)2: Memory-based active learning for
optimizing noisy continuous functions

Andrew W. Moore'?, Jeff G. Schneider'?,
Justin A. Boyan', and Mary S. Lee?

CMU Computer Science & Robotics! Schenley Park Research Inc.?
Pittsburgh, PA 15213 6413 Howe Street
http://www.cs.cmu.edu/~AUTON Pittsburgh, PA 15206

{awm,schneide, jab,mslee}@cs.cmu.edu

May 10, 1998

Abstract

This paper introduces a new algorithm, Q2, for optimizing the expected
output of a multi-input noisy continuous function. Q2 is designed to
need only a few experiments, it avoids strong assumptions on the form
of the function, and it is autonomous in that it requires little problem-
specific tweaking.

These capabilities are directly applicable to industrial processes, and
may become increasingly valuable elsewhere as the machine learning
field expands beyond prediction and function identification, and into
embedded active learning subsystems in robots, vehicles and consumer
products.

Four existing approaches to this problem (response surface methods,
numerical optimization, supervised learning, and evolutionary methods)
all have inadequacies when the requirement of “black box” behavior is
combined with the need for few experiments. Q2 uses instance-based
determination of a convex region of interest for performing experiments.
In conventional instance-based approaches to learning, a neighborhood
was defined by proximity to a query point. In contrast, Q2 defines the
neighborhood by a new geometric procedure that captures the size and

shape of the zone of possible optimum locations. Q2 also optimizes
weighted combinations of outputs, and finds inputs to produce target
outputs.

We compare Q2 with other optimizers of noisy functions on several
problems, including a simulated noisy process with both non-linear con-
tinuous dynamics and discrete-event queueing components. Results are
encouraging in terms of both speed and autonomy.

1 Active learning for optimization

The apparently humble task of parameter tweaking for noisy systems is of great
importance whether the parameters being tweaked are for an algorithm, a real
manufacturing process, a simulation, or a scientific experiment. The purpose
of this paper is two-fold. First, we wish to highlight the potential importance
of machine learning as an as-yet underexploited tool in this domain. Second,
we will introduce Q2, a new algorithm designed for this domain.

We consider a generalized noisy optimization task in which a vector x of
real-valued inputs produces a scalar output y that is a noisy function of x:

y = g(x) + noise (1)

Given a constrained space of legal inputs, the task is to find the input vector
Xopt that maximizes g, using only a small number of experiments.

In both industrial settings and in algorithm-tuning, this task often demands
considerable human intervention and insight. A factory manager who wants
to optimize a process can:

e Buy a computer, statistics software, and hire a professional statistician
to solve the problem using insight and experiment design.

e Save money and try to “wing it” by manually tuning the parameters.

For highly expensive or safety-critical processes, the first option is always
preferable, leaving only the question of which are the best analysis and exper-
iment design tools for the statistician to use. This area is heavily investigated
by the academic statistics community.

But there are also many situations in which it is impractical to enlist
human-aided analysis during optimization, for example if a vehicle engine
self-tunes during driving. And there are many other situations in which the

potential benefit from optimization is too small to justify paying for expert
professional analysis. In such cases, it is tempting to ask: Can “black box”
automated methods optimize noisy systems? If practical black box methods
are found, they could be widely used. Somewhat fancifully, this could lead
to the eventual inclusion of Black Box Optimizer chips within a huge range
of consumer products, from vehicle engines and industrial equipment down to
refrigerators, toasters, and toys.

In the next section we discuss variants of the Black Box Noisy Optimization
task. Then in Section 3 we discuss existing approaches. After that we present
and evaluate)2, a new algorithm.

2 Variants of noisy optimization

The generalized noisy optimization task summarized by Equation 1 has many
variants. For instance, in some domains each experiment is a lengthy proce-
dure, and so there is ample computation time between experiments. In other
domains, experiments are very quick, leaving an optimizer little time to make
its recommendations. The specifics of the domain determine which methods
are appropriate. The following factors need to be considered:

e Minimize regret or the number of experiments? Do we pay a
constant cost per experiment, or do experiments with poor results cost
us more? In scenarios such as tuning the parameters for an algorithm, or
optimizing a test plant in which all products will be discarded, the cost
per experiment may be constant. But in a task such as minimizing the
fuel consumption of a running engine, some experiments cost more than
others. Here, we focus on simply minimizing the number of experiments.
Note that this presumes that we are not risk-averse: there is no penalty
for performing highly unpredictable experiments.

¢ How much computer time is available to choose experiments?
If experiments are very cheap and very quick, then an algorithm that
needs extensive CPU time to select the ideal next experiment could still
be inferior to one that requires only a fraction of a second to suggest a
reasonable-but-less-than-ideal experiment. Here, we assume that exper-
iments are costly enough (in time or money) that it pays to choose them
carefully. But the Q2 algorithm can be adjusted to satisfy any desired
tradeoff between the speed and the quality of proposed experiments.

e Are we doing local or global optimization? Unless we have strong
prior knowledge, global optimization of a function of more than a cou-
ple of inputs requires a very large number of experiments. Q2 is only
designed to find a local optimum, though empirically it appears to be
good at discovering the global optimum.

e Can we re-use old data? Many algorithms have a “current location”
or “current set of k recent evaluations” but otherwise disregard earlier
evaluations. 2, however, can exploit any existing data, including pre-
vious evaluations obtained by other experimental methods.

In this paper we also assume that there are no long term dynamics, i.e.
the output of the n’th experiment depends only on the n’th chosen x, not on
previous x values or the time. Unlike [2, 6] we only try to find the optimum,
not to model the ¢ function.

3 Possible approaches

Many disciplines have methods that are relevant to noisy optimization. Space
permits only a brief survey.

Numerical analysis: Numerical methods such as Newton-Raphson or
Levenberg-Marquardt [11] have fast convergence properties, but they must be
applied carefully to prevent oscillations or divergence to infinity, which violates
our desire for black box autonomy. Furthermore, current numerical methods
cannot survive noise.

Stochastic approximation: The algorithm of [12] finds roots without the
use of derivative estimates. Keifer-Wolfowitz (KW) [5] is a related algorithm
for noisy optimization. It estimates the gradient by performing experiments
in both directions along each dimension of the input space. Based on the
estimate, it moves its experiment center and repeats. It uses decreasing step
sizes to ensure convergence. KW's strengths are its aggressive exploration, its
simplicity, and that it comes with convergence guarantees. However, it can
attempt wild experiments if there is noise, and discards the data it collects after
each gradient estimate is made. Amoeba (see below) is a similar approach,
but in our experience is superior to KW.

Amoeba search: Amoeba [11] searches k-dimensional space using a sim-
plex (i.e., a k-dimensional tetrahedron). The function is evaluated at each

vertex. The worst-performing vertex is reflected through the hyperplane de-
fined by the remaining vertices to produce a new simplex that has moved
up the estimated gradient. Ingenious simplex transformations let the simplex
shrink near the optimum, grow in large linear zones, and ooze along ridges.
Experiment design & response surface methods: Current RSM prac-
tice is described in the classic reference [1]. It proceeds by cautious steepest
ascent hill-climbing. A region of interest (ROI) is established at a starting
point and experiments are made at positions that can best be used to identify
local function properties with low-order polynomial regression. Much of the
RSM literature concerns experimental design—deciding where to take data in
order to acquire the lowest variance estimate of the polynomial coefficients in
a fixed number of experiments. When the gradient is estimated confidently,
the ROI is moved accordingly. Quadratic regression locates optima within the
ROI, and diagnoses ridge systems and saddle points. The strength of RSM is
that it avoids changing operating conditions based on inadequate evidence, but
moves once the data justifies it. A weakness of RSM is that human judgment
is needed: it is not an algorithm, but a manufacturing methodology.
Evolutionary computation and learning automata: Methods such
as genetic algorithms begin by sampling uniformly, but then bias later sam-
ples in favor of the experiments that had good outcomes. There is a vast
literature of refinements of such methods. These approaches need thousands,
sometimes millions, of evaluations, because they attack a different problem:
global optimization, usually for noise-free, cheap-to-evaluate criteria.
PMAX: PMAX is a simple, effective algorithm. Based on the data from
the experiments so far, it uses a non-linear function approximator to estimate
the underlying function g(x). The next experiment is taken at the point that
maximizes the estimate of g. This approach has been used with a decision-tree
approximator [13], with neural nets (in many commercial products), and with
locally weighted regression [9]. Variations of PMAX include taking the next
experiment not at the predicted optimum, but instead where the confidence
intervals are widest [6], or where the top of the confidence interval is maxi-
mized [9], or in accordance with the Interval Estimation heuristic [4] or similar
criteria [13].
Empirically, we have found that PMAX using locally weighted regression
as the function approximator is often faster than more sophisticated alterna-
tives [9]. However it has some serious drawbacks:

e In conventional function approximation one must solve the bias-variance

tradeoff. This is often determined automatically using cross-validation [8],
but this proves difficult with a set of very few, weirdly distributed dat-
apoints obtained during optimization. FEmpirically we have observed
dismal performance when attempting this. In addition, conventional ap-
proaches search for the best model over the whole data range, whereas
we only need our model to be accurate in the vicinity of the optimum.

e PMAX is very expensive. It needs to train a function approximator each
time an experiment is made, and then the approximate function must
be numerically optimized to produce the suggested experiment.

e PMAX can get stuck in hallucinated optima since it is not choosing
experiments to give the most information (in the way that RSM does).

4 The Q2 algorithm

The Q2 algorithm is an attempt to combine the strengths of Newton’s method
(superlinear convergence), RSM (using estimates of significance in the face
of noise), and PMAX (exploiting all available data). Let us first outline the
structure of the Q2 algorithm, before discussing its details:

1. Input a set of previous experimental results
(X1 = y1), (X2 = y2), .- (X0 =) (2)
and HR: a hyper-rectangular portion of input space over which the op-
timization is constrained to take place.

2. Select a convex Region Of Interest (ROI) within HR such that:

e The constrained optimum within HR is expected to lie within ROI.

e There is no evidence to contradict the assumption that the function
is well-approximated by a quadratic within ROI.

3. Select a useful experiment to take within ROI.

4. Return the experiment, the estimated location of the optimum, and (op-
tionally) other information such as the ROI and a regression analysis of
the local quadratic.

In typical operation, the suggested experiment will be performed, we will add
the new datapoint to the dataset, and return to Step 2.

Step 2: Selecting the ROI

Step 2 begins by generating a sequence of candidate Regions Of Interest,
ROIL, ROL,...,ROI, ... from which the final ROI will be selected. The gen-

erated sequence has the properties that
ROIL:=HR and ROI; O ROl (3)

where RO+, is determined by cutting away an unpromising subregion of
ROI;. How is the cut determined? Let us consider an example.

Figure 1 shows a Gaussian function of two inputs. Suppose HR is set to
be the full square region depicted in the figure, and suppose we have available
the thirty noisy datapoints that are also shown. Call this dataset DS;. We
can fit a quadratic to DS;. Write

'gk =c-+ bTXk + %XzAXk (4)
where A is symmetric, or, equivalently,
Up = ¢+ bizpy + baxpo + %mﬂzl + a12Tk1 T2 + §a225€i2 (5)

The regression is a matter of simple matrix manipulation. Write z; = the
vector of polynomial terms for the kth input point, xj.

Zp = (17$k1,$k2,$z17$klxk27$z2) (6)

Write Z = a matrix whose kth row is zx, and write Y = a vector whose kth
element is y,. Finally define

B = (¢,b1, by, Lay1, arz, Lag)" (7)

as the regressed coefficients. Then using Bayesian regression with non-informative
priors on 3 and o? (the estimated Gaussian noise), we have the MAP of 3 (also
the maximum likelihood value in this case) as

B=(2"2)"'72"Y (8)

In practice, if the information is known, we can put Gaussian priors on the
coefficients and an inverse-Gamma prior on the noise. For our dataset the
resulting quadratic approximation is shown in Figure 2. Note that because
the underlying function is so far from quadratic, this is a poor fit.

0.8 |

0.6 |

02 | o

0.2

Figure 1: A function of two inputs. The optimum is at Figure 2: The best-fitting global quadratic regression approxi-
(0.75,0.25). It is a Gaussian bump, and hence very flat more than mation obtained by least squares regression on the 30 datapoints.
about 0.4 units of distance from the optimum. Also shown are = The worst-scoring datapoint is in the top left.

30 noisy datapoints. These were generated with uniformly ran-
dom (x,y) coordinates, with z (height) set to f(x,y) plus Gaussian

noise with standard deviation 0.1.

Q2 evaluates each of the datapoints in DS; using the quadratic, producing
the values of Equation 5. Let (Xj(1), yr1)) be the datapoint that is predicted
to be the worst, i.e. k(1) = argmin,gy. It will be used to define a cut of ROL.
We look at the direction of the steepest gradient, Vg, of the quadratic at x(y),
and we cut using the half-plane perpendicular to this direction so that

RO[Q = RO[l N {X | (X — Xk(l))-dl Z O} (9)

where d; = Vy evaluated at x(1).

In Figure 2, the worst point according to the quadratic is at the top left,
and with some effort the resulting cut-plane can be seen.

Why do we use the above approach? We want to use our unreliable (prob-
ably biased) quadratic to tell us how to reduce the ROl We assume that
even if the quadratic is a poor model for g, it will be adequate to predict an
unpromising location for the optimum. Why pick the point with the predicted
worst value instead of the actual worst value? Because the actual values are
noisy, meaning that an unlucky datapoint could be misleadingly removed.

We have described how ROI; is constructed from ROI;. In general, ROl 4,
is constructed from ROI; using a similar recipe: set DS; 1 = DS; —(Xg(;), Yr(j))

8

0.8 |

0.6 |

0.2 |

0.2

Figure 3: After the worst-scoring point is removed from the re- Figure 4: After 12 cuts the remaining datapoints (those inside
gression, we have the following fit to the remaining 29 datapoints. the convex region defined by the cuts) are relatively close to the
The worst predicted point among these is halfway up along the optimum, and the resulting local quadratic regression is an ex-

left edge. Note the cut that it causes. cellent local approximation.

do a regression using dataset DS;11 (which will be less biased than using DS;),
and cut using the point that the new regression predicts will be worst. Figure 3
shows the approximation that results after the first cut has been made (giving
a less biased fit than Figure 2), and also shows the second cut. Figure 4 shows
what remains after the twelfth cut: the fit is now good, because it is only
based on datapoints near the quadratic-shaped optimum. Figures 5-7 use a
bigger dataset and an extreme ridge system.

At this point Q2 has generated a series of candidate regions, ROI, ROL
To decide which to select, we perform regression analysis on the quadratics
in each of the ROL. As j increases, ROI; shrinks and is based on fewer
datapoints. So, as j increases, ROI;’s bias decreases and its variance increases.
We select the ROI; with the best tradeoff using the criterion:

Choose the smallest ROI for which Bayesian regression analysis is
confident about the location of the optimum, and for which the
optimum is, with high probability, inside the ROL*

1This is achieved by taking the joint posterior distribution (normal-gamma) on the noise
and the coefficients of the quadratic form, and then (via Monte Carlo sampling) seeing
whether at least 7 = 98% of the samples lie in the ROI and whether the expected regret
of committing to the optimum is below a threshold (2% of the range of output values).
Empirically, these threshold choices are not performance-critical.

The results of this criterion are shown in Figures 8-13. With fewer or
noisier datapoints, larger ROIs are chosen. The shape of the chosen ROIs
nicely reflects the shape of the local ridge system (Figure 7). If irrelevant
inputs are included, the ROI chosen by Q2 tends to stretch to ignore irrelevant
dimensions (pictures omitted because of space constraints).

Step 3: Choosing the experiment

Once the ROl 'is determined, the estimated optimum is easily obtained as
Xopt = —A7'b (10)

(assuming the quadratic fit has revealed a maximum, meaning A is negative-
definite). Xop¢ is not necessarily the best place to experiment in order to gain
useful new information. Instead, we investigated these options:

1. Put experiment at X,p¢.
2. Choose a random point within ROL

3. Choose the point in ROI that is predicted to most reduce the uncertainty
about the location of the optimum.

4. Choose the point in ROI that keeps the regression as orthogonal [1] as
possible, mimicking established RSM practice.

5. Choose the point in ROI as far away from any previous datapoints (in
or out of ROI) as possible.

Option 5 is best empirically. This is because options 3 and 4, despite their
elegance, usually choose experiments at the edge of the ROI reducing the
opportunity for future cuts to shrink future ROIs. Option 1 quickly becomes
stuck, and option 2 frequently wastes experiments.

Details

In this short paper, many details have been omitted. Some regressions predict
a minimum or a saddlepoint, instead of a maximum. We have special-purpose
techniques to deal with this. The Bayesian analysis is largely standard, and
also omitted: see [3] for more details. Some confidence measures require Monte

10

Carlo integration. These details will be discussed in a forthcoming technical

report [10].

Figure 5: Another function of two in-
puts. The optimum is on the banana-
shaped ridge at (0.75,0.2). 200 datapoints

are shown (their heights omitted).

Figure 8: The region of interest selected
for the function of Figure 1 given a dataset

of only 10 points.

N,

S
S\
N

\\§§\§ .

o\\\\ \
SR
e

2
i
i

N

_«
D
S

SN
LN
f///.f//!;'««

)

U

s s
K '//q/ /////l{:/r/:,

Figure 6: After the first 150 cuts, the re-

gion of interest nicely surrounds the ridge.

gl

v
WA
NG

%

N

S

NSO

S ‘t\\
N
N

N,

0.8

.6

0.4

0.2

Figure 7: After the first 180 cuts, the re-
gion of interest is smaller still, yet continues

to surround the true optimum.

)

.
i
b
il
/
i

'4'
‘yﬂ"‘/‘

Iy
l

/

|
b

Figure 9: The region of interest when given

30 datapoints.

11

Figure 10: The region of interest when

given 50 datapoints.

7

n‘m‘ﬁu"

i
Il
f

!
'

Figure 11: The region of interest selected Figure 12: The region of interest when Figure 13: The region of interest when o =

for the function of Figure 1 given a dataset noise with std. dev. ¢ = 0.5 is added to 2.0.

of 30 points, with no noise. the observations.

5 Results

We begin by comparing Q2 with four versions of Amoeba and three versions
of PMAX on the function f; from Figure 1 with noise of 0.3 added to each
evaluation? Amoeba is the classic search algorithm from [11]. Amoeba2 is
the same except it is made resistant to noise by doing two evaluations and
taking their average at each simplex vertex. Amoebad and Amoeba8 similarly
average four and eight evaluations at each vertex. All the Amoebas begin with
a medium-sized simplex started randomly in input space.

The results are in Figure 14. In this (and all subsequent experiments) we
performed 25 independent runs of each optimizer, with each run consisting
of 60 experiments. As well as selecting the datapoints for the experiments,
at every stage the optimizers also gave their estimate of the location of the
optimum. To assess the various optimizers, we wish to compare how good
they are at estimating the optimum, and so we look at the true value of the
underlying function at these estimates of the optimum. For the i¢th run of a
particular optimizer, let s; denote the mean of the true values at the estimates
of the optimum. The figures in the left hand column are the mean s; value of
the optimizer over all 25 runs (i.e. (3;s;)/25). These values are also drawn
graphically in the same column: the further to the right the dot lies, the better
the mean score. The horizontal lines depict the 95% confidence intervals on the
mean. The right hand column shows the mean performance of the optimizer

?These tasks are available from http://www.cs.cmu.edu/~AUTON.

12

Mean over all 60 trials

Mean over last 15 trials

Aneba

0.999 — —

1.040—s—

Amoeba2

1.130 ——

1,234 —»—

Amoebad

1,181 ——

1.445 —

Amoeba8

0.950——

1200 ——

PmaxQ obal

1.667 +

1.812 +

PrmaxLocal

1.681 +

1.846

PrmaxVLocal

1.517 +

1.691 +

Q@

1.716 .

1.894 +

Figure 14: Performance on fi(z1,z2) from Figure 1.

6
3 2
a o
4 yan
I+ 9\ Ao o
20
2 Al a
\ o\

Figure 15: f3(z1,%2): a sim-
ple (pure quadratic) two-input
function with an optimum at

(0.5,0.5).

Figure 16: f4(z1,72): a func-
tion in which the only relevant
direction is =z + y. The optima

lie along a diagonal ridge.

on the final 15 of the 60 experiments. Unsurprisingly, all methods do better
in later experiments, so the right hand means are higher.

Figure 14 shows that Q2 outperforms all the other methods on this prob-
lem. Amoeba4 is the best of the Amoebas; it is less affected by noise than
Amoeba and Amoeba2, but it makes better progress than Amoeba8, which
wastes 8 evaluations on every vertex.

Table 1 shows results for the 2d-functions of Figures 5, 15, and 16 for noise
levels of 0 and 0.3. With no noise, the one-evaluation-per-step version is always
the best Amoeba. With noise, the best Amoeba is problem specific. The best
PMAX is also problem specific. Q2 adapts well to noise and to differing levels
of function complexity. Q2 is beaten by the Global and moderately local
PMAX for the noisy pure quadratic f5(x1,x3). In all other cases Q2 wins,
but its main strength is autonomy: unlike Amoeba and PMAX no problem
specific parameter needs to be chosen to make Q2 perform well.

Figure 17 shows a simulated, sanitized version of a real industrial process.
Liquids enter a tank at a certain rate (a parameter) and a certain mix-ratio
(a parameter) unless the tank is above a certain level (a parameter). They
react causing a color dependent on the tank mix-ratio and the time spent in the
tank. Thickener is added at a certain rate (a parameter), and the output passes
through a cooling tunnel to wait on a holding belt. While waiting, color may
change. When the belt fills beyond a certain level (a parameter), production
halts. Customer demand randomly consumes material on the holding belt.
The yield is the amount of material that reaches the customer with color lying
in an acceptable tolerance range. This is a very noisy task. The yield is a
highly non-quadratic function; one input is almost irrelevant, the others are

13

f2(1’1,$2)

Mean over all 60 trials

Mean over last 15 trials

f3(l‘1;1‘2)

Mean over all 60 trials

Mean over last 15 trials

f4(l‘1,1’2)

Mean over all 60 trials

Mean over last 15 trials

Amoeba 2.168 -+ 2.509 . Amoeba 1.985 + | 2.000 ‘. Amoeba 1.816 + 2.000 ‘

Amoeba2 1.879 - 2.250 -+ Amoeba2 1.970 -+ 2.000 4 Amoeba2 1.631 + 1.999 .

Amoebad 1.576 —+ 1.993 Amoebad 1.940 — 1.996 + Amoebad 1.275 -+ 1.944 +
NOISG Anoeba8 1,202 1.844 —— Anoeba8 1885+ 1.982 “+ Anoeba8 0.700+— 1.158 ——

Pmax@ obal | 1.735 -+ 1.859 -+ Pmax@ obal | 1.953 + 1.998 0 Pmax@ obal | 1.618 + 1.803 +
0.0 PraxLocal | 1866 - 2116 + PraxLocal | 1953 + 1,998 ' PraxLocal | 1691 v L8 '

PmaxVLocal | 1.938 + 2.268 + PmaxVLocal | 1.938 + 1.994 ‘ PmaxVLocal | 1.663 + 1.908 *

Q@ 1.968 + 2.476 + Q@ 1.959 -+ 2.000 ‘ Q@ 1.730 ‘ 1.999 ’

Mean over all 60 trials | Mean over last 15 trials Mean over all 60 trials | Mean over last 15 trials Mean over all 60 trials | Mean over last 15 trials

Amoeba 1.633 — 1.728 — Amoeba 176 — L7 Amoeba 0.808 —— 0.861 ——

Amoeba2 1.656 —— 1.839 — Amoeba2 1871 —— 1.890 — Amoeba2 0.875 —— 1009 ——

Amoebad 1479 —— 1.849 —— Amoebad 1.904 — 1.954 -+ Amoebad 0.962 —— 1.388 —
NOISC Anoeba8 11824 1.802 — Anoeba8 1.865 —— 1.936 —+ Anoeba8 0.637—— 0.956 ——

Pmax@ obal | 1.769 -+ 1.909 —— Pmax@ obal | 1.910 + 1.979 + Prax@ obal | 1.549 + 1.738 -+
0.3 PraxLocal | 1861 - 2,002 - PraxLocal | 1911 ~ | Lo v PraxLocal | 1619 RS +

PmaxVLocal | 1.835 + 2.117 + Pmax\VLocal | 1.787 + 1.868 —~+ PmaxVLocal | 1.489 + 1.756 +

Q@ 1.859 + 2.388 + Q@ 1.892 -+ 1.944 + Q@ 1.675 . 1.947 +

Table 1: Optimization results for seven optimizers on three problems at two noise levels.

u2: Flowintotank
u3: Water/Dye mix

Water /
N ¢
Customer 6: flow
ra AN
@ Holding Belt

u6: Belt shutoff level

XL
Tank
level

c2: color
f2: flow

Dye

ul: Tank
shutoff level

£ Thickener flow, 777 =\

'
[t

Thickener \

Mixer

0
NS

i

c4: color
f4: flow

c6: color

@

Figure 17: A simulated production process described in the text.

Mean over all 60 trials

Mean over last 15 trials

27.130

Anmpeba 25.297 —+— —

Ampeba2 27.412 —+— 33.216 —
Ampebad 22,302 —»— 26.534 o+ —

Ampeba8 19.858 +»— 21,411 ——

Pmaxd obal |28. 006 . 37.237 -+
PmaxLocal |27.634 + 37.952 -+
PmaxVLocal |23.012 27.105 -

Q@ 36.334 + 45,589 -+

Figure 18: Performance on the simulated production process.

all important, and two of the inputs must run to their maximum legal value for
best performance. The results are given in Figure 18, and show a significant
win for Q2. Q2 and the PMAX’s also have far more repeatable results than
the Amoebas.

We also applied conventional RSM to this task, using a star design pre-
scribed by [1]. The star occupied the hyperrectangle defined by the legal ranges
of values for each input. It needed 76 evaluations, but the chosen optimum
had a yield below 10 units: worse than all the other methods, indicating that
the assumption of a global quadratic is inadequate in this domain.

Next, we examine a domain where experiments are time-consuming. Fig-
ure 19 shows a generalization of the multi-buffer machine task described in [7]
(this makes 10 products instead of 5). There are two inputs defining a simple
parameterized policy for when to service the machine. Services are costly, but
unscheduled breakdown is much worse. This task is evaluated by a computa-

tionally expensive simulation; for each setting of the two inputs, we perform

14

Finite capacity buffers Unpredictable
Demand Mean over all 24 trials | Mean over last 6 trials
M: Produt A ——= Anmpeba 1.553 — 1.897 —
ProductB —————=> Amoeba2 1.711 —— 2.859 ——
Raw Unreliabl OO0000 __ jprodust c ——= Anoebad 0.940 . 2.179 Y
maerids | JNPEIADIE f [HIBIHE 1 proouctD > PraxG obal |- 1. 489, 1,380,
—> Multipurpose | AAN Product E ————>
N . PmaxLocal |-1.521 1. 454,
> Machine VAVAVEVAVEYS Product P PrexVLocal |- 1.565 1518
XX XXX XX | Product G—=> 0' £3E 3' =
EE Product H—> @ : - : -~
Product | —=
JIMM MMM MMM Productd —>

Figure 19: A multi-buffer servicing task similar to those de-

scribed in [7].

Goal Hand Position

Figure 20: Performance at the multi-buffer task.

Figure 21: A 2-input, 2-output kinematics task.

Mean over all 40 trials | Mean over last 10 trials

Noise (+/-) Ampeba 0.084 % — 0.082 —+—
- Ampeba2 0.092 —+— 0.087 —+—

Ampebad -0.096———— 0.096——+——

Ampeba8 -0.084 — o — -0.071 —

Pmaxd obal |-0.051 0. 046

PmaxLocal |-0.050 + 0.042

PmaxVLocal |-0.057 + 0.054

@ (Linear)|-0.062 —— 0.023

Figure 22: Performance on the kinematics task.

10000 simulation steps to evaluate the performance. Evaluations are very
stochastic (with highly non-Gaussian noise). The results are shown for runs
of only 24 experiments. Q2 learns a good policy in these 24 experiments, i.e.
a total of only 24 x 10000 simulation steps. This compares favorably with the
tens of millions of simulation steps needed for reinforcement learning in [7],
but Q2 is unlikely to find as good a policy as their semi-MDP formulation.

The final results show Q2 being used for root-finding instead of optimiza-
tion. The hand position in Figure 21 is a noisy function of ¢; and #,. The
task requires us to achieve the goal hand position. Although space permits
no details, the version of Q2 for root (or target) finding uses linear instead of
quadratic regression in its ROIs. The results are shown in Figure 22. Figure 23
shows the results when, on each experiment, the target position is varied ran-
domly within the workspace. Amoeba, a pure optimization method for a fixed
goal, is no longer applicable here, but PMAX and Q2 can still be used because
their decision making simply requires a dataset of previous experiences. Q2’s
ability to tune its regions of interest decisively beats all PMAXs.

15

Mean over all 100 trials| Mean over last 25 trials . . .
Figure 23: Performance on kinematics
PmaxQ obal |-0.417 —— -0.368 ——
PrexLocal |-0.402 —s— -0.342 . when the target varies during each experi-
PmaxVLocal |-0.4754- -0.418 ment.
@ (Linear)| -0.042 s |-0.021)

6 Conclusion

This paper has highlighted the importance of Black Box Noisy Optimization,
surveyed possible approaches, and then introduced a new algorithm: Q2.

Algorithms like Newton’s method, golden ratio search and conjugate gra-
dient [11] maintain a region expected to contain an optimum and in which
future experiments will occur. Q2 tries to do the same thing with two in-
novations. First, it can derive a ROI from a previous dataset irrespective of
how that dataset was collected. Second, Q2 can survive noise. Q2 is also
related to RSM and traditional instance-based learning. Q2’s main limitation
is that the computational cost grows rapidly with the number of inputs, and
the current Q2 is unlikely to be useful above 10 inputs. We have begun in-
vestigations into versions applicable to hundreds of inputs. Future Q2 work
will also include trials on real processes, batching experiments, and survival of
slowly time-varying systems.

References

[1] G.E. P. Box and N. R. Draper. Empirical Model-Building and Response Surfaces. Wiley, 1987.

[2] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems 7. MIT Press,
1995.

[3] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman and Hall,
1995.

[4] L. P. Kaelbling. Learning in Embedded Systems. PhD. Thesis; Technical Report No. TR-90-04,
Stanford University, Department of Computer Science, June 1990.

[5] H. Kushner and D. Clark. Stochastic Approzimation Methods for Constrained and Unconstrained
Systems. Springer-Verlag, 1978.

[6] D.J.C. MacKay. Bayesian Model Comparison and Backprop Nets. In J. E. Moody, S. J. Hanson, and
R. P. Lippman, editors, Advances in Neural Information Processing Systems 4. Morgan Kaufmann,
April 1992.

[7] S. Mahadevan, N. Marchalleck, T. Das, and A. Gosavi. Self-Improving Factory Simulation using
Continuous-Time Average-Reward Reinforcement Learning. In Proceedings of the 14th International
Conference on Machine Learning (ICML ’97), Nashville, TN. Morgan Kaufmann, July 1997.

16

(8]

(10]

(11]

(12]

(13]

A. W. Moore, D. J. Hill, and M. P. Johnson. An Empirical Investigation of Brute Force to choose
Features, Smoothers and Function Approximators. In S. Hanson, S. Judd, and T. Petsche, editors,
Computational Learning Theory and Natural Learning Systems, Volume 3. MIT Press, 1992.

A. W. Moore and J. Schneider. Memory-based Stochastic Optimization. In D. Touretzky, M. Mozer,
and M. Hasselmo, editors, Neural Information Processing Systems 8, 1996.

A. W. Moore, J. Schneider, J. Boyan, and M. S. Lee. Q2: A memory-based active learning algorithm
for Blackbox Noisy Optimization. In preparation, 1998.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C. Cambridge University
Press, 1992.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics,
22:400-407, 1951.

M. Salganicoff and L. H. Ungar. Active Exploration and Learning in Real-Valued Spaces using Multi-
Armed Bandit Allocation Indices. In Proceedings of the 12th International Conference on Machine
Learning. Morgan Kaufmann, 1995.

17

