis {u;} as,

n
20 = Z O;ui,
i=1

which leads to the following expression for z; = pg(A)zp:

n n
2 = D Oipe(Ni)ui = Orpe(Ar)ur + D Oipr (N us. (7.2)

i=1 =2
The above expansion shows that if 2, is to be a good approxima-
tion of the eigenvector wuy, then the second term must be much
smaller that the first and this can be achieved by making every
pe(Aj), with j # 1, small in comparison with py(A;). This leads
us to seek a polynomial which takes ‘small” values on the discrete

set
R = {)\27 )‘37 ) )‘n}a

and which satisfies the normalization condition

An ideal such polynomial would be one which minimizes the (dis-
crete) uniform norm on the discrete set R over all polynomials of
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degree k satisfying (7.3). However, this polynomial is impossible
to compute without the knowledge of all eigenvalues of A and as a
result this approach has little practical value. A simple and com-
mon alternative, is to replace the discrete min-max polynomial by
the continuous one on a domain containing R but excluding A;.
Let E be such a domain in the complex plane, and let [P, denote
the space of all polynomials of degree not exceeding k. We are
thus seeking a polynomial p, which achieves the minimum

min max |p(A)]. 74
pe Py, p0)=1 A6E| (W (7.4)

For an arbitrary domain FE, it is difficult to solve explicitly the
above min-max problem. Iterative methods can be used, however,
and the exploitation of the resulting min-max polynomials for
solving eigenvalue problems constitutes a promising research area.
A preferred alternative is to restrict £ to be an ellipse having its
center on the real line, and containing the unwanted eigenvalues
Aiyt=2,---,n.

Sm(z)

c-a C-€ c ct+e ct+a
|

| | | Re(z)

Figure 7.1 Ellipse containing the spectrum of A with
e real.

Let E(c,e,a) be an ellipse containing the set
R = {)\27 )\37 ) )\n}a

and having (real) center ¢, foci ¢ + e, ¢ — e, and major semi-axis
a. When A is real the spectrum of A is symmetric with respect
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to the real axis, so we can restrict E(c,e,a) to being symmetric
as well. In other words, the main axis of the ellipse is either the
real axis or a line parallel to the imaginary axis. Therefore, a and
e are either both real or both purely imaginary. These two cases
are illustrated in Figure 7.1 and Figure 7.2 respectively.

Figure 7.2 Ellipse containing the spectrum of A, with
e purely imaginary.

A result that is known in approximation theory and shown in
Section IV-4 is that when E is the ellipse E(c,e,a) in (7.4), an
asymptotically best min-max polynomial is the polynomial

Ckl(A—c)/e
p() = o=
Cil(M —c)/e]
where C is the Chebyshev polynomial of degree k of the first
kind.
The computation of zx = pp(A)z0,k = 1,2, -, is simplified
by the three-term recurrence for the Chebyshev polynomials,
Ci(A) = A, Co(N) =1,
Crr1(A) = 2ACk(N) — Cr_1(N), k=1,2,---

(7.5)
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Letting p, = Cx[(A —¢)/e], k = 0,1, - -, we obtain

A—c A—c
Pr+1Pk41(A) = Crya] c ] =2 c PkPE(A) — pr—1Pk-1(A).

We can simplify this further by defining ox11 = pr/pri1,

A—c¢

Pr+1(A) = 20441 Pe(A) — 0Kk 1K1 (A).

(&

A straightforward manipulation using the definitions of o;, p; and
the three-term recurrence relation of the Chebyshev polynomials

shows that 0;,7 = 1,2, ---, can be obtained from the recurrence,
e
oy = ;
! )\1 —C
1
Ok+1 = 5 » k:1727
2 _ 5

o1

The above two recursions defining z; and o; can now be as-
sembled together to yield a basic algorithm for computing z, =
pr(A)zo, k£ > 1. Although A; is not known, recall that it is used
in the denominator of (7.5) for scaling purposes only, so we may
replace it by some approximation v in practice.

ALGORITHM 7.1 Chebyshev Iteration

1. Start: Choose an arbitrary initial vector zy and compute

e

= 7.6
01 )\1 P ) ( )
a = ZA-c)a. (7.7)
e
2. Iterate: For k =1,2,---, until convergence do:

1
P E—— 7.8
Ok+1 201 — o3 (7.8)

o

Zk+1 — 2 bt (A — C])Zk — OkOk+1%k—1 - (79)

e
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An important detail, which we have not considered for the sake
of clarity, concerns the case when e is purely imaginary. It can be
shown quite easily that even in this situation the above recursion
can still be carried out in real arithmetic. The reason for this
is that the scalars oy1;/e and 04410y in the above algorithm are
real numbers. The primary reason for scaling by Cy[(A; —¢)/e] in
(7.5) is to avoid overflow but we have just given another reason,
namely avoid complex arithmetic when e is purely imaginary.

1.1. Convergence Properties.

In order to understand the convergence properties of the sequence
of approximations z; we consider its expansion (7.2) and examine
the behavior of each coefficient of u;, for ¢ # 1. By the definition
of pr we have:
_ Cil(A\i —¢)/€]

Cel(Ar — o) /e]
From the standard definition of the Chebyshev polynomials in the
complex plane seen in Chapter IV, the above expression can be
rewritten as

Pr(A)

k —k
wi + w;

e
wh + wy

pr(Ai) = (7.10)

where w; represents the root of largest modulus of the equation
in w: . \
-1 i —C
— = . 7.11
S+ w) =20 (7.11)

From (7.10), px()\i) is asymptotic to [w;/w;]¥, hence the following
definition.

Definition 7.1 We will refer to k; = |w;/wy| as the damping
coefficient of \; relative to the parameters c, e. The convergence
ratio T(A1) of Ay is the largest damping coefficient k; for i # 1.

The meaning of the definition is that each coefficient in the eigen-
vector u; of the expansion (7.2) behaves like k¥, as k tends to
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infinity. The damping coefficient x(A) can obviously be also de-
fined for any value A in the complex plane, not necessarily an
eigenvalue. Given a set of r wanted eigenvalues, Ay, Ao, ..., A\,
the definition 7.1 can be extended for an eigenvalue \; j < r as
follows. The damping coefficient for any ‘unwanted’ eigenvalue
Ai, > 7 must simply be redefined as |w;/w;| and the convergence
ratio 7(\;) with respect to the given ellipse is the largest damping
coefficient x;, for [ =r+1,...,n.

One of the most important features in Chebyshev iteration lies
in the expression (7.11). There are infinitely many points A in the
complex plane whose damping coefficient £(\) has the same value
k. These points A are defined by (A —¢)/e = (w +w!)/2 and
|w/wi| = k where k is some constant, and belong to the same
confocal ellipse E(c,e,a(k)). Thus a great deal of simplification
can be achieved by locating those points that are real as it is
preferable to deal with real quantities than imaginary ones in the
above expression defining x;. As was seen in Section IV-4 the
mapping J(w) = 3(w+w?'), transforms a circle into an ellipse in
the complex plane. More precisely, for w = pe?, J(w) belongs to
an ellipse of center the origin, focal distance 1, and major semi-
axis p = %(p+p‘1). Moreover, given the major semi-axis « of the
ellipse, the radius p is determined by p = 1[a + (o — 1)/?]. As
a consequence the damping coefficient r; is simply p;/p; where
pi = i + (@2 — 1)Y?] and «; is the major semi-axis of the
ellipse centered at the origin, with focal distance one and passing
through (\; —¢)/e. Since oy > «;,7 = 2,3,---,n, it is easy to
see that py > p;, © > 1, and hence that the process will converge.
Note that there is a further mapping between A; and (\; —¢)/e
which transforms the ellipse E(c, e, a;) into the ellipse £(0, 1, ;)
where a; and «; are related by a; = a;/e. Therefore, the above
expression for the damping coefficient can be rewritten as:

oo ag+ (= 1)
R
where a; is the major semi-axis of the ellipse of center ¢, focal
distance e, passing through A;. From the expansion (7.2), the

Ki (7.12)
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vector z; converges to fyuy, and the error behaves like 7(A;)*.
The algorithm described above does not address a certain
number of practical issues. For example, the parameters ¢ and
e will not generally be known beforehand, and their estimation is
required. The estimation is typically done in a dynamic manner.
In addition, the algorithm does not handle the computation of
more than one eigenvalue. In particular what can we do in case
Ay is complex, i.e., when \; and Ay = \; form a complex pair?

2. Arnoldi—Chebyshev Iteration

As was just argued, Chebyshev iteration alone has a few impor-
tant limitations. In fact it is rarely used as a single vector iteration
in practice but rather combined with some other technique. The
purpose of this section is to describe one such combination.

Suppose that E(c,e,a) contains all the eigenvalues of A ex-
cept for a few of them. Looking closely at the expansion of z, we
observe that it will typically contain more than just an approxi-
mation to u;. In general, the vector has the form

Zr = 91U1 + Qiluil + ...+ 0ipuip + €, (713)

where \; -+, );, are the eigenvalues outside E(c, e,a) and € is a
relatively small term in comparison with the first r ones. All we
need is a method to extract those eigenvalues from the single vec-
tor zx. We will refer to such a method as a purification process.
One process of this type can be achieved via the Arnoldi method
seen in the preceding Chapter. In fact any of the projection tech-
niques seen earlier can be used as well.

2.1. Purification by Arnoldi’s Method

An important property of Arnoldi’s method seen in Chapter VI,
is that if the initial vector v, is exactly in an invariant subspace of
dimension r and not in any invariant subspace of smaller dimen-
sion, i.e., if the grade of vy is r, then the algorithm stops at step
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m = r, because we will obtain ||0,,1|| = 0. However, as Proposi-
tion 6.2 shows in this case K, will be invariant, which implies by
Proposition 4.3 that the r computed eigenvalues are exact.

This suggests that a good choice for the initial vector v; in
Arnoldi’s method would be to take a vector which is close to being
in an invariant subspace of small dimension. Polynomial iteration
can help construct such vectors. After a Chebyshev iteration is
applied to some initial vector v the resulting vector will have large
components in any eigenvalue that is outside the best ellipse. If
there is a small number of such eigenvalues in addition to the
wanted ones Aj, Ag, ..., A, then the Arnoldi projection process will
compute them with a good accuracy and they will be used to
correct the convex hull and the ellipse. Normally, in the next
iteration, they should not appear again and others may possibly
surge and will be added to the convex hull again. This can give
an efficient adaptive and self correcting process. A few details of
this combination which we refer to as the enhanced initial vector
approach will be given in the next sections.

2.2. The Enhanced Initial Vector Approach

Suppose that we can find an ellipse E(c, e, a) that contains all the
eigenvalues of A except the r wanted ones, i.e., the r eigenvalues
of A with largest real parts. We will describe in a moment an
adaptive way of getting such an ellipse. Then an appealing algo-
rithm would be to run a certain number of steps of the Chebyshev
iteration and take the resulting vector z; as initial vector in the
Arnoldi process. From the Arnoldi purification process one ob-
tains a set of m eigenvalues, r of which are approximations to the
r wanted ones, as was suggested in the previous section, while the
remaining ones will be useful for adaptively constructing the best
ellipse. After a cycle consisting of k£ steps of the Chebyshev itera-
tion followed by m steps of the purification process, the accuracy
realized for the r rightmost eigenpairs may not be sufficient and
restarting will then be necessary. The following is an outline of a
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simple algorithm based on the above ideas:

ALGORITHM 7.2 Arnoldi-Chebyshev

1. Start: Choose an initial vector vy, a number of Arnoldi
steps m and a number of Chebyshev steps k.

2. Tterate:

(a)

(b)

()

Next, we

Perform m steps of the Arnoldi algorithm starting with
vy. Compute the m eigenvalues of the resulting Hes-
senberg matrix. Select the r eigenvalues of largest real
parts Ay, -+, A, and take R = {\.y1,- -, A\p}. If satis-
fied stop.

Using R, obtain the new estimates of the parameters
c and e of the best ellipse. Then compute the initial
vector zy for the Chebyshev iteration as a linear combi-
nation of the approximate eigenvectors u;,© = 1,--+,r.

Perform k steps of the Chebyshev iteration to obtain
2. Take vy = z/||zk|| and go back to 1.

will give some details on practicalities concerning the

above algorithm.

2.3. Computing an Optimal Ellipse

As was explained earlier we would like to find the ‘best’ ellipse
enclosing the set R of unwanted eigenvalues, i.e., the eigenvalues
other than the ones with the r algebraically largest real parts. We
must begin by clarifying what is meant by ‘best’ in the present

context.
matrix A

Consider Figure 7.3 representing a spectrum of some
and suppose that we are interested in the r rightmost

eigenvalues, i.e., r = 4 in the figure.
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x Ay
% %
‘A A
3= Re(z)
* gt

Figure 7.3 Example of a spectrum and the enclosing
best ellipse for r = 4.

If » = 1 then one may simply seek the best ellipse in the
sense of minimizing the convergence ratio 7(A;). This situation
is identical to that of Chebyshev Iteration for linear systems for
which much work has been done.

When r > 1, then we have several convergence ratios, each
corresponding to one of the desired eigenvalues \;,i = 1,---,7,
and several possible strategies may be defined to try to optimize
the process.

Initially, assume that A, is real (Figure 7.3) and consider any
ellipse E(c, e, a) including the set R of unwanted eigenvalues and
not the eigenvalues

{)\17 )\27 T, )\T‘}

It is easily seen from our comments of subsection 1.1 that if we
draw a vertical line passing through the eigenvalue \,, all eigen-
values to the right of the line will converge faster than those to
the left. Therefore, when A, is real, we may simply define the
ellipse as the one that minimizes the convergence ratio of A\, with
respect to the two parameters ¢ and e.

When A, is not real, the situation is more complicated. We
could still attempt to maximize the convergence ratio for the
eigenvalue \,, but the formulas giving the optimal ellipse do not
readily extend to the case where A, is complex and the best ellipse
becomes difficult to determine. But this is not the main reason
why this choice is not suitable. A close look at Figure 7.3, in
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which we assume r = 5, reveals that the best ellipse for A\, may
not be a good ellipse for some of the desired eigenvalues. For
example, in the figure the eigenvalues A2, A3 should be computed
before the pair Ay, A5 since their real parts are larger. However,
because they are enclosed by the best ellipse for A5 they may not
converge until many other eigenvalues will have converged includ-
ing Ay, A5, A\n, Ap_1 and possibly other unwanted eigenvalues not
shown in the figure.

Figure 7.4 Case where u = A, (complex): the eigen-
values Ay and A3 are inside the ‘best’ ellipse.

The difficulty comes from the fact that this strategy will not
favor the eigenvalues with largest real parts but those belonging
to the outermost confocal ellipse. It can be resolved by just max-
imizing the convergence ratio of Ay instead of A5 in this case. In a
more complex situation it is unfortunately more difficult to deter-
mine at which particular eigenvalue \x or more generally at which
value p it is best to maximize 7(u). Clearly, one could solve the
problem by taking u = Re(\,), but this is likely to result in a
suboptimal choice.
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As an alternative, we can take advantage of the previous el-
lipse, i.e., an ellipse determined from previous purification steps.
We determine a point i on the real line having the same conver-
gence ratio as \., with respect to the previous ellipse. The next
‘best’ ellipse is then determined so as to maximize the conver-
gence ratio for this point p. This reduces to the previous choice
p = Re(A,) when A, is real. At the very first iteration one can set
p to be Re(A,). This is illustrated in Figure 7.5. In Figure 7.5 the
ellipse in solid is the optimal ellipse obtained from some previous
calculation from the dynamic process. In dashed line is an ellipse
that is confocal to the previous ellipse which passes through A,.
The point p is defined as one of the two points where this ellipse
crosses the real axis.

Sm(z)

/| /< Previous ellipse

TEllip;sie>07fi ﬂ;e same family

Figure 7.5 Point on the real axis whose convergence
is equivalent with that of )\, with respect to the pre-
vious ellipse.

The question which we have not yet fully answered concerns
the practical determination of the best ellipse. At a typical step
of the Arnoldi process we are given m approximations S\i,i =
1,---,m, of the eigenvalues of A. This approximate spectrum is
divided in two parts: the r» wanted eigenvalues A, -+, A\ and the
set R of the remaining eigenvalues R = {5\T+1, o ,S\m} From
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the previous ellipse and the previous sets R, we would like to
determine the next estimates for the optimal parameters ¢ and e.

A similar problem was solved in the context of linear systems
of equations and the technique can easily be adapted to our sit-
uation. We refer the reader to the two articles by Manteuffel
[99, 100]. The change of variables & = (u— A) easily transforms p
into the origin in the {—plane and the problem of maximizing the
ratio 7(u) is transformed into one of maximizing a similar ratio in
the &-plane for the origin, with respect to the parameters ¢ and
e. An effective technique for solving this problem has been devel-
oped in [98], [100] but its description is rather tedious and will be
omitted. We only indicate that there exist reliable software that
will deliver the optimal values of y — ¢ and e at output if given
the shifted eigenvalues p — 5\3-, j=r+1---,m on input.

We now wish to deal with a minor difficulty encountered when
A1 is complex. Indeed, it was mentioned in Section 1 that the
eigenvalue A; in (7.6) should, in practice, be replaced by some
approximation v of A\;. Initially, ¥ can be set to some initial
guess. Then, as the approximation A1 computed from Algorithm
7.2 becomes available it can be used. If it is real then we can take
v = 5\1 and the iteration can be carried out in real arithmetic as
was already shown, even when e is purely imaginary. However,
the iteration will become complex if A; is complex. To avoid this
it suffices to take v to be one of the two points where the ellipse
E(c, e, ay) passing through \;, crosses the real axis. The effect
of the corresponding scaling of the Chebyshev polynomial will
be identical with that using A1 but will present the advantage of
avoiding complex arithmetic.

2.4. Starting the Chebyshev Iteration.

Once the optimal parameters ¢ and e have been estimated we are
ready to carry out a certain number £ of steps of the Chebyshev
iteration (7.9). In this subsection, we would like to indicate how
to select the starting vector zy for this iteration. In the hybrid
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algorithm outlined in the previous section, the Chebyshev iter-
ation comes after an Arnoldi step. It is then desirable to start
the Chebyshev iteration by a vector which is a linear combination
of the approximate eigenvectors associated with the rightmost r
eigenvalues.

Let & be the coefficients of the desired linear combinations.
Then the initial vector for the Chebyshev process is

20=2 & =Y &Vl = Vi [Z figi] : (7.14)
im1 im1 i-1

Therefore, the eigenvectors u;,7 = 1, ..., 7, need not be computed
explicitly. We only need to compute the eigenvectors of the Hes-
senberg matrix H,, and to select the appropriate coefficients &;.
An important remark is that if we choose the £’s to be real and
such that & = &1 for all conjugate pairs \;, \j1; = 5\1, then the
above vector z, is real.

Assume that all eigenvectors, exact and approximate, are nor-
malized so that their 2-norms are equal to one. One desirable ob-
jective when choosing the above linear combination is to attempt
to make z;, the vector which starts the next Arnoldi step, equal
to a sum of eigenvectors of A of norm unity, i.e., the objective is
to have z, = 6yuy +Oous + - - -+ 0,u,, with [0;| =1,i =1,2,---r.
For this purpose, suppose that for each approximate eigenvector
u; = Y;u;+€;, where the vector ¢; has no components in uy, - - -, u,.
Then:

2z = &imug + oy + - - - 4 Eyruy + €,

where
T
€ = Z &Q
i=1

Near convergence |v;| is close to one and ||| is small. The
result of k steps of the Chebyshev iteration applied to zy, will be
a vector z;, such that:

2 2 S + KEEus + - -+ KRG, + pr(A)e. (7.15)
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Since € has no components in uy,i = 1,---,r, pi(A)e tends to
zero faster than the first r terms, as k£ tends to infinity. Hence,
taking & = Hi_k,i =1,---,r, will give a vector which has compo-
nents 7; in the eigenvectors u;,i = 1,---,7. Since |y;| & 1 near
convergence this is a satisfactory choice.

Another possibility is to weigh the combination of @; according
to the accuracy obtained after an Arnoldi step, for example:

&= |(A— NI ). (7.16)

Notice that the residuals of two complex conjugate approximate
eigenelements are equal, so this choice will also lead to a real zj.

Finally, we would like to mention that an alternative is to com-
pute one eigenvalue - Schur vector pair at a time and to proceed to
an implicit deflation technique. From experience this alternative
is far more reliable than one described in this section and avoids
the difficulty of having to select the proper z; as a linear combi-
nation of the approximate eigenvectors. The deflated algorithm
will be described shortly.

2.5. Choosing the Parameters m and k.

The number of Arnoldi steps m and the number of Chebyshev
steps k are important parameters that affect the effectiveness of
the method. Since we want to obtain more eigenvalues than the
r desired ones, in order to use the remainder in choosing the
parameters of the ellipse, m should be at least 7 +2 (to be able to
compute a complex pair). In practice, however, it is preferable to
take m several times larger than r. In typical runs m is at least
3r or 4r but can very well be even larger if storage is available.
It is also possible to change m dynamically instead of keeping it
fixed to a certain value but this variation will not be considered
here.

When choosing k, we have to take into account a number of
facts. First, taking & too small may slow down of the algorithm;
ultimately when £ = 0, the method becomes the simple iterative
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Arnoldi method. On the other hand it may not be effective to
pick k too large, otherwise the vector z; may become nearly an
eigenvector which could cause some numerical difficulties in the
Arnoldi process. In addition, the parameters ¢, e, of the ellipse
may be far from optimal and it is better to reevaluate them fre-
quently.

Recalling that the component in the direction of u; will remain
constant while those in w;,7 = 2,---,r, will be of the same order
as k¥, we should attempt to avoid having a vector zj, which is

entirely in the direction of w;. This can be done by requiring that

all k¥, =2,--- 7, be no less than a certain tolerance 4, i.e.,
k ~In(0)/ In[k,], (7.17)
where r; is the largest convergence ratio among r;, ¢ = 2,---,r.

In our experimental codes we have opted to choose ¢ to be nearly
the square root of the unit round—off.

Other practical factors should also enter into consideration.
For example, it is desirable that a maximum number of Cheby-
shev steps nga.x be fixed by the user. Also when we are close to
convergence, we should avoid employing an unnecessarily large
number of steps as might be dictated by a straightforward appli-
cation of (7.17).

3. Deflated Arnoldi-Chebyshev

There are some disadvantages in the ‘enhanced initial vector ap-
proach’ discussed in the previous section. In particular, the pro-
cess can be slow of even diverge in some cases when the eigen-
values are poorly separated. An alternative is to compute one
eigenvalue-eigenvector pair at a time and proceed just as for the
restarted Arnoldi method with deflation described in Chapter VI.
The algorithm is in fact very similar in structure to Algorithm
6.4. The only difference is that the initial vector in the outer loop
is now preprocessed by a Chebyshev acceleration.
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The implementation uses a single basis vy, vs, ..., v,;, whose first
vectors are the Schur vectors of A that have already converged.
If the v — 1 vectors vy, vy, ...,v,_1 have converged then we start
by choosing a vector v, which is orthogonal to vy, ....,v, ; and
of norm 1. We then perform m — v steps of an Arnoldi process,
orthogonalizing the vector v; against all previous vjs, including
vy, ..., Uy,_1. Finally, we restart as in the previous algorithm, tak-
ing v; to be pg(A)zp, where 2y is the approximate Schur vector
produced by the Arnoldi process. The algorithm is sketched be-
low.

ALGoOrITHM 7.3 (Deflated Arnoldi-Chebyshev)

A. Start: Choose an initial vector vy of norm unity.
B. Eigenvalue Loop: Forl=1,2,...,p do:

1. Arnoldi Iteration. For j = 1,1+ 1,...,m do:

e Compute w := Avj;

o Compute a set of j coefficients h;; such that w :=
w— 7 hijv; is orthogonal to all previous v;’s,
1=1,2,...,7;

e Compute hj1j = ||w||e and vjy1 = w/hjiq;.

2. Compute a desired Ritz pair t,u;, and corresponding
residual norm py.

3. Update the convex hull of R. Obtain new estimates
for ¢ and e. Compute next candidate eigenvalue and
corresponding eigenvector 4. Define zy = .

4. Compute z = pr(A)zo.

5. Orthonormalize z;, against all previous v;’s to get the
approximate Schur vector u; and define v; := ;.

6. If pj is small enough then accept ©; as the next Schur
vector, compute h;; = (Av,v;) ¢ = 1,..,1. Else go to
(B.1).



ACCELERATION TECHNIQUES 237

Recall that in the B-loop, the Schur vectors associated with
the eigenvalues Ay, ..., \;_; are frozen and so is the corresponding
upper triangular matrix corresponding to these vectors.

4. Chebyshev Subspace Iteration

We will use the same notation as in the previous sections. Sup-
pose that we are interested in the rightmost r eigenvalues and
that the ellipse E(c, e, a) contains the set R of all the remaining
eigenvalues. Then the principle of the Chebyshev acceleration of
subspace iteration is simply to replace the powers A* in the first
part of the basic algorithm 5.1 described in Chapter V, by py(A)
where py, is the polynomial defined by (7.5). It can be shown that
the approximate eigenvector ;,7 = 1,-- -, r converges towards u;,
as Ck(a/e)/Ckl(A;—c)/e], which, using arguments similar to those
of subsection (1.1) is equivalent to ¥ where

a -+ [a2 _ 1]1/2

The above convergence ratio can be far superior to the standard
ratio |A\,;1/A;| which is achieved by the non-accelerated algorithm.
However, we recall that subspace iteration computes the eigenval-
ues of largest moduli. Therefore, the unaccelerated and the ac-
celerated subspace iteration methods are not always comparable
since they achieve different objectives.

On the practical side, the best ellipse is obtained dynamically
in the same way as was proposed for the Chebyshev—Arnoldi pro-
cess. The accelerated algorithm will then have the following form.

ALGORITHM 7.4 Chebyshev Subspace Iteration
1. Start: @) «+ X.

2. Tterate: Compute @ < p(A)Q.
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3. Project: Orthonormalize () and get eigenvalues and Schur
vectors of C = QT AQ. Compute ) < QF, where F is the
matrix of Schur vectors of C'.

4. Test for convergence: If () is a satisfactory set of Schur
vectors then stop, else get new best ellipse and go to 2.

Most of the ideas described for the Arnoldi process extend
naturally to this algorithm, and we now discuss briefly a few of
them.

4.1. Getting the Best Ellipse.

The construction of the best ellipse is identical with that seen in
subsection 2.3. The only difficulty we might encounter is that the
additional eigenvalues which are used to build the best ellipse may
now be far less accurate than those provided by the more powerful
Arnoldi technique. More care must therefore be taken in order to
avoid building an ellipse based on too inaccurate eigenvalues as
this may cause substantial slow down in convergence.

4.2. Parameters k£ and m.

Here, one can take advantage of the abundant work on subspace
iteration available in the literature. All we have to do is replace
the convergences |\, 1/A;| of the basic subspace iteration by the
new ratios 7; of (7.18). For example, one way to determine the
number of Chebyshev steps k, proposed in Rutishauser [137] and
in Jennings and Stewart [77] is

[1+In(e™")/ In(m)],

1
ns -
2
where € is some parameter depending on the unit round—off. The
goal of this choice is to prevent the rounding errors from grow-
ing beyond the level of the error in the most slowly converging
eigenvector. The parameter k is also limited from above by a user
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supplied bound n,,,, and by the fact that if we are close to con-
vergence a smaller k£ can be determined to ensure convergence at
the next projection step.

The same comments as in the Arnoldi-Chebyshev method can
be made concerning the choice of m, namely that m should be at
least r + 2, but preferably even larger although in a lesser extent
than for Arnoldi. For the symmetric case it is often suggested to
take to be a small multiple of r, e.g., m = 2r or m = 3r.

4.3. Deflation

Another special feature of the subspace iteration is the deflation
technique which consists of working only with the nonconverged
eigenvectors, thus ‘locking’ those that have already converged.
Clearly, this can be used in the accelerated subspace iteration as
well and will enhance its efficiency. For the more stable versions
such as those based on Schur vectors, a similar device can be
applied to the Schur vectors instead of the eigenvectors.

5. Least Squares - Arnoldi

The choice of ellipses as enclosing regions in Chebyshev accelera-
tion may be overly restrictive and ineffective if the shape of the
convex hull of the unwanted eigenvalues bears little resemblance
with an ellipse. This has spurred much research in which the ac-
celeration polynomial is chosen so as to minimize an Ly-norm of
the polynomial p on the boundary of the convex hull of the un-
wanted eigenvalues with respect to some suitable weight function
w. The only restriction with this technique is that the degree of
the polynomial is limited because of cost and storage requirement.
This, however, is overcome by compounding low degree polyno-
mials. The stability of the computation is enhanced by employing
a Chebyshev basis and by a careful implementation in which the
degree of the polynomial is taken to be the largest one for which
the Gram matrix has a tolerable conditioning. The method for
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computing the least squares polynomial is fully described in [142]
but we present a summary of its main features below.

5.1. The Least Squares Polynomial

Suppose that we are interested in computing the r eigenvalues of
largest real parts Aj, Ao, ... A, and consider the vector

2k = pr(A4) 2o (7.19)

where p is a degree k polynomial. Referring to the expansion
(7.2) we wish to choose among all polynomials p of degree < k one
for which p(X;), i>r are small relative to p()\;),7 < r. Assume that
by some adaptive process, a polygonal region H which encloses
the remaining eigenvalues becomes available to us. We then arrive
at the problem of approximation theory which consists of finding
a polynomial of degree k whose value inside some (polygonal)
region is small while its values at r particular points (possibly
complex) outside the region are large. For simplicity we start
with the case where » = 1, i.e., only the eigenvalue \; and its
associated eigenvectors are sought. We seek a polynomial that is
large at A; and small elsewhere. For convenience we can always
normalize the polynomial so that

pe(A1) = 1. (7.20)

The desired polynomial satisfying the above constraint can be
sought in the form

Pe(A) =1 — (A= Ap)sg(N) (7.21)

where s is a polynomial of degree k — 1.

Since it is known that the maximum modulus of an analytic
function over a region of the complex plane is reached on the
boundary of the region, one solution to the above problem is to
minimize an Ls-norm associated with some weight function w,
over all polynomials of degree k satisfying the constraint (7.20).
We need to choose a weight function w that will facilitate practical
computations.
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Sm(z)

‘ fio g Re(z)

Figure 7.6 Polygon H containing the spectrum of A.

Let the region H of the complex plane, containing the eigenval-
ues A\r11,... Ay, be a polygon consisting of ;1 edges E, B, ... E,,
each edge E; linking two successive vertices h;_; and h; of H, see
Figure 7.6. Denoting by ¢; = 5(h; + hj_1) the center of the edge
Ej and by d; = $(hj—h;_1) its half-width, we define the following

Chebyshev weight function on each edge:
2 _
wi(N) = ~|dj — (A = ¢;)*| "%, (7.22)

The weight w on the boundary 0H of the polygonal region is
defined as the function whose restriction to each edge Ej is w;.
Finally, the Lo-inner-product over 0H is defined by

<pg>, = /iaHp(A)mw(A)ldM (7.23)
= i:l/E‘p()‘)mwj()\”dM, (7.24)

J

and the corresponding Ly-norm is denoted by ||.||.-

Often, the matrix A is real and the convex hull may be taken
to be symmetric with respect to the real axis. In this situation it
is better to define the convex hull as the union of two polygons
H* and H~ which are symmetric to each other. These two are
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represented in solid line and dashed line respectively in the figure
7.6. Then, when the coefficients of p and ¢ are real, we only need
to compute the integrals over the edges of the upper part H' of
H because of the relation

< p,q >,= 2Re

/am p(Ng(Nw(A)]dA]| - (7.25)

Having defined an inner product we now define in the simplest
case where r = 1, the ‘least-squares’ polynomial that minimizes

11— (A= A)s(M)]lo- (7.26)

Note that there are other ways of defining the least squares poly-
nomial. Assume that we use a certain basis tg,...,f;_1. and let
us express the degree k — 1 polynomial s()\) in this basis as

S0 = () (7.27)

Each polynomial (A — A;)t;(A) is of degree j + 1 and can be ex-

pressed as
J+1

(A= A)t(A) = ;Tijti()‘)

Denote by n the vector of the n;’s for j = 0,...,k — 1 and by
7 the vector of coefficients v;,7 = 0,...,k of (A — Ay)s()) in the
basis fy,...,t; and define 7;; = 0 for 4 > j + 1. Then the above
two relations state that

k-1 k E (k-1
A= A)s(N) =D my > mta(N) = > (Z Tij%') ti(A)
j=0 =0 i=0 \j
In matrix form this means that
v =1k

where T}, is the (k+1) x k matrix of coefficients t;;’s, which is upper
Hessenberg. In fact, it will seen that the matrix 7} is tridiagonal
when Chebyshev bases are used.
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The least-squares problem (7.26) will translate into a linear
least-squares problem for the vector n. We will discuss some of
the details of this approach next. There are two critical parts in
this technique. The first concerns the choice of the basis and the
second concerns the solution least-squares problem.

5.2. Use of Chebyshev Bases

To motivate our choice of the basis {¢;}, we assume at first that
the best polynomial is expressed in the ‘power’ basis

LA -

Then, the solution of the least-squares problem (7.26) requires
the factorization of the Gram matrix consisting of all the inner
products < X71 M- >

Mk = {< tjytl >u}}i,j:0,...,k‘

This matrix, often referred to as the moment matrix , can be-
come extremely ill-conditioned and methods based on the use of
the power basis will generally be limited to low degree calcula-
tions, typically not exceeding 10. A more reliable alternative is to
replace the basis {\""'} by a more stable basis. One such basis,
well understood in the real case, is that consisting of Chebyshev
polynomials over an ellipse that contains the convex hull. The
solution polynomial (7.40) will be expressed in terms of a Cheby-
shev basis associated with the ellipse of smallest area containing
H. Such an ellipse is illustrated in Figure 7.7.
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hy

Re(z)

Figure 7.7 The ellipse of smallest area containing
the convex hull of o(A) .

Computing the ellipse of smallest area that encloses H is a
rather easy task, far easier than that of computing ellipses which
minimize convergence rates for Chebyshev acceleration, see Exer-
cise P-7.3 for details.

5.3. The Gram Matrix

The next step in the procedure for computing the best polynomial,
is to evaluate the Gram matrix M. For the Chebyshev basis,
the Gram matrix M can be constructed recursively without any
numerical integration.

The entries of the Gram matrix are defined by,

mi; =< tj_1,ti1 >y, nL,i=1,...,k+1.

Note that because of the symmetry of the domain, the matrix M}
has real coefficients. We start by expressing each polynomial ¢;( )
in terms of the Chebyshev polynomials

Cl (A ;ch> = Ci(&)

for each of the p edges F,, v = 1,...,u. The variable £ takes
real values when A lies on the edge E,. In other words we express
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each t; as
ti(\) = > 10Cie) | (7.28)
=0
A—c,
— , 2
3 i (7.29)

Each polynomial ¢; will have p different expressions of this type,
one for each edge E,. Clearly, these expressions are redundant
since one of them is normally enough to fully determine the poly-
nomial ¢;. However, this redundancy is useful from the practical
point of view as it allows to perform an efficient computation in a
stable manner. The following proposition enables us to compute
the Gram matrix from the expressions (7.28).

Proposition 7.1 Assuming the expressions (7.28) for each of the
polynomials t;, the coefficients of the Gram matriz My are given

by

M o~ 7 N ‘] o 7 N
s = 2 Re {z (z T zmﬁ) } @)

v=1 =1

for all i, such that 0 <1 < j <k.

Proof. The result is a simple consequence of the orthogonality
of the Chebyshev polynomials, the change of variables (7.29) and
the expression (7.25). |

We now need to be able to compute the expansion coefficients.
Because of the three term-recurrence of the Chebyshev polynomi-
als it is possible to carry the computation of these coefficients in
a recursive manner. We rewrite the recurrence relation for the
shifted Chebyshev polynomials in the form

Bitini(N) = (A —a)t;(\) — 6t 1(\),i = 0,1, k..., (7.31)
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with the convention that 1_; == 0 and 6y = 0. Using the defini-
tions (7.28) and (7.29), we get for each edge,

i i1
Bivitiz1(A) = (d€ + e, — o) Z ’yl(f,ZC'l(f) — 0 Z%(,Zu_l)cl(f)

which provides the expressions for ¢;,; from those of t; and ¢; ;
by exploiting the relations

1
§G(E) = SlCn (&) +Ca(©)] 1>0,
£Co(§) = Ci(§) -
The result is expressed in the following proposition.

Proposition 7.2 For v = 1,2,...u, the expansion coefficients
71(2 satisfy the recurrence relation,

. d . , ; i
i+1 v 7 7 i—1
ﬁz‘+17l(,u+ )= D) [%(er)l,u + Vl(Jl,u] + (e — O‘z’)%(,u) - 52'%(,1/ ) (7.32)
forl=0,1,...,1+ 1 with the notational convention,
Y= e =0 for I>i.

The total number of operations required for computing a Gram
matrix with the help of the above two propositions is O(uk?/3).
This cost may be high for high degree polynomials. However, this
cost will in general not be significant relatively to the total num-
ber of operations required with the matrix A which is typically
very large. It is also not recommended to compute least squares
polynomials of degree higher than 40 or 50.

5.4. Computing the Best Polynomial

In the simple case where we are attempting to compute the eigen-
value A\; and the associated eigenvector, we need to compute the
polynomial s(A) that minimizes the norm

J() = 1= (A= A)s(V)lw (7.33)
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where s(A) is the unknown polynomial of degree k — 1 expressed

in the form (7.27).
Let T} be the (k+ 1) x k tridiagonal matrix

Qg (51
51 51 2
T, = e 7.34
: 51%2 Qp_oy  Op_1 ( )
‘ ﬁk—l Qp_1
Bk

whose coefficients «;, 9;, 3; are those of the three-term recurrence
(7.31). Given two polynomials of degree k

p(A) = E%'ti()\) and  ¢(\) = Z 0iti(\)

it is easy to show that the inner product of these two polynomials
can be computed from

<p,q >u,= (Myv,0) (7.35)

where v = (70,71, ---,7)" and 0 = (6y,0y,...,0,)". Therefore,
an alternative expression for J(n) is

J(m)? = ler — (T = M) Miler — (T = M)
and as a consequence, we can prove the following theorem.

Theorem 7.1 Let
M, =LL"

be the Choleski factorization of the (k+1) x (k+1) Gram matric
My, and denote by Hy, the (k+ 1) x k upper Hessenberg matriz
Hy, = L' (T}, — M\ 1),

where Ty, is the tridiagonal matriz (7.34) defined from the three-
term recurrence of the basis t;. Then the function J(n) satisfies
the relation,

J(n) = llner — Hynlf2. (7.36)
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Therefore the computation of the best polynomial requires the
solution of a (k + 1) x k least squares problem. This is best done
by reducing the Hessenberg matrix Hy into upper triangular form
by using Givens rotations.

The above theorem does not deal with the case where we have
several eigenvalues to compute, i.e., with the case r > 1. For this
situation, we need to redefine the problem slightly. The following
development is also of interest because it gives an alternative for-
mulation to the least squares polynomial even for the case r = 1.

We start by introducing what is referred to as kernel polyno-
mials,

Ki(€, ) = Zﬂj(ﬁ)ﬂj(k) (7.37)

in which the 7;’s are the orthogonal polynomials with respect to
the appropriate inner product, here < .,. >,. Then the following
well-known theorem holds [31].

Theorem 7.2 Among all polynomials of degree k normalized so
that p(A1) = 1, the one with the smallest w-norm is given by

- Kp(AL A

=N =

(7.38)

This gives an interesting alternative to the polynomial derived
previously. We will now generalize this result and discuss its prac-
tical implementation.

We begin by generalizing the constraint (7.20) by normalizing
the polynomial at the points Ay, Aa, ..., A, as follows,

iujp()\j) =1 (7.39)

in which the p;’s , j = 1,...7 constitute r different weights.
Then we have the following generalization of the above theo-
rem.
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Theorem 7.3 Let {m;}i—o,..x be the first k+1 orthonormal poly-
nomials with respect to the Lo-inner-product (7.24). Then among
all polynomials p of degree k satisfying the constraint (7.39), the
one with smallest w-norm is given by

o dimi(N)

, (7.40)
"ol

pr(A) =

where ¢; = 351 pymi(Ng) -

Proof. We recall the reproducing property of kernel polynomials
[31],

<p K& A) >0=p(E) (7.41)
in which the integration is with respect to the variable A. It is
easily verified that the polynomial (7.40) satisfies the constraint
(7.39) and that py can be recast as

PN = C Y 7KL, ) (7.42)

where C' is some constant. Next, we consider any polynomial p
satisfying the constraint (7.39) and write p in the form

p(A) = pe(A) + EQ),
from which we get,
IpllE = pells + 12N + 2Re{< £, pr >u}- (7.43)
Since both p and py satisfy the constraint (7.39) we must have

> wE() =0. (7.44)
j=1
From (7.42) and from the reproducing property (7.41) we see that

< Eapk; >w = CZM] < EaKk;()\]:)\) Zw

=1

= CY mEQ).
7j=1
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Hence, from (7.44) < E, pj, >,= 0 and (7.43) shows that ||p],, >
||pk||w for any p of degree < k. =

As is now explained, the practical computation of the best
polynomial p, can be carried out by solving a linear system with
the Gram matrix M. We could also compute the orthogonal
polynomials 7; and take their linear combination (7.40) but this
would not be as economical.

We consider the unscaled version of the polynomial (7.40) used
in (7.42),

pr(A) =D i Kp(A, ) (7.45)
7j=1
which satisfies a property stated in the next proposition.

Proposition 7.3 Let t be the (k + 1)-vector with components
r
Ti:Zthifl()\j); ZZO,,/C
j=1

Then the coefficients of the polynomial py, in the basis {t;} are the
conjugates of the components of the k-vector,

n=M;"t.

Proof. Consider the Choleski factorization M) = LL™ of the
Gram matrix M. If we represent by p(A) and £(A) the vectors
of size k + 1 defined by

P(A) = (mo(A), T (A), . .. (M)

and
t(A) = (to(A), tr(A), -, ti(M)"

then we have the important relation,

p(A) = L7't(N) (7.46)
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which can be easily verified from (7.35). Notice that Ky(&,n) =
(p(\), p(€)) where (.,.) is the complex inner product in C**', and
therefore, from (7.45) and (7.46) we get

() = i:luj (V. 201)

= 3 (70 E) = 2 (1), M40

J=1

) (tm, MY ujz@j)) = (L, M)

k+1

= Zﬁltlfl()\) )
=1
which completes the proof. [

The proposition allows to avoid computing the orthogonal
polynomials and to obtain the best polynomial directly in the
desired basis. Finally, we point out that since the matrix M is
real, if the 7;’s are real then the coefficient vector 7 is real if the
A;’s are selected in pairs of conjugate complex numbers.

5.5. Least Squares Arnoldi Algorithms

A resulting hybrid method similar to the Chebyshev Arnoldi Al-
gorithm can be easily derived. The algorithm for computing the
r eigenvalues with largest real parts is outlined next.

ALGORITHM 7.5 Least Squares Arnoldi Algorithm

1. Start: Choose the degree k of the polynomial py, the di-
mension m of the Arnoldi subspaces and an initial vector
V1.

2. Projection step:
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(a)

(b)

()

(d)
(e)

Using the initial vector vy, perform m steps of the
Arnoldi method and get the m approximate eigenval-
ues {1, ...\, } of the matrix H,,.

Estimate the residual norms p;,i = 1,...,r, associated
with the r eigenvalues of largest real parts {\y,...\.}
If satisfied then Stop.

Adapt: From the previous convex hull and the set
{A\ri1,- .- Am} construct a new convex hull of the un-
wanted eigenvalues.

Obtain the new least squares polynomial of degree k.

Compute a linear combination zy of the approximate
eigenvectors u;, 1 = 1,...,7.

3. Polynomial iteration:

Compute zj, = pr(A)zo. Compute vy = 2 /||2x|| and goto 2.

As can be seen the only difference with the Chebyshev algo-
rithm is that the polynomial must now be computed. We must
explain how the vector z; can be computed. We will call w; the
auxiliary sequence of vectors w; = t;(A)zp. One possibility would
be to compute all the w;’s first and then accumulate their linear
combination to obtain z;. However, the w; can also be accumu-
lated at the same time as they are computed. More precisely, we
can use a coupled recurrence as described in the next algorithm.

ALGORITHM 7.6 (For Computing z; = px(A4)2)

1. Start: 6y := 0, wy, Yo = Mo2o-

2. Iterate: Fori=1,2,...,k do:

1
Wir1 — [(A — aiI)wi — 62"[1)1;1] y

ﬁi+1
Yi = Yi—1 T Wiy .

3. Finish: z, = y,.
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The intermediate vectors y; are not related to the vectors z; only
the last vector yy is.

We cannot, for reasons of space, describe all the details of the
implementation. However, we mention that the linear combina-
tion at the end of step 3, is usually taken as follows:

T
20 = Zpiui
i=1

as for the Chebyshev iteration. Note that it is difficult, in general,
to choose a linear combination that leads to balanced convergence
because it is hard to represent a whole subspace by a single vector.
This translates into divergence in many cases especially when the
number of wanted eigenvalues r is not small. There is always the
possibility of increasing the space dimension m, at a high cost,
to ensure convergence but this solution is not always satisfactory
from the practical point of view. Use of deflation constitutes a
good remedy against this difficulty because it allows to compute
one eigenvalue at a time which is much easier than computing a
few of them at once. We omit the description of the correspond-
ing algorithm whose general structure is identical with that of
Algorithm 7.3.

One attractive feature of the deflation techniques is that the
information gathered from the determination of the eigenvalue
A; is still useful when iterating to compute the eigenvalue A;;;.
The simplest way in which the information can be exploited is
by using at least part of the convex hull determined during the
computation of A\;. Moreover, a rough approximate eigenvector
associated with A;;; can be inexpensively determined during the
computation of the eigenvalue \; and then used as initial vector
in the next step for computing A; ;.

Another solution is to improve the separation of the desired
eigenvalues by replacing A by a polynomial in A. This will be
seen in the next chapter.
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PROBLEMS

P-7.1 Prove that the relation (7.25) holds when the polynomials p
and ¢ are real and the polygon is symmetric with respect to the real
line.

P-7.2 Show that the recurrence (7.8)-(7.9) can be performed in real
arithmetic when A is real but e is complex. Rewrite the recurrence
accordingly.

P-7.3 The purpose of this exercise is to develop formulas for the
ellipse E(c, e, a) of smallest area enclosing a polygon H. It is assumed
that the polygon is symmetric about the real axis. Therefore the
ellipse is also symmetric about the real axis. The following result will
be assumed, see for example [99]: The best ellipse is either an ellipse
that passes through 3 vertices of H and encloses H or an ellipse of
smallest area passing through two vertices of H. Formulas for the
first case have been established in the literature, see Manteuffel [99].
Therefore, we must only consider the second case. Let A\ = (z1,y1)
and Ay = (z2,y2) two points in R2. We set
1 1
A= 5(3;2 —zl), B= 5(371 + 22),

1 1
S = 5(@/2 —yl), T= 5(@/1 +42)

and define the variable z = ¢ — B. At first, assume that S # 0 and

define Q = (S/T +T/S)/2. Show that for a given z (which defines ¢)
the only ellipse that passes through Aj, A9 is defined by

— % [(z4+ AT/S)(z + AS/T)(z — ST/A)]
a> = (z+AT/S)(z + AS/T) .
Then show that the optimal z is given by
o4
VP +3+Q

where =+ is the sign of AS. In the particular case where S = 0 the above
formulas break down. But then ¢ = B and one is lead to minimize
the area as a function of a. Show that the minimum is reached for
a? = 2A? and that the corresponding d is given by d? = 2(A4% — T?).
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P-7.4 Polynomials of degree 2 can be used to calculate intermediate
eigenvalues of Hermitian matrices. Suppose we label the eigenvalues
increasingly and that we have estimates for Ay, A;_1, A, Air1, An. Con-
sider the family of quadratic polynomials that take the value 1 at A;
and whose derivative at \; is zero. Find one such polynomial that will
be suitable for computing A; and the associated eigenvector. Is this a
good polynomial.

Find a good polynomial for computing the eigenvalue A;.

P-7.5 Establish formula (7.35).
P-7.6 Prove Theorem 7.1.

NoTES AND REFERENCES. The contents in this Chapter are taken mostly
from Saad [143, 142, 144, 147, 141]. The idea of Chebyshev acceleration for
eigenvalue problems is an old one and seems to have been first advocated by
Flanders and Shortley [47]. However, in a work that has been vastly ignored,
Lanczos also did some very interesting contemporary work in acceleration
technique [90], see also the related paper [93]. Lanczos’ approach is radically
different from that of Flanders and Shortley, which is the approach most nu-
merical analysts are familiar with. Concerned about the difficulty in getting
eigenvalue estimates, Lanczos proposed as an alternative to compute a poly-
nomial approximation to the Dirac function based on the wanted eigenvalue.
The approximation is made over an interval containing the spectrum, which
can easily be obtained from Gerschgorin estimates. This turns out to lead
to the so-called Fejer kernel in the theory of approximation by trigonomet-
ric functions and then naturally to Chebyshev polynomials. His approach
is a least squares technique akin to the one proposed by Stiefel [173] and
later Saad [142]. Some ideas on implementing Chebyshev acceleration in the
complex plane were introduced by Wrigley [186] but the technique did not
mature until the 1975 PhD thesis by Manteuffel [98] in which a FORTRAN
implementation for solving linear systems appeared. The work in [143] was
based on adapting Manteuffel’s implementation for the eigenvalue problem.
The least squares polynomial approach presented in this chapter is based
on the technical report [142] and its revised published version [144]. In my
experience, the least squares approach does seem to perform slightly better
in practice than the Chebyshev approach. Its drawbacks (mainly, having to
use relatively low degree polynomials) are rather minor in practice. '
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Chapter VIII

Preconditioning
Techniques

The notion of preconditioning is better known for linear systems
than it is for eigenvalue problems. A typical preconditioned iter-
ative method for linear systems amounts to replacing the original
linear system Az = b by (for example) the equivalent system
B 'Axz = B7'b, where B is a matrix close to A in some sense and
defined as the product of a lower by an upper sparse triangular
matrices. This equivalent system is then handled by a Krylov
subspace method. For eigenvalue problems, the best known pre-
conditioning is the so-called shift-and-invert technique which we
already mentioned in Chapter [V. If the shift o is suitably cho-
sen the shifted and inverted matrix B = (A — o)}, will have a
spectrum with much better separation properties than that of the
original matrix A and this will result in faster convergence. The
term ‘preconditioning’ here is quite appropriate since the bet-
ter separation of the eigenvalues around the desired eigenvalue
implies that the corresponding eigenvector is likely to be better
conditioned.
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1. Shift-and-invert Preconditioning

One of the most effective techniques for solving large eigenvalue
problems is to iterate with the shifted and inverted matrix,

(A—ol)t (8.1)
for standard problems and with (for example)
(A-0oB)™'B (8.2)

for a generalized problem of the form Ax = ABz. These meth-
ods fall under the general suggestive name shift-and-invert tech-
niques. There are many possible ways of deriving efficient tech-
niques based on shift and invert. In this section we will discuss
some of the issues with one particular implementation in mind
which involves a shift-and-invert preconditioning of Arnoldi’s Al-
gorithm.

1.1. General Concepts

Typically shift-and-invert techniques are combined with an effi-
cient projection method such as Arnoldi’s method or the Subspace
iteration. The simplest possible scheme is to choose a shift o and
run Arnoldi’s method on the matrix (A —oI)~!. Since the eigen-
vectors of A and (A — oI)™! are identical one can recover the
eigenvalues of A from the computed eigenvectors. Note that this
can be viewed as an acceleration of the inverse iteration algorithm
seen in Chapter IV, by Arnoldi’s method, in the same way that
the usual Arnoldi method was regarded as an acceleration of the
power method. It requires only one factorization with the shifted
matrix.

More elaborate algorithms involve selecting automatically new
shifts and performing a few factorizations. Strategies for adap-
tively choosing new shifts and deciding when to refactor (A —oB)
are usually referred to as shift-and-invert strategies. Thus, shift-
and-invert simply consists of transforming the original problem
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(A= M)z =0 into (A — oI) 'z = pz. The transformed eigen-
values p; are usually far better separated than the original ones
which results in better convergence in the projection type algo-
rithms. However, there is a trade-off when using shift-and-invert,
because the original matrix by vector multiplication which is usu-
ally inexpensive, is now replaced by the more complex solution
of a linear system at every step. When a new shift o is selected,
the LU factorization of the matrix (A — o) is performed and
subsequently, at every step of Arnoldi’s algorithm (or any other
projection algorithm), an upper and a lower triangular systems
are solved. Moreover, the cost of the initial factorization can be
quite high and in the course of an eigenvalue calculation, several
shifts, and therefore several factorizations, may be required. De-
spite these additional costs shift-and-invert is often an extremely
useful technique, especially for generalized problems.

If the shift o is suitably selected the matrix C' = (A — ol)™*
will have a spectrum with much better separation properties than
the original matrix A and therefore should require far less itera-
tions to converge. Thus, the rationale behind the Shift-and-Invert
technique is that factoring the matrix (A—o[) once, or a few times
during a whole run in which o is changed a few times, is a price
worth paying because the number of iterations required with C
is so much smaller than that required with A that the expense
of the factorizations is amortized. For the symmetric generalized
eigenvalue problem Bz = AAx there are further compelling rea-
sons for employing shift-and-invert. These reasons are well-known
and have been discussed at length in the recent literature, see for
example, [117, 118, 43, 160]. The most important of these is that
since we must factor one of the matrices A or B in any case, there
is little incentive in not factoring (A — o B) instead, to gain faster
convergence. For this reason shift and invert has become a fairly
standard tool in structural analysis because of the predominance
of generalized eigenvalue problems in this application area.

For nonsymmetric eigenvalue problems, shift-and-invert strate-
gies are not as well-known, although the main arguments support-
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ing such techniques are the same as in the Hermitian case. Let us
consider the case where the matrices B and A are real and banded
but the shift o is complex. One possibility is to work entirely in
complex arithmetic. This is probably a fine alternative. If the
matrix is real, it seems that the approach is a little wasteful and
also unnatural. For example, it is known that the eigenvalues of
the original matrix pencil come in complex conjugate pairs (at
least in the case where B is positive definite). It would be desir-
able to have algorithms that deliver complex conjugate pairs as
well. This is mainly because there may be a few close pairs of
computed eigenvalues and it will become difficult to match the
various pairs together if the conjugates are only approximately
computed. A wrong match may in fact give incorrect eigenvec-
tors. In the next section we consider the problem of performing
the computations in real arithmetic.

1.2. Dealing with Complex Arithmetic
Let A be real and assume that we want to use a complex shift
o=p+i0. (8.3)

One can factor the matrix (A — o) in (8.1) and proceed with
an algorithm such as Arnoldi’s method working with complex
arithmetic. However, an alternative to using complex arithmetic
is to replace the complex operator (A — o)~! by the real one

B+:%4@Lwﬂ)ﬂ:%“A—aDl+{A—6D1] (8.4)

whose eigenvectors are the same as those of the original problem
and whose eigenvalues p; are related to the eigenvalues \; of A

by
1 1 1
= . 8.5
Hi 2<)\i_0—i+)\i_5—i> ( )

We can also use

A

B_:%mKA—aD4}:%RA—UD”—{A—JDA}.@@
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Again, the eigenvectors are the same as those of A and the eigen-
values p; are given by

;%:%< L, ). (8.7)

)\Z'—O'i )\i—@

A few additional possibilities are the following
B(a, ) = aB. + BB_,
for any nonzero pair «, # and
B.=(A-ol) ' (A-05)"" (8.8)

This last option is known as the double shift approach and has
been used by J.G.F. Francis in 1961/62 [48] in the context of the
QR algorithm to solve a similar dilemma. The inverse of B, is

(A—ol)(A—GI)=[(A—pl)*+01].

This matrix, which is real, and is a quadratic polynomial in A
and again shares A’s eigenvectors. An interesting observation is
that (8.8) is redundant with (8.6).

Proposition 8.1 The matrices B, and B_ are related by
B_ =0B, . (8.9)

The proof is left as an exercise, see Exercise P-8.4.

An obvious advantage in using either (8.4) or (8.6) in place
of (8.1) is that the first operator is real and therefore all the
work done in the projection method can be performed in real
arithmetic. A nonnegligible additional benefit is that the com-
plex conjugate pairs of eigenvalues of original problem are also
approximated by complex conjugate pairs thus removing some
potential difficulties in distinguishing these pairs when they are
very close. In a practical implementation, the matrix (A — o)
must be factored into the product LU of a lower triangular ma-
trix L and an upper triangular matrix U. Then every time the
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vector w = Re[(A — o) v must be computed, the forward and
backward solves are processed in the usual way, possibly using
complex arithmetic, and then the real part of the resulting vector
is taken to yield w.

An interesting question that might be asked is which of (8.4)
or (8.6) is best? The experiments in [123] reveal that the choice
is not an easy one. It is readily verified that as A — o,

1 1

T TN
P o50—0) P Tan—o)

indicating that B, and B_ give the same enhancement to eigen-
values close to 0. In contrast, as A — oo, B_ dampens the eigen-
values more strongly than does B since,
. A—p _ 7

S Sl s w15 w R
The only conclusion from all this is that whichever of the two
options is used the performance is not likely to be substantially
different from the other or from that of the standard (8.1).

In the following discussion we choose to single out B, but all
that is said about B, is also true of B_. In practice it is clear
that the matrix By should not be computed explicitly. In fact
either of these matrices is full in general and would be prohibitive
to compute. Instead, we first factor the matrix (A — o) at the
outset. This is done in complex arithmetic or by implementing
complex arithmetic with real arithmetic. For example, if A is
banded, to preserve bandedness and still use real arithmetic, one
can represent the j-th component z; = & + i(; of a vector z
of C" by the components 7y;_; = §; and 1y; = (; of the real
2n-vector y of the components n;, j = 1,...,2n. Translating
the matrix (A — o) into this transformation gives a (2n) x (2n)
real banded matrix. Once the matrix is factored, a projection
type method, e.g., subspace iteration, is applied using as operator
B, = Re(A—ol). Matrix-vector products with the matrix B, are
required in the subspace iteration. Each of these can be performed
as follows.
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1. Solve (A —ol)w = v ( possibly in complex arithmetic).

2. Set Biv = Re(w) (respectively B_v = Sm(w)).

1.3. Shift-and-Invert Arnoldi

We now consider the implementation of shift-and-invert with an
algorithm such as Arnoldi’s method. Assume that the problem is
to compute the p eigenvalues closest to a shift oy. In the symmet-
ric case there is an important tool that is used to determine which
of the approximate eigenvalues should be considered in order to
be able to compute all the desired eigenvalues in a given interval
only once. This tool is Sylvester’s inertia theorem which gives
the number of eigenvalues to the right and left of ¢ by counting
the number of negative entries in the diagonal elements of the U
part of the LU factorization of the shifted matrix. In the non
Hermitian case a similar tool does not exist. In order to avoid the
difficulty we exploit deflation in the following manner. As soon
as an approximate eigenvalue has been declared satisfactory we
proceed to a deflation process with the corresponding Schur vec-
tor. The next run of Arnoldi’s method will attempt to compute
some other eigenvalue close to oyp. With proper implementation,
the next eigenvalue will usually be the next closest eigenvalue to
09. However, there is no guarantee for this and there is no guar-
antee that an eigenvalue will not be missed. This is a weakness
of projection methods in the non Hermitian case, in general.
Our experimental code ARNINYV based on this approach im-
plements a simple strategy which requires two parameters m, k.
from the user and proceeds as follows. The code starts by using oy
as an initial shift and calls Arnoldi’s algorithm with (A — o¢l)~!
Arnoldi to compute the eigenvalue of A closest to og. Arnoldi’s
method is used with restarting, i.e., if an eigenvalue fails to con-
verge after the Arnoldi loop we rerun Arnoldi’s algorithm with
the initial vector replaced by the eigenvalue associated with the
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eigenvalue closest to oy. The strategy for changing the shift is dic-
tated by the second parameter k,.s. If after k,.5 calls to Arnoldi
with the shift oy the eigenpair has not yet converged then the
shift oy is changed to the best possible eigenvalue close to oy and
we repeat the process. As soon as the eigenvalue has converged
we deflate it using Schur deflation as described in the previous
section. The algorithm can be summarized as follows.

ALGORITHM 8.1 Shift-and-Invert Arnoldi

1. Initialize:
Choose an initial vector v, of norm unity, an initial shift o,

and the dimension and restart parameters m and k..

2. Eigenvalue loop:

(a) Compute the LU factorization of (A — o1).
(b) If k > 1 then (re)-compute

hij = ((A—a[)’lvj,vi) Z,] = 1,]{ —1.

(¢) Arnoldi Iteration. For j = k,k+1,...,m do:

e Compute w := (A —ol) tv;.

e Compute a set of j coefficients hy; so that w :=
w — Y1_, hyjv; Is orthogonal to all previous v;’s,
i=1,2,..,7.

o Compute hjj = ||w||2 and v, == w/hjq1 .

(d) Compute eigenvalue of H,, of largest modulus, corre-
sponding approximate eigenvector of (A — oI)™!, and
associated (estimated) residual norm py.

(e) Orthonormalize this eigenvector against all previous
vj’s to get the approximate Schur vector uy and de-
fine vy 1= Uy.
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(f) If py is small enough then accept vy as the next Schur
vector. Set k : k+ 1; if k<p goto 2.

(g) If the number of restarts with the same shift exceeds
k,est select a new shift and goto 1. Else restart Arnoldi’s
algorithm, i.e., goto 2-(c).

A point of detail in the algorithm is that the (kK —1) x (k— 1)
principal submatrix of the Hessenberg matrix H,, is recomputed
whenever the shift changes. The reason is that this submatrix
represents the matrix (A — ol)~! in the first £ — 1 Schur vectors
and therefore it must be updated as o changes. This is in con-
trast with the simple Arnoldi procedure with deflation described
earlier in Chapter VI. However, there exists a simpler implemen-
tation that avoids this, see Exercise P-8.2. The above algorithm
is described for general complex matrix and there is no attempt
in it to avoid complex arithmetic in case the original matrix is
real. In this situation, we must replace (A — o) tv; in B.2 by
Re[(A — o) 'vj] and ensure that we select the eigenvalues cor-
responding to the eigenvalues of A closest to 0. We also need to
replace the occurrences of eigenvectors by the pair of real parts
and imaginary parts of the eigenvectors.

Example 8.1 We consider the test problem on Chemical reactions
described in Chapter III. This coupled system is discretized in the in-
terval [0,1] using ny + 1 points with n,; = 100 which yields a matrix
of size n = 200. We tested ARNINV to compute the six rightmost
eigenvalues of A. We took as initial shift the value o = 0, and m = 15,
krest = 10. In this case ARNINV delivered all the desired eigenvalues
by making four calls to the Arnoldi subroutine and there was no need
to change shifts. The tolerance imposed was € = 10~7. The result of
the execution is shown in Table 8.1. What is shown in the figure is the
progress of the algorithm after each projection (Arnoldi) step. The
eigenvalue loop number indicates the eigenvalue that is being com-
puted at the particular Arnoldi call. Thus, when trying to compute
the eigenvalue number 3, the algorithm has already computed the first
two (in this case a complex conjugate pair), and has deflated them. We
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print the eigenvalue of interest, i.e., the one we are trying to compute,
plus the one (or the pair of complex conjugate eigenvalues) that is likely
to converge after it. The last column shows the actual residual norm
achieved for the eigenvalues shown. After execution, we computed the
average error for the 6 computed eigenvalues and found that it was
equal to 0.68 x 107'*. The total execution time on an Alliant FX-8
computer was about 2.13 seconds.

Eig. Re(N) Sm(A) Res. Norm
1 0.1807540453D-04 | 0.2139497548D+-01 | 0.212D-09
0.1807540453D-04 | -0.2139497548D+-01 | 0.212D-09
-0.6747097569D+00 | 0.2528559918D+01 | 0.224D-06
-0.6747097569D+00 | -0.2528559918D+-01 | 0.224D-06

3 | -0.6747097569D+00 | 0.2528559918D+01 | 0.479D-13
-0.6747097569D+00 | -0.2528559918D+01 | 0.479D-13
-0.2780085122D+01 | 0.2960250300D+01 | 0.336D-01
-0.2780085122D+01 | -0.2960250300D+-01 | 0.336D-01

5 | -0.1798530837D+01 | 0.3032164644D+01 | 0.190D-06
-0.1798530837D+01 | -0.3032164644D+-01 | 0.190D-06

5 | -0.1798530837D+01 | 0.3032164644D+01 | 0.102D-11
-0.1798530837D+01 | -0.3032164644D+01 | 0.102D-11
-0.2119505960D+02 | 0.1025421954D4-00 | 0.749D-03

Table 8.1 Convergence history of ARNINV for chemical
reaction test problem. Each separate outer iteration cor-
responds to a call to Arnoldi’s module

We rerun the above test with a larger number of eigenvalues to
compute, namely nev = 10. The initial shift o, was changed to oy =
—0.5 + 0.2¢ and we also changed kyes; to kresy = 3. Initially, the
run looked similar to the previous one. A pair of complex conjugate
eigenvalues were found in the first Arnoldi iteration, then another pair
in the second iteration, then none in the third iteration and one pair in
the fourth iteration. It took two more iterations to get the eigenvalues
number 7 and 8. For the last eigenvalue a new shift was taken because
it took three Arnoldi iterations without success. However the next
shift that was taken was already an excellent approximation and the
next eigenvalue was computed in the next iteration. The cost was
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higher than the previous run with the CPU time on the Alliant FX-8
climbing to approximately 5.65 seconds.

2. Polynomial Preconditioning

We have seen in the previous chapter a few different ways of ex-
ploiting polynomials in A to accelerate simple algorithms such as
Arnoldi’s method or subspace iteration. In this section we will
show another way of combining a projection type technique such
as Arnoldi’s method with these polynomials.

For a classical eigenvalue problem, one alternative is to use
polynomial preconditioning as is described next. The idea of poly-
nomial preconditioning is to replace the operator B by a simpler
matrix provided by a polynomial in A. Specifically, we consider
the polynomial in A

By, = pi(4) (8.11)

where pj, is a degree k polynomial. Ruhe [135] considers a more
general method in which pj is not restricted to be a polynomial
but can be a rational function. When an Arnoldi type method is
applied to By, we do not need to form By explicitly, since all we
will ever need in order to multiply a vector x by the matrix By
is k& matrix-vector products with the original matrix A and some
linear combinations.

For fast convergence, we would ideally like that the r wanted
eigenvalues of largest real parts of A be transformed by p; into
r eigenvalues of Bj that are very large as compared with the
remaining eigenvalues. Thus, we can proceed as in the previous
chapter by attempting to minimize some norm of p; in some region
subject to constraints of the form,

PO =1 o Y ppl) =1 . (8.12)

Once again we have freedom in choosing the norm of the poly-
nomials, to be either the infinity norm or the Ls-norm. Because
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the Ly-norm offers more flexibility and performs usually slightly
better than the infinity norm, we will only consider a technique
based on the least squares approach. We should emphasize, how-
ever, that a similar technique using Chebyshev polynomials can
easily be developed. Therefore, we are faced again with the func-
tion approximation problem described in Section 3.3.

Once py, is calculated, the preconditioned Arnoldi process con-
sists of using Arnoldi’s method with the matrix A replaced by
By = pp(A). This will provide us with approximations to the
eigenvalues of By which are related to those of A by \;(By) =
pr(Ai(A)) It is clear that the approximate eigenvalues of A can
be obtained from the computed eigenvalues of B by solving a
polynomial equation. However, the process is complicated by the
fact that there are k£ roots of this equation for each value \;(By)
that are candidates for representing one eigenvalue A;(A). The
difficulty is by no means unsurmountable but we have preferred a
more expensive but simpler alternative based on the fact that the
eigenvectors of A and By are identical. At the end of the Arnoldi
process we obtain an orthonormal basis V;,, which contains all the
approximations to these eigenvectors. A simple idea is to perform
a Galerkin process for A onto span[V;,] by explicitly computing
the matrix A,, = VZAV,, and its eigenvalues and eigenvectors.
Then the approximate eigenvalues of A are the eigenvalues of A,,
and the approximate eigenvectors are given by mel(m) where yl(m)
is an eigenvector of A,, associated with the eigenvalue \;. A sketch
of the algorithm for computing nev eigenvalues is as follows.

ALGORITHM 8.2 Least-Squares Preconditioned Arnoldi

1. Start: Choose the degree k of the polynomial py, the di-
mension parameter m and an initial vector vy. Set iev = 1.

2. Initial Arnoldi Step: Using the initial vector vy, perform
m steps of the Arnoldi method with the matrix A and get
initial set of Ritz values for A.

3. Eigenvalue Loop:
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(a) Adapt: From the previous convex hull and the new
set of Ritz values construct a new convex hull of the
unwanted eigenvalues. Obtain the new least squares
polynomial p; of degree k.

(b) Update H,,: If iev > 1 then (re)-compute

hij = (Pk(A)Uj,Ui) 1,7 =11ev —1.

(¢) Arnoldi Iteration: For j = iev,iev + 1,...,m do:

o Compute w := pi(A)v,
e Compute a set of j coefficients h;; so that w :=
w — >1_, hyjv; Is orthogonal to all previous v;’s,
i=1,2,..7.
o Compute hjyj = ||w||2 and v, == w/hj1 .
(d) Projection Step: Compute the matrix A,, = VI AV,
and its m eigenvalues {\y,... Ay}

(e) Select the next wanted approximate eigenvalue S\iev and
compute corresponding eigenvector Z. Orthonormalize
this eigenvector against vy, . .., Uje, 1 to get the approx-
imate Schur vector ., and define vy, := Ujey.

(f) Test. If pje, is small enough then accept v, as the
next Schur vector and set iev := tev + 1.

(g) Restart: if iev<nev goto 2.

The general structure of the algorithm is quite close to that
of shift-and-invert with deflation. What differentiates the two al-
gorithms is essentially the fact that here we need to adaptively
compute a polynomial, while the shift-and-invert algorithm com-
putes an LU factorization of a shifted matrix. Practically, we must
be careful about the number of factorizations needed in shift-and-
invert whereas the computational cost of calculating a new poly-
nomial is rather low. The difference between this method and
those of the previous chapter is that here the polynomial itera-
tion is an inner iteration and the Arnoldi iteration is the outer
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loop, while in the hybrid method, the two processes are serially
following each other. Both approaches can be viewed as means of
accelerating the Arnoldi method.

It is clear that a version without the Schur-Wielandt deflation
technique can also be applied to the polynomial preconditioned
Arnoldi method but this is not recommended.

Example 8.2 We take the same example as in the previous section
and illustrate the use of an experimental least squares Arnoldi program
called ARNLS on the above example. We fixed the dimension of the
Krylov subspace to be always equal to m = 15. The degree of the
polynomial was taken to be 20. However, note that the program has
the capability to lower the degree by as much as is required to ensure a
well conditioned Gram matrix in the least squares polynomial problem.
This did not happen in this run however, i.e. the degree was always 20.
Again, ARNLS was asked to compute the six rightmost eigenvalues.
The run was much longer so its history cannot be reproduced here.
Here are however a few statistics.

e Total number of matrix by vector multiplications for the run =
2053;

e Number of calls to the projection subroutines = 9;

e Total CPU time used on an Alliant FX-8 = 3.88 sec.

Note that the number of projection steps is more than twice that re-
quired for shift-and-invert. The execution time is also more than 80 %
higher. We rerun the same program by changing only two parameters:
m was increased to m = 20 and the degree of the polynomial was set
to k = 15. The statistics are now as follows:

e Total number of matrix by vector multiplications for the run =
1144;

e Number of calls to the projection subroutines = 5;

e Total CPU time used = 2.47 sec.

Both the number of projection steps and the execution times have
been drastically reduced and have come closer to those obtained with
shift-and-invert.
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One of the disadvantages of polynomial preconditionings is
precisely this wide variation in performance depending on the
choice of the parameters. To some extent there is a similar depen-
dence of the performance of ARNINV on the initial shift, although
in practice a good initial shift is often known. A superior feature
of shift-and-invert is that it allows to compute eigenvalues inside
the spectrum. Polynomial preconditioning can be generalized to
this case but does not perform too well. We should also comment
on the usefulness of using polynomial preconditioning in general.
A commonly heard argument against polynomial preconditioning
is that is it suboptimal: In the Hermitian case the conjugate gra-
dient and the Lanczos methods are optimal polynomial processes
in that they provide the best possible approximation, in some
sense, to the original problem from Krylov subspaces. Hence the
argument that polynomial preconditioning would not perform as
well since it si likely to require a larger number of matrix by vector
multiplications. However, in the non Hermitian case the optimal-
ity result is no longer valid. In fact even in the symmetric case
the optimality result is only true in exact arithmetic, which is far
from real situations in which loss of orthogonality can be rather
severe. A notable difference with the situation of linear system
solutions is that the overhead in computing the best ellipse and
best polynomial may now be amortized over several eigenvalues.
In fact one single outer loop may enable one to compute a few
eigenvalues/eigenvectors and not just one.

The next question is whether or not a simple restarted Arnoldi
algorithm would perform better than a polynomial preconditioned
method. The answer is a definite no. A run with ARNIT [148]
an iterative Arnoldi method with deflation failed even to deliver
the first eigenvalue of the test matrix used in the above example.
The initial vector was the same and we tried two cases m = 15,
which did not show any sign of convergence and m = 20 which
might have eventually converged but was extremely slow. The
nonrestarted Arnoldi method would, however be of interest, if
not for its excessive memory requirement.
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3. Davidson’s Method

Davidson’s method is a generalization of the Lanczos algorithm in
that like the Lanczos algorithm it uses projections of the matrix
over a sequence of subspaces of increasing dimension. It is indeed
a preconditioned version of the Lanczos method. The difference
with the Lanczos algorithm is that the amount of work required at
each step increases at each iteration because, just like in Arnoldi’s
method, we must orthogonalize against all previous vectors. From
the implementation point of view the method is akin to Arnoldi’s
method. For example, the process must be restarted periodically
with the current best estimate of the wanted eigenvector.

The basic idea of the algorithm is rather simple. It consists of
generating an orthogonal set of vectors onto which a projection
is performed. At each step j, (this is the equivalent to the j-th
step in the Lanczos algorithm) the residual vector of the current
approximation 5\,12 to the desired eigenpair is computed. The
resulting vector is then multiplied by (M — XI)~!, where M is
some preconditioning matrix. In the original algorithms M was
simply the diagonal of the matrix A.

Thus, the algorithm consists of two nested loops. The process
for computing the largest (resp. smallest) eigenvalue of A, can be
described as follows.

ALGORITHM 8.3 Davidson’s method.
1. Start: Choose an initial unit vector v;.
2. Iterate: Until convergence do:
3. Inner Loop: for j =1,...,m do:
e Compute w := Avj.

o Compute V;'w, the last column of H; := V' AVj.

e Compute the largest eigenpair A, y of H;.
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e Compute the Ritz vector u := Vjy and its associated
residual vector r := Au — \u.

e Test for convergence. If satisfied Return.
e Compute t := M;r (skip when j =m).

e Orthogonalizet against V; via Modified Gram-Schmidt:
Vier = MGS([V;.1]) (skip when j = m).

4. Restart: Set v; := u and go to 3.

The preconditioning matrix M; is normally some approxima-
tion of (A — AI)~!. As was already mentioned the simplest and
most common preconditioner M; is (D — AI) "' where D is the
main diagonal of A (Jacobi Preconditioner). It can only be effec-
tive when A is nearly diagonal, i.e., when matrix of eigenvectors
is close to the identity matrix. The fact that this is often the
situation in Quantum Chemistry explains the popularity of the
method in this field. However, the preconditioner need not be as
simple. It should be noticed that, without preconditioning, i.e.,
when if M; = I for all j, then the sequence of vectors v; coin-
cide with those produced by the Lanczos algorithm, so that the
Lanczos and Davidson algorithms are equivalent in this case.

When several eigenvalues are sought or when it is known that
there is a cluster of eigenvalues around the desired eigenvalue then
a block version of the algorithm may be preferred. Then several
eigenpairs of H; will be computed at the same time and several
vectors are added to the basis V; instead of one.

We state a general convergence result due to Sadkane [153].
In the following, we assume that we are seeking to compute the
largest eigenvalue \;. We denote by P; the projection onto a
subspace K; spanned by an orthonormal basis V;. Thus, the
nonrestarted Davidson algorithm is just a particular case of this
situation.

Theorem 8.1 Assuming that the Ritz vector ugj) belongs to K1,

then the sequence of Ritz values )\gj) 1S an increasing sequence that
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15 convergent. If, in addition, the preconditioning matrices are
uniformly bounded and uniformly positive definite in the orthogo-
nal complement of K; and if the vector (I —Pj)M;r; belongs to

Kj for all j then the limit of)\ as j — oo is an etgenvalue of
A and ul ) admits a subsequence that converges to an associated
etgenvector.

Proof. For convenience the subscript 1 is dropped from this
proof. In addition we assume that all matrices are real symmet-
ric. That AY) is an increasing sequence is a consequence of the
assumptions and the min-max theorem. In addition, the A is
bounded from above by A and as result it converges.
To prove the second part of the theorem, let us define z; =
(I — P;)M;r; and w; = zj/||2]]2- Note that since ul9) L z; and
r; L K; we have,
H
ry M;(I = Pj)r;
= ' Mjr;. (8.13)

Consider the 2-column matrix W; = [u(), w;] and let
N
B =W/IAW; = ( J) 8.14
J J J aj ﬁj ( )
in which we have set o; = w? Aul?) and §; = wH Aw;. Note that

by the assumptions span{W,} is a subspace of Kj; ;. Therefore,

by Cauchy’s interlace theorem and the optimality properties of the

Rayleigh Ritz procedure the smallest of two eigenvalues ,ug ), ,ug 2

of B; satisfies the relation
A9 < 9 < £,

The eigenvalues of B; are defined by (1 — AD)(u — ;) — a2 =0
and as a result of || < ||A|, and 18;] < ||A||2 we

of < 2(ui” = A All; < AT = AD)||A]l, .
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The right hand side of the above inequality converges to zero as
j — oo and so lim;_,o, = 0. From (8.13),

ri My = || zillacy < 11— Py) Mjrslleg < ||Mjrla; -

Since we assume that A/; is uniformly bounded and using the fact
that ||7]]2 < 2||Al| the above inequality shows that

lim rfMjTj = 0.
J]—00

In addition, since r; belongs to the orthogonal complement of
K and by the uniform positive definiteness of the sequence Mj,
rif Myr; > ~||7]l2> where ~y is some positive constant. Therefore,
lim; ,o7; = 0. To complete the proof, let A the limit of the
sequence A9, The uU)’s are bounded since they are all of norm
unity so they admit a limit point. Taking the relation r; = (A —
A Nu)| to the limit, we see that any such limit point @, must
satisfy (A — A\l )u = 0. n

The result given by Sadkane includes the more general case
where more than one eigenvalue is computed by the algorithm
and is therefore more general, see Exercise P-8.1 for details. The
restriction on the positive definiteness of the M; ’s is a rather
severe condition in the case where the eigenvalue to be computed
is not the largest one. The fact that A; must remain bounded
is somewhat less restrictive. However, in shift-and-invert precon-
ditioning, for example, an unbounded A/; is sought rather than
avoided. If we want to achieve rapid convergence, it is desirable to
have M; close to some (A—oI)™! in some sense and o close to the
desired eigenvalue. The assumptions of the theorem do not allow
us to take o too close from the desired eigenvalue. Nevertheless,
this result does establish convergence in some instances and we
should add that little else is known concerning the convergence of
Davidson’s algorithm.
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4. Generalized Arnoldi Algorithms

It is interesting to note that the generalized Davidson methods
are similar to preconditioned conjugate gradient type methods.
The only additional feature is that the preconditioning is allowed
to vary at each step. We can define a preconditioned Arnoldi
procedure using similar ideas. The subspace is constructed by
adding at each step a new vector of the form

AM]-*lrj

which is then orthonormalized against vy, ...v; to yield vj;;. In
the above equation M is the preconditioner, which in the original
Davidson method is defined as

M; = diag (A) — M1

where 5\]- is the current approximation to the desired eigenvalue.
In the symmetric case the usual implementation of Davidson’s
method requires computing the matrix

C; = VAV

which is updated at every step. Because of symmetry of the ma-
trix C this necessitates the computation of exactly j inner prod-
ucts, namely (Avj,v;), 1 =1,2,...7, at step j.

In contrast, the non-Hermitian case does not allow such a sim-
ple updating mechanism. The simplest possibility in this situation
would be to save the two sets of vectors v; and w; = Av; gener-
ated at every step, thus essentially doubling memory requirement.
The matrix C; = VjHWj can then be updated at each step, where
Vi = [v1,v2,...,v5], W; = [w,ws,...,w;]. An alternative is to
compute (Av;,v;), ¢ < j as before and hj; = (Av;, v;) i<j via

h]‘i = (Ui, AHUj)

which requires another matrix — vector product but does not ne-
cessitate saving the w;’s. This allows us to add row 7 and column
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j of the matrix C,, at step j. In spite of these unattractive addi-
tional costs, this technique is appealing because of its exceptional
flexibility. Any preconditioner can be used and it is allowed to
vary at every step. For example, in polynomial preconditioning
a different polynomial can be used at each step. Similarly, in
Shift-and-Invert the shift can be changed at any step.

A particularly important application of this technique is when
computing eigenvalues with largest real parts of a large matrix.
In this situation it is desirable to use a preconditioning that com-
putes an approximation to exp(A)v;, i.e., at step j of the precon-
ditioned procedure we would like to have

M;v; =~ exp(A)v,.

Any such approximation can be used. For example, a technique
based on Krylov subspace approximations developed in [53, 152]
is suitable. The approximation is of the form exp(A)v = ¢,,(A)v,
where ¢, is a polynomial of degree m — 1 that depends on the
vector v. In fact this can be viewed as a conjugate-gradient type
algorithm for approximating the exponential propagation oper-
ator. The framework of the preconditioned Arnoldi algorithm
described above seems perfectly suitable for incorporating these
variable preconditioners.

PROBLEMS

P-8.1 Counsider a more general framework for Theorem 8.1, in which
one is seeking [ eigenvalues at a time. The new vectors are defined as
tij = Mij-lTiyj 1=1,2,...1.
where ¢ refers to the eigenvalue number and j is the step number.
As a result the dimension of the Davidson subspace increases by [ at
every step instead of one. The assumptions on each of the individual

preconditioners for each eigenvalue are the same as in Theorem 8.1.
(1) Establish that the first part of Theorem 8.1 is still valid.
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(2) To show the second part, define z;; = (I —P;)M; jr;; and similarly
wij = Zij/||zijll2 and
W; =] g]),ugj),...,ugj),wij].

Show that W; is orthonormal and that the matrix B; ; = WjH AW has
the form,

A a;
Bij = N (8.15)
(3
aij o

in which we set oy = ngu,(cj)) and §; = ngwij.
(3) Show that

AP <@ < AU 19
(4) Taking the Frobenius norm of B; ; and using the fact that
i+l i
t(Big) = > =B+ DN
k=1 k=1
show that

2> oy = S = N + N~ - )
k=1

Al S () = Ay
k=1

IN

(5) Complete the proof of the result similarly to Theorem 8.1.

P-8.2 Using the result of Exercise P-6.3 write a simpler version of
the shift-and-invert Arnoldi Algorithm with deflation, Algorithm 8.1,
which does not require the (k—1) x (k—1) principal submatrix of H,,,
i.e., the (quasi) upper triangular matrix representing of (A —o)~! in
the computed invariant subspace.

P-8.3 How can one get the eigenvalues of A from those of B4 or B_.
What happens if the approximate eigenvalues are close and complex?
What alternative can you suggest for recovering approximate eigenval-
ues of A from a given projection process applied to either of these two
real operators.



PRECONDITIONING TECHNIQUES 279

P-8.4 Establish the relation (8.9).

NoOTES AND REFERENCES. Although the notion of preconditioning is well-
known for linear systems it is not clear who defined this notion first. In the
survey paper by Golub and O’Leary [60] it is stated that “The term precon-
ditioning is used by Turing (1948) and by then seems standard terminology
for problem transforming in order to make solutions easier. The first appli-
cation of the work to the idea of improving the convergence of an iterative
method may be by Evans (1968), and Evans (1973) and Axelsson (1974)
apply it to the conjugate gradient algorithm”. However, the idea of poly-
nomial preconditioning is clearly described in a 1952 paper by Lanczos [90],
although Lanczos does not use the term “preconditioning” explicitly. The
idea was suggested later for eigenvalue calculations by Stiefel who employed
least-squares polynomials [173] and Rutishauser [136] who combined the QD
algorithm with Chebyshev acceleration. The section on Shift-and-Invert pre-
conditioning is adapted from [123]. Davidson’s method as described in [30]
can be viewed as a cheap version of Shift-and-Invert , in which the solution of
the linear systems are solved (very) inaccurately. The method is well-known
to the physicists or quantum chemists but not as well known to numerical
analysts. The lack of theory of the method might have been one reason for
the neglect. Generalizations and extensions of the method are proposed by
Morgan and Scott [104] in the Hermitian case but little has been done in the
non-Hermitian case. o
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Chapter IX

Non-Standard Eigenvalue
Problems

Many problems arising in applications are not of the standard
form Ar = Az but of the ‘generalized’ form Ax = ABxz. In
structural engineering, the A matrix is called the stiffness matrix
and B is the mass matrix. In this situation, both are symmetric
real and often B is positive definite. Other problems are quadratic
in nature, i.e., they take the form

MNAz + A\Bx + Cxz = 0.

This chapter gives a brief overview of these problems and of some
specific techniques that are used to solve them. In many cases,
we will seek to convert a nonstandard problems into a standard
one in order to be able to exploit the methods and tools of the
previous chapters.
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1. Introduction

Many eigenvalue problems arising in applications are either gen-
eralized, i.e., of the form

Ar = ABx (9.1)

or quadratic,
M Az + ABzx + Cz = 0.

Such problems can often be reduced to the standard form Az =
Az under a few mild assumptions. For example when B is non-
singular, then (9.1) can be rewritten as

B Az =)z . (9.2)

As will be explained later, the matrix C = B~'A need not be
computed explicitly in order to solve the problem. Similarly, the
quadratic eigen-problem can be transformed into a generalized
eigen-problem of size 2n, in a number of different ways.

Thus, it might appear that these nonstandard problems may
be regarded as particular cases of the standard problems and that
no further discussion is warranted. This is not the case. First,
a number of special strategies and techniques must be applied to
improve efficiency. For example, when A is symmetric and B is
symmetric positive definite then an alternative transformation of
(9.1) will lead to a Hermitian problem. Second, there are some
specific issues that arise, such as the situation where both A and
B are singular matrices, which have no equivalent in the standard
eigenvalue context.

2. Generalized Eigenvalue Problems

In this section we will summarize some of the results known for the
generalized eigenvalue problem and describe ways of transforming
it into standard form. We will then see how to adapt some of the
techniques seen in previous chapters.



NON STANDARD EIGENVALUE PROBLEMS 283

2.1. General Results

The pair of matrices A, B in the problem (9.1) is often referred
to as a matriz pencil. We will use both the terms matriz pair
or matrix pencil. If there is no particular reason why one of the
two matrices A and B should play a special role, then the most
natural way of defining eigenvalues of a matrix pencil is to think
of them as pairs («, ) of complex numbers. Thus, («, ) is an
eigenvalue of the pair (A, B) if by definition there is a vector u,
called an associated eigenvector, such that

BAu = aBu. (9.3)
Equivalently, («, 3) is an eigenvalue if and only if
det(fA—aB)=0.

When (o, 3) is an eigenvalue pair for (A4, B), then (@, 3) is an
eigenvalue pair for (A”, BY) since det(3A — aB)” = 0. The left
eigenvector for A, B is defined as a vector for which

(BA — aB)"w = 0. (9.4)

This extension of the notion of eigenvalue is not without a few
drawbacks. First, we note that the trivial pair (0,0) always sat-
isfies the definition. Another difficulty is that there are infinitely
many pairs (a, ) which can be termed ‘generalized eigenvalues’
to represent the same ‘standard eigenvalue’. This is because we
can multiply a given (a, 3) by any complex scalar and still get
an eigenvalue for the pencil. Thus, the standard definition of
an eigenvalue corresponds to the case where B = [ and 3 = 1.
There are three known ways out of the difficulty. A popular way
is to take the ratio o/ as an eigenvalue, which corresponds to
selecting the particular pair («, 1) in the set. When /3 is zero, the
eigenvalue takes the value infinity and this may not be satisfac-
tory from the numerical point of view. A second way would be
to use pairs (o, 3) but scale them by some norm in C?, e.g., so
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that |a|? + |8]* = 1. Finally, a third way, adopted by Stewart
and Sun [172] is to denote by < «, 3 > the set of all pairs that
satisfy (9.3). The eigenvalue is then a set instead of an element in
C2. We will refer to this set as a generalized eigenvalue. However,
we will sacrifice a little of rigor for convenience, and also call any
representative element («, ), in the set, at the exclusion of (0, 0),
an eigenvalue pair . Note the distinction between the notation of
an eigenvalue pair (.,.) and the set to which it belongs to, i.e., the
generalized eigenvalue, denoted by < .,. >. This definition is cer-
tainly radically different from, and admittedly more complicated
than, the usual definition, which corresponds to arbitrarily select-
ing the pair corresponding to # = 1. On the other hand it is more
general. In particular, the pair < 1,0 > is well defined whereas
with the usual definition it becomes an infinite eigenvalue.

To illustrate the various situations that can arise we consider
two by two matrices in the following examples.

Example 9.1 Let

-1 0 0 1
A= () wa (0 1)
By the definition («, ) is an eigenvalue if det(6A — aB) = 0 which
gives the set of pairs («, 3) satisfying the relation # = +ia. In other
words, the two generalized eigenvalues are < 1,7 > and < 1,—1 >.

This example underscores the fact that the eigenvalues of a symmetric
real (or Hermitian complex) pencil are not necessarily real.

Example 9.2 Let
-1 1 0 0
A_<0 0) and B_<1 0).
Here det(BA — aB) = af, so the definition shows that < 0,1 > and

< 1,0 > are generalized eigenvalues. Note that both matrices are
singular.

Example 9.3 Let

-1 0 0 0
A—<1 0) and B_<1 0).
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In this case any pair < a, # > is an eigenvalue since det(SA—aB) =0
independently of the two scalars o and 8. Note that this will occur
whenever the two matrices are singular and have a common null space.
Any vector of the null-space can then be viewed as a degenerate eigen-
vector associated with an arbitrary scalar. Such pencils are said to be
singular.

Example 9.4 Let

1 0 0 2
e (P ) a0 3).
This is another example where any pair («, 3) is an eigenvalue since
det(BA — aB) = 0 independently of o and #. The two matrices are

again singular but here their two null spaces do not intersect. Any
‘eigenvalue’ (o, 3) has the associated ‘eigenvector’ (2a, —3)%.

The above examples suggests an important case that may
cause difficulties numerically. This is the case of ‘singular pairs’.

Definition 9.1 A matriz pair (A, B) is called singular if BA—aB
s singular for all o, 3. A matriz pair that is not singular is said
to be reqular .

The added complexity due for example to one (or both) of the
matrices being singular means that special care must be exercised
when dealing with generalized eigen-problems. However, the fact
that one or both of the matrices A or B is singular does not mean
that trouble is lurking. In fact generalized eigenvalue problem can
be quite well behaved in those situations, if handled properly.

We now state a number of definitions and properties. If we
multiply both components A and B of the pencil (A, B) to the
left by the same nonsingular matrix Y then the eigenvalues and
right eigenvectors are preserved. Similarly, if we multiply them to
the right by the same non-singular matrix X' then the eigenvalues
and the left eigenvectors are preserved. The left eigenvectors are
multiplied by Y =¥ in the first case and the right eigenvectors are
multiplied by X ! in the second case. These transformations gen-
eralize the similarity transformations of the standard problems.
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Definition 9.2 If X and Y are two nonsingular matrices, the
pencil (YAX,YBX) is said to be equivalent to the pencil (A, B).

We will now mention a few properties. Recall that if (o, ()
is an eigenvalue pair for (A, B), then (@, 3) is an eigenvalue pair
for (A#,B"). The corresponding eigenvector is called the left
eigenvector of the pair (A, B).

A rather trivial property, which may have some nontrivial con-
sequences, is that the eigenvectors of (A, B) are the same as those
of (B, A). An eigenvalue pair («, () is simply permuted to (3, «).

In the standard case we know that a left and a right eigenvector
associated with two distinct eigenvalues are orthogonal. We will
now show a similar property for the generalized problem.

Proposition 9.1 Let \; =< «;,3; > and \j =< o, 3; > two
distinct generalized eigenvalues of the pair (A, B) and let u; be
a right eigenvector associated with \; and w; a left eigenvector
associated with A;. Then,

(Au;, wj) = (Bu;, wj) = 0. (9.5)

Proof. Writing the definition for A; yields,
B;Au; — a; Bu; = 0.
Therefore,
0 = (BiAu; — a;Bug, wi) = (u;, (BA" — a; B )w;) . (9.6)

We can multiply both sides of the above equation by ; and use
the fact that (&, 5;) is an eigenvalue for A”  B# with associated
eigenvector w; to get,

0 = (upBiBjA"w; — a;8;B"wy)
= (ui, (Bia; — a;3;) B"w;)
= (Bioj — ;) (Bui, wy).
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This implies that (Bu;, w;) = 0 because
Bi Bj

Bic; — il = a

must be nonzero by the assumption that the two eigenvalues are
distinct. Finally, to show that (Au;,w;) = 0 we can redo the
proof, this time multiplying both sides of (9.6) by «; instead of
Bj, or we can simply observe that we can interchange the roles of
A and B, and use the fact that (A, B) and (B, A) have the same
set, of eigenvectors. [ ]

The proposition suggests that when all eigenvalues are dis-
tinct, we may be able to simultaneously diagonalize A and B. In
fact if all eigenvalues are distinct then the proposition translates
into

WHAU =D,, WH!BU = Dy

in which D, and Dp are two diagonals, U is the matrix of the
right eigenvectors and W the matrix of left eigenvectors (corre-
sponding to eigenvalues listed in the same order as for U). There
are two points that are still unclear. The first is that we do not
know how many distinct eigenvalues there can be. We would like
to show that when the pair is regular then there are n of them
so that the matrices U and W in the above equality are n X n
matrices. The second point is that we do not know yet whether or
not the eigenvectors associated with these distinct eigenvalues are
linearly independent. When either A or B are nonsingular then
the eigenvectors associated with distinct eigenvectors are linearly
independent. This can be seen by observing that the eigenvectors
of the pair (A, B) are the same as those of (B *A,T) in case B
is nonsingular or (I, A='B) when A is nonsingular. As it turns
out this extends to the case when the pencil is regular. When
the pair (A, B) is a regular pair, then there are two scalars o,, 7,
such that the matrix 7,A — 0, B is nonsingular. We would like
to construct linearly transformed pairs that have the same eigen-
vectors as (A, B) and such that one of the two matrices in the
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pair is nonsingular. The following theorem will help establish the
desired result.

Theorem 9.1 Let (A, B) any matriz pencil and consider the trans-
formed pencil (Ay, By) defined by

A1 :TlA—O'lB , B1 :TQB—O'QA , (97)
for any four scalars T, 7,01, 09 such that the 2 x 2 matriz
= T2 01
02 T1
is nonsingular. Then the pencil (A, By) has the same eigenvec-
tors as the pencil (A, B). An associated eigenvalue (o), 3V of

the transformed pencil (Ay, By) is related to an eigenvalue pair
(av, B) of the original pencil (A, B) by

& o
(1) =(%). 03
Proof. Writing that (o™, 3V)) is an eigenvalue pair of (A4;, B;)
with associated eigenvector u we get
BY(r A — oy B)u = oV(rB — 03 A)u
which after grouping the Au and Bu terms together yields,
(1160 + 030 Au = (1Y + 0, 3V)Bu . (9.9)

The above equation shows that u is an eigenvector for the original
pair (A, B) associated with the eigenvalue («, ) with

f=nY 400", a=mna"+o050. (9.10)

Note that (a, ) is related by (9.8) to (o™, 3V)) and as a result
a and 3 cannot both vanish because of the nonsingularity of €.
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Conversely, to show that any eigenvector of (A, B) is an eigen-
vector of (A, By) we can show that A and B can be expressed
by relations similar to those in (9.7) in terms of A; and B;. This
comes from the fact that {2 is nonsingular.

u

A result of the above theorem is that we can basically identify
a regular problem with one for which one of the matrices in the
pair is nonsingular. Thus, the choice 0y = o,, 71 = 7, and 0, =
o1, 9 = —7; makes the matrix A; nonsingular with a non-singular
Q) transformation. In fact once 7, 0y are selected any choice of 7,
and oy that makes () nonsingular will be acceptable.

Another immediate consequence of the theorem is that when
(A, B) is regular then there are n eigenvalues (counted with their
multiplicities).

Corollary 9.1 Assume that the pair (A, B) has n distinct eigen-
values. Then the matrices U and W of the n associated right
and left eigenvectors respectively, are nonsingular and diagonalize
the matrices A and B simultaneously, i.e., there are two diagonal
matrices D, Dg such that,

WHAU =D, , WHBU =Dy .

The equivalent of the Jordan canonical form is the Weierstrass-
Kronecker form. In the following we denote by diag (X, Y") a block
diagonal matrix with X in the (1,1) block and Y in the (2,2) block.

Theorem 9.2 A reqular matriz pencil (A, B) is equivalent to a
matriz pencil of the form

(diag (J,I) , diag (I,N)) , (9.11)

in which the matrices are partitioned in the same manner, and
where J and N are in Jordan canonical form and N is nilpotent.



290 CHAPTER IX

The equivalent of the Schur canonical form would be to simul-
taneously reduce the two matrices A and B to upper triangular
form. This is indeed possible and can be shown by a simple gen-
eralization of the proof of Schur’s theorem seen in Chapter 1.

Theorem 9.3 For any regular matriz pair (A, B) there are two
unitary matrices Qv and Qo such that

Q{{AQ2 =Ry and Q{{BQ2 = Rp

are two upper triangular matrices.

2.2. Reduction to Standard Form

When one of the components of the pair (A, B) is nonsingular,
there are simple ways to get a standard problem from a general-
ized one. For example, when B is nonsingular, we can transform

the original system
BAu = aBu

into

B 'Au = au

taking 4 = 1. This simply amounts to multiplying both matrices
in the pair by B~!, thus transforming (A, B) into the equivalent
pencil (B71A,I). Other transformations are also possible. For
example, we can multiply on the right by B! transforming (A, B)
into the equivalent pair (AB~' T). This leads to the problem

AB™ 'y =ay with w=B"ly.
Similarly, when A is nonsingular, we can solve the problem
A Bu = au
setting 3 = 1 or, again using the variable y = A tu,

BA 'y = ay.
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Note that all the above problems are non Hermitian in general.
When A and B are both Hermitian and, in addition, B is posi-
tive definite, a better alternative may be to exploit the Choleski
factorization of B. If B = LL, we get after multiplying from the
left by L=! and from the right by L=, the standard problem

L"AL ™y = ay. (9.12)

None of the above transformations can be used when both A
and B are singular. In this particular situation, one can shift
the matrices, i.e., use a transformation of the form described in
theorem (9.1). If the pencil is regular then there will be a matrix
() that will achieve the appropriate transformation. In practice
these transformations are not easy to perform since we need to
verify whether or not a transformed matrix is singular. If a pencil
is regular but both A and B are singular, then chances are that
a slight linear transformation will yield a pair with one or both
of the matrices nonsingular. However this is not easy to check
in practice. First, there is the difficulty of determining whether
or not a matrix is deemed nonsingular. Second, in case the two
matrices have a nontrivial common null space, then this trial-
and-error approach cannot work since any pair «, § will yield a
singular A — aB, and this information will not be enough to
assert that the pair (A, B) is singular.

The particular case where both components A and B are sin-
gular and their null spaces have a nontrivial intersection, i.e.,

Ker(A) NKer(B) # {0}

deserves a few more words. This is a special singular problem. In
practice, it may sometimes be desirable to ‘remove’ the singular-
ity, and compute the eigenvalues associated with the restriction
of the pencil to the complement of the null space. This can be
achieved provided we can compute a basis of the common null
space, a task that is not an easy one for large sparse matrices,
especially if the dimension of the null space is not small.
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2.3. Deflation

For practical purposes, it is important to define deflation pro-
cesses for the generalized eigenvalue problem. In particular we
would like to see how we can extend, in the most general setting,
the Wielandt deflation procedure seen in Chapter IV. Assuming
we have computed an eigenvector u; associated with some eigen-
value A} =< a, 3 >, of (A4, B) the most general way of defining
analogues of the deflated matrix A; of Chapter IV is to deflate
the matrices A and B as follows:

A = A—oBup" (9.13)
B1 = B-— agAulvH . (914)

We assume, as in the standard case, that v’u; = 1. We can
easily verify that the eigenvector wu, is still an eigenvector of the
pair (A;, By). The corresponding eigenvalue pair (/,4") must
satisty

ﬁ,Alul =o' Byuy

from which we get the relation
(8" + 020/ )Auy = (o + 016")Bu; .

Thus we can identify o/ + 014" with a and (' + o9a’ with (3, to
get
a=d +o.f, =0 +00. (9.15)

Inverting the relations, we get

,_OC—O'lﬁ ,_ﬁ—O'QOé

o = y =
1—0'10'2 ]_—0'10'2

(9.16)

assuming that 1 — 0,00 # 0. The scaling by 1 — 0,09 can be
ignored to obtain the simpler relations,

o =a—o0fp, [ =0-00« (9.17)
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which can be rewritten as

(5)=( = 7)) (9.15)

In the standard case we have B =1, = 3 =1 and 09 = 0, so
the standard eigenvalue is changed to o/ = o — 07 as was seen in
Chapter 1V.

Using Proposition 9.1, we can show that the left eigenvec-
tors not associated with \; are preserved. The particular choice
v = Bwy, in which w; is the left eigenvector associated with the
eigenvalue \; preserves both left and right eigenvectors and is a
generalization of Hotelling’s deflation, see Exercise P-9.3.

2.4. Shift-and-Invert

Before defining the analogue of the standard shift-and-invert tech-
nique we need to know how to incorporate linear shifts. From
Theorem 9.1 seen in Section 2.1, for any pair of scalars oy, o5, the
pair (A — o1 B, B—05A) has the same eigenvectors as the original
pair (A, B). An eigenvalue (¢, ') of the transformed matrix pair
is related to an eigenvalue pair («, ) of the original matrix pair
by

a = o +of,
B = [ 4o .

Computing (¢, ') from («, ) we get, assuming 1 — o109 # 0,

,_CY—O'lﬂ ,_/B_UQO[

a = s = .
]_—0'10'2 ].—0'10'2

In fact, since the eigenvalues are defined up to a scaling factor,
we can write

o =a—o0 B, [=0—-00a. (9.19)
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It is common to take one of the two shifts, typically o, to be
zero. In this special situation:

o =a-off, =0

which gives the usual situation corresponding to = 1.

Shift-and-invert for the generalized problems corresponds to
multiplying through the two matrices of the shifted pair by the
inverse of one of them, typically the first. Thus the shifted-and-
inverted pair would be

(T, (A=oB) (B-:A) ).

This is now a problem which has the same eigenvalues as the
pair (A — 01B, B — 03 A), i.e., its generic eigenvalue pair (o, 3')
is related to the original pair («, §) of (A, B) via (9.19). It seems
as if we have not gained anything as compared with the pair
(A —01B,B — 0,A). However, the A -matrix for the new pair is
the identity matrix.

The most common choice is 05 = 0 and o close to an eigen-
value of the original matrix.

2.5. Projection Methods

The projection methods seen in Chapter IV are easy to extend to
generalized eigen-problems. In the general framework of oblique
projection methods, we are given two subspaces K and L and
seek an approximate eigenvector « in the subspace K and an

approximate eigenvalue (&, 3) such that
(BA—aB)u L L. (9.20)

Given two bases V = {vy,..., vy}, and W = {wy, ..., wy,} of K
and L, respectively, and writing . = Vy, the above conditions
translate into the generalized eigenvalue problem

BWHAVYy = aW BVy .
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Note that we can get a standard projected problem if we can
find a pair W,V that is such that W# BV = I. For orthogonal
projection methods (K = L), this will be the case in particular
when B is Hermitian positive definite, and the system of vectors
{vi}iz1, m is B-orthonormal.

When the original pencil is Hermitian definite, i.e., when A
and B are Hermitian positive definite and when B is positive def-
inite, the projected problem will also be Hermitian definite. The
approximate eigenvalues will also be real and all of the proper-
ties seen for the Hermitian case in Chapter I will extend in a
straight-forward way.

2.6. The Hermitian Definite Case

We devote this section to the important particular case where
both A and B are Hermitian and one of them, say B, is positive
definite. This situation corresponds to the usual Hermitian eigen-
problem in the standard case. For example the eigenvalues are real
and the eigenvectors from an orthogonal set with respect to the
B—inner product defined by

(z,y)p = (B, y) . (9.21)

That this represents a proper inner product is well-known. The
corresponding norm termed the B-norm is given by

l2lls = (Bx, )"/ .

An important observation that is key to understanding this case
is that even though the matrix C' = B~!A of one of the equivalent
standard eigenproblems is non-Hermitian with respect to the Eu-
clidean inner product, it is self-adjoint with respect to the B-inner
product in that

(Cz,y)p=(2,Cy)p Y,y . (9.22)

Therefore, one can expect that all the results seen for the stan-
dard problem for Hermitian case will be valid provided we replace
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Euclidean product by the B-inner product. For example, the
min-max theorems will be valid provided we replace the Rayleigh
quotient (Ax,x)/(x,x) by

_ (Cz,2)p  (Aw,x)
plw) = (x,7)p  (Bx,z)’

If we were to use the Lanczos algorithm we would have two
options. The first is to factor the B matrix and use the equiva-
lent standard formulation (9.12). This requires factoring the B-
matrix and then solving a lower and an upper triangular system
at each step of the Lanczos algorithm. An interesting alternative
would be to simply employ the standard Lanczos algorithm for
the matrix C' = B~ A replacing the usual Euclidean inner prod-
uct by the B inner product at each time that an inner product
is invoked. Because of the self-adjointness of (' with respect to
the B inner product, we will obtain an algorithm similar to the
one in the standard case, which is based on a simple three term
recurrence. A naive implementation of the main loop in exact
arithmetic would consist of the following steps,

w = B 'Av;, (9.23)

a; = (w,v))p, (9.24)

w = w— vy — Buio, (9.25)
Bir1 = |wls, (9.26)
vinr = w/Bi

We observe that «; in (9.24) is also equal to (Av;, v;) and this
gives an easy way of computing the 's, using standard Euclidean
inner products. Before multiplying Av; by B™! in (9.23) «; is
computed and saved. The computation on 3;;; is a little more
troublesome. The use of the definition of the B-inner product
would require a multiplication by the matrix B. This may be
perfectly acceptable if B is diagonal but could be wasteful in
other cases. One way to avoid this matrix product is to observe
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that, by construction, the vector w in (9.26) is B-orthogonal to
the vectors v; and v;_;. Therefore,

(Bw,w) = (Avj, w) — a;(Buj, w) = B;(Bvj_1, w) = (Avj, w).

As a result, if we save the vector Av; computed in (9.23) until
the end of the loop we can evaluate the B-norm of w with just an
Euclidean inner product. Another alternative is to keep a three-
term recurrence for the vectors z; = Bvj. Then Bw is available
as

Bw = AU]' — 5z — ﬂij_l

and the inner product (Bw, w) can be evaluated. Normalizing Bw
by Bj4+1 yields z;41. This route requires two additional vectors of
storage and a little additional computation but is likely to be more
viable from the numerical point of view. Whichever approach is
taken, a first algorithm will look as follows.

ALGORITHM 9.1 First Lanczos algorithm for matrix pairs

1. Start: Choose an initial vector v; of B-Norm unity. Set
ﬂl = 0; Vg = 0.

2. Iterate: For j =1,2,...,m, do:
(a) v:= Av; ,
(b) a; = (v,v5) ,
(¢) w:= B v — aju; — v,
(d) Compute (41 = ||w||p, using Bj41 = +/(v,w) ,
(e) vjr1 =w/Bjs1.
One difficulty in the above algorithm is the possible occurrence
of a negative B norm of w in the presence of rounding errors.
A second algorithm which is based on keeping a three-term
recurrence for the z;’s, implements a modified Gram-Schmidt ver-

sion of the Lanczos algorithm, i.e., it is analogous to Algorithm
6.5 seen in Chapter VI.
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ALGORITHM 9.2 Second Lanczos algorithm for matrix pairs

1. Start: Choose an initial vector vy of B-Norm unity. Set
ﬂlz(), Z():U():O, leBvl.

2. Iterate: For j =1,2,...,m, do

(&) V= AUj — ﬁij_l 5
(b) a; = (v,v)) ,
(c) vi=v—ajz,

(d) w:= B v,
(e) ﬂj+1 = (wvv) ,

(1) vjt1 = w/Bj1 and 2541 = v/Bj11.

Note that the B-norm in (d) is now of the form (B~!v,v) and
since B is Hermitian positive definite, this should not cause any
numerical problems if computed properly.

In practice the above two algorithms will be unusable in the
common situation when B is singular. This situation has been
studied carefully in [109]. Without going into the geometric de-
tails, we would like to stress that the main idea here is to shift the
problem so as to make (A — 0B) nonsingular and then work in
the subspace Ran(A —oB)'B. A simplification of the algorithm
in [109] is given next. Here, o is the shift.

ALGORITHM 9.3 Spectral Transformation Lanczos

1. Start: Choose an initial vector w in Ran[ (A —oB) 'B |.
Compute z; = Bw and 3, := \/(w, z1). Set vy := 0.

2. Iterate: For j =1,2,...,m, do

(a) v; =w/B; and z; := z;/B; ,
(b) zj = (A—0oB)™'w,
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(c) w:=w— Bjuj_; ,
(d) aj = (w,z) ,
(e) w:=w— a;z; ,

(f) zj41 = Bw ,
(8) Bjt1= \/m

Note that the algorithm requires only multiplications with the
matrix B. As in the previous algorithm, the two most recent
2;’s must be saved, possibly all of them if some form of B - re-
orthogonalization is to be included. We should point out a simple
connection between this algorithm and the previous one. With
the exception of the precaution taken to choose the initial vector,
algorithm 9.3 is a slight reformulation of Algorithm 9.2, applied
to the pair (A’, B') where A" = B and B' = (A — 0B).

3. Quadratic Problems

The equation of motion for a structural system with viscous damp-
ing and without external forces is governed by the equation

Mi+Ci+Kq=0.

In vibration analysis, the generic solution of this equation is as-
sumed to take the form ¢ = ue* and this leads to the quadratic
eigenvalue problem

(MM +AXC+ K)u=0. (9.27)

These eigenvalue problems arise in dynamical systems where damp-
ing and other effects, e.g., gyroscopic, are taken into account.

Such effects will define the C' matrix. In the next subsections we

will see how to adapt some of the basic tools to solve quadratic

problems.



