Value Function Based Production Scheduling

Jeff G. Schneider*

Justin A. Boyan

Andrew W. Moore*

The Robotics Institute and Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

{schneide,jab,awm }@cs.cmu.edu

Abstract

Production scheduling, the problem of se-
quentially configuring a factory to meet
forecasted demands, is a critical problem
throughout the manufacturing industry. The
requirement of maintaining product inven-
tories in the face of unpredictable demand
and stochastic factory output makes stan-
dard scheduling models, such as job-shop,
inadequate. Currently applied algorithms,
such as simulated annealing and constraint
propagation, must employ ad-hoc methods
such as frequent replanning to cope with un-
certainty.

In this paper, we describe a Markov Deci-
sion Process (MDP) formulation of produc-
tion scheduling which captures stochasticity
in both production and demands. The solu-
tion to this MDP is a value function which
can be used to generate optimal scheduling
decisions online. A simple example illustrates
the theoretical superiority of this approach
over replanning-based methods. We then de-
scribe an industrial application and two rein-
forcement learning methods for generating an
approximate value function on this domain.
Our results demonstrate that in both deter-
ministic and noisy scenarios, value function
approximation is an effective technique.

1 Introduction

Production scheduling is a critical problem through-
out the manufacturing industry. In this paper, we ar-
gue that in order to deal with uncertainty in factory

* Also at Schenley Park Research, Inc.

production and demands, a Markov Decision Process
(MDP) formulation is superior to the approaches cur-
rently in use. Our paper is organized as follows:

2

2.1

e Section 2 describes the abstract task of production

scheduling and the sources of uncertainty which
make the task difficult for current approaches. It
also gives details of the particular scheduling in-
stance we have worked on in collaboration with a
major U.S. food manufacturer.

Section 3 introduces the MDP model of the
scheduling task and its solution based on value
functions. A simple example illustrates that in
the presence of uncertainty, the MDP model pro-
duces the optimal solution where both open-loop
and closed-loop planners do not. We then discuss
two reinforcement learning algorithms, Memory-
based RTDP and ROUT, which are applicable for
solving large-scale MDPs by value function ap-
proximation.

Section 4 presents experimental results with
ROUT and Memory-based RTDP on two some-
what simplified versions of the real-world man-
ufacturing task. The results compare favorably
to greedy and simulated annealing algorithms
in both noisy and (surprisingly) deterministic
scheduling scenarios.

Finally, Section 5 discusses our results, related
work, and promising future directions.

Production Scheduling

Problem Specification

Production scheduling is the problem of deciding how
to configure a factory sequentially to meet demands.

predicted inventory

with no scheduled production

zero inventory

[S

Augl Sep 1 Oct 1 Nov1

Figure 1: A demand curve for one product (see text
for explanation)

raw

I
I
product * |
I
I
|
I
I

schedule these
machines

machine10 ‘machine20

machinell machine21

‘machine2p H
\) finished

products

‘machineln

Figure 2: Factory layout (see text for explanation)

We restrict our attention here to a type of produc-
tion scheduling called “make to stock.” We assume
we have a modest number of products (2-100) and
must produce enough of each to keep warehouse stocks
high enough to satisfy customer requests for bulk ship-
ments. This production model is common for most
goods found in a supermarket. Automobile produc-
tion, by contrast, is typically not scheduled under this
model since cars are assembled individually with dif-
ferent options depending on specific customer orders.

An instance of the production scheduling problem is
composed of five parts:

Machines and products. This is a list of what ma-
chines are present in the factory, and what prod-
ucts can be made on the machines. There may
be complex constraints such as “machine A can
only make product 1 when machine B is not mak-
ing product 3.” A complete, legal assignment of
products onto the set of machines is called a con-
figuration. There is also a special “closed” con-
figuration which represents a decision to shut the
factory down.

Changeover times. It generally takes a certain
amount of time to switch the factory from one
configuration to another. During that time, there
is no production. The problem definition includes
a (possibly stochastic) estimate of how long it
takes to change each configuration to each other
configuration.

Production rates. Each configuration produces a
set of products at a certain rate. There may be
dependencies between the machines. For exam-
ple, machine B may produce product 2 faster if
machine A is also producing product 2. The ac-
tual production rates in the factory may be very
stochastic; for example, some machines may jam
frequently, causing irregular delays on the produc-
tion line.

Inventory demand curves. At the time a schedule
is created, a demand curve for each product is
available from a corporate marketing and fore-
casting group. As shown in Fig. 1, each curve
starts at the left with the current inventory of
that product. The inventory decreases over time
as future product shipments are made and eventu-
ally goes below zero if no new production occurs.
To avoid penalties, the scheduler should call for
more production before the demand curve falls be-
low zero. These curves may also change over time
as new information about future product demand
becomes available.

Schedule costs. Running a schedule generates a dol-
lar measure of net profit or loss. This includes the
costs of running the factory, paying the workers,
purchasing the raw materials, and carrying inven-
tory at the warehouse, which are all real dollar
costs. It also includes heuristic costs such as an
estimate of the damage done by failing to fill a
customer request when the warehouse inventory
goes to zero. Finally, it includes the revenue gen-
erated from selling product to a customer. The
final cost (or profit) of a schedule is the sum of
all these real dollar costs, heuristic penalties, and
revenue.

Given this problem description, the task of production
scheduling is to maximize expected profit by selecting
factory configurations over a period of time. In cases
where the production rates and demand curves are as-
sumed deterministic, the problem reduces to finding
the optimal open-loop schedule: that is, find a fixed
sequence of configurations that maximizes profit. In

the general stochastic case, the optimal choice of con-
figuration at time ¢ will depend on the outcomes of
earlier configurations, so the optimal solution has the
form of a closed-loop scheduling policy.

2.2 A Real Production Scheduling Problem

We have devoted considerable effort to optimizing the
production scheduling of a particular U.S. factory. The
physical layout of one production line in the factory is
shown in Fig. 2. Raw materials enter the factory and
are processed using a (proprietary) system that creates
up to twelve output streams of finished products si-
multaneously. Depending on how numerous machines
and links between machines are configured, the rate
of production of each of the twelve kinds of products
varies. Production costs (caused by fuel uses, person-
nel costs, and wasted material) also vary according to
the factory configuration.

Taking into account all the constraints between ma-
chines in the factory, there are about 100,000 different
possible configurations. Factories of this type typically
produce on the order of $50 million to $2 billion worth
of product annually, so the opportunities for cost sav-
ings via improved scheduling are large.

2.3 Conventional Solution Methods

Production scheduling is difficult to model within the
standard job-shop scheduling paradigm. In job-shop
scheduling, the problem is to complete a batch of
atomic jobs under ordering constraints and constraints
on which machines can handle which jobs, and at
what speeds and costs. This model cannot readily be
adapted to handle production rate interdependencies
among machines, the desire to keep inventory levels
above zero at all times (rather than just completing
jobs by their deadlines), and stochasticity of demand
forecasts and production.

Constraint propagation methods (e.g. [Zweben and
Fox, 1994]) are commonly used to solve industrial
problems. They operate by efficiently managing con-
straints on production deadlines and machine capabil-
ities. Solution methods tend to search by iteratively
fixing violated constraints, applying heuristics to guide
the fixes. Constraint propagation focuses primarily on
generating feasible schedules, and only secondarily on
cost optimality. This is appropriate when feasibility is
difficult, but not as good in “make to stock” scenarios
where feasibility is easy and cost reduction is the main
goal. Constraint propagation will not receive further
consideration here for that reason.

When cost optimality is the primary scheduling objec-
tive, global optimization techniques such as simulated
annealing (SA) are a good option. These methods
search a space of fully-instantiated schedules to find
the best ones. However, neither constraint propaga-
tion nor simulated annealing is naturally formulated
to handle stochastic problems. They can be modified
for nondeterminism in two ways:

e Optimization open-loop: Search for the fixed
schedule s which maximizes the average profit
over several independent stochastic simulations of
s. Here, all the computation is spent at the be-
ginning, and the resulting best schedule is exe-
cuted without observing actual production statis-
tics along the way. This algorithm suffers because
it cannot update the schedule to account for vari-
ances in actual production. To compensate for
this inadequacy, “replanning” methods are usu-
ally adopted.

¢ Replanning closed-loop: When possible, this
method starts with the open-loop stochastic eval-
uation from the previous option. For feasibility-
based methods it must start with a deterministic
version of the problem. In either case, it uses its
first schedule only to make some initial scheduling
decisions. Then, whenever the result of an action
with a stochastic outcome is observed, it replans
the remainder of the schedule in order to make
new decisions.

The closed-loop method can produce good results.
However, it is computationally quite expensive. More-
over, although it replans on every step, its policy does
not take advantage of the fact that it will be able to
replan in the future—and as we show in Section 3.2
below, this dooms it to being unable to attain the op-
timal profit, no matter how much computation time it
is allowed.

3 Production Scheduling with Value
Functions

This section describes a principled approach to gener-
ating closed-loop production scheduling policies with
reinforcement learning methods. The approach is
based on representing the problem as an MDP and rep-
resenting the solution as an approximate value func-
tion.

3.1 Production Scheduling as an MDP

Abstractly, a Markov Decision Process (MDP) is de-
fined by a state space X, action set A, immediate
reward function R(z,a), and probabilistic transition
model P(z'|z,a). The solution to the MDP is a policy
m* 1 X — A which, if followed by the agent, will max-
imize the expected long-term sum of rewards attain-
able starting from any state . Dynamic programming
methods tabulate this optimal cumulative reward in
the optimal value function V*(z), which is the unique
solution to the Bellman equations [Bellman, 1957]:

V*(z) = max (R(J:, a) + Z P(z|z, a)V*(r')) (1)

acA
z'eX

Once V* is computed, the optimal policy 7* is imme-
diately obtained by choosing any action which instan-
tiates the max in Eq. 1.

The production scheduling problem is modeled very
naturally as a Markov Decision Process, as follows:

e The system state is defined by the current time
t € 0...7; the current inventory of each prod-
uct p1...pny; and, if there are configuration-
dependent changeover times, the current factory
configuration.

e The action set consists of all legal factory configu-
rations. We assume a discrete-time model, so the
configuration chosen at time ¢ will run unchanged
until time ¢ + 1.

e The stochastic transition function applies a simu-
lation of the factory to compute the change in all
inventory levels realized by running configuration
¢; for one timestep. This model handles random
variations in production rates straightforwardly;
it also handles changeover times by simply de-
creasing production in proportion to the (possibly
stochastic) downtime. The time ¢ is incremented
on each step, and the process terminates when
t="1T.

e The immediate reward function is computed from
the inventory levels, based on the demand curve
at time t. It incorporates the revenues from pro-
duction, penalties from late production, employee
costs, operating costs, raw material costs, and
changeover cost incurred during the period. On
the final time period (transition from¢ =7 -1 to
T), a terminal “reward” assigns additional penal-
ties for any outstanding unsatisfied demands.

The MDP representation suits this problem very well,
for two main reasons. First, in contrast to other tra-
jectory optimization tasks (e.g., the Travelling Sales-
man Problem), the utility of future decisions does
not depend on the entire sequence of previous action
choices and outcomes, but only on a relatively compact
state description—the current time and inventory lev-
els. Simulated annealing and other global optimization
methods do not require this Markov property—nor can
they exploit it. Second, the model fully represents un-
certainty in production rates and changeover times.
As defined here, the model also handles noise in the
demands if that noise is time-independent, but it can-
not account for the possibility of the demand curves
being randomly updated in the middle of a schedule,
since that would make the MDP transition probabili-
ties nonstationary.

The value function for this MDP specifies a closed-
loop scheduling policy which makes optimal decisions
with full foresight of the remaining uncertainty in the
process. No method based on global optimization can
make this claim, even if replanning is allowed, as we
now illustrate.

3.2 Illustrative Example

This example illustrates how MDP solutions optimally
solve sequential decision problems that methods based
on replanning cannot. Suppose we are asked to sched-
ule the production of 12 units of a single product over
two days. On each day we can choose one of the fol-
lowing three configurations:

Configuration with gets Cost
probability production
1 0.5 3 $1
0.5 6
2 1.0 6 $4
3 1.0 9 $8

In addition to the per-configuration costs listed in the
table, there is an additional cost of $8 for each unit
under 12 not produced at the end of two days. The
following table shows the expected cost of each of the
possible schedules. (Note that in this example, the
expected cost of a schedule [ab] is the same when the
sequence is reversed, [ba], so redundant schedules are
omitted from the table.)

Config Config Expected Missed Total
Sequence | Cost Production Cost Cost
11 $2 | 0.25*%$48 4+ 0.5*$24 $26
12 $5 0.5*$24 $17
13 $9 $0 $9
22 $8 $0 $8
23 $12 $0 $12
33 $16 $0 $16

Based on these costs, a replanning-based scheduler will
choose sequence [2 2]. Tt will execute configuration 2
on the first day, and then have an opportunity to re-
plan for day 2 based on the results of day 1. Since
the production from configuration 2 on day 1 is de-
terministic (6 units), the scheduler will again choose
configuration 2 on day 2, thereby completing the 2-day
production run with a total cost of $8.

The replanning-based scheduler makes a suboptimal
decision on day 1 because it doesn’t “know” that it
will be given the chance to replan after the first day’s
production is observed. By contrast, with the ability
to exploit this knowledge, the MDP solution makes the
correct scheduling decision of action 1 on day 1. The
following table evaluates the choices for day 1 by show-
ing all the possible outcomes followed by the optimal
day 2 choice for each outcome.

day 1 with units day 2 with units expected
config | prob | made | config | prob | made cost
1 0.5 3 3 1.0 9 5%¥9 + 5%5
0.5 6 2 1.0 6 = $7
2 1.0 6 2 1.0 6 = $8
3 1.0 9 1 0.5 3 5%¥9 + 5%9
0.5 6 = $9

By considering all the possible outcomes and the opti-
mal decisions that will be made for each one, the MDP
solution chooses configuration 1 on the first day and
achieves an expected cost of 7 as compared to 8 ob-
tained by replanning. This type of tradeoff exists in
real factories as well. There is often a choice of how
fast to run the production line that trades off higher
production rates against higher unit costs.

3.3 Value Function Approximation

In practical scheduling problems, tabulating V*(x)
for every possible state of the factory is completely
intractable. Instead, we use reinforcement learning
methods to represent V* compactly with a function
approximator, such as global or local polynomial re-
gression. The two methods we tested are Memory-

based RTDP and ROUT.

3.3.1 Memory-Based RTDP

Memory-based RTDP is a reinforcement learning ap-
proach that is closely related to RTDP (Real-Time
Dynamic Programming) [Barto et al, 1995] and
to Tesauro’s application of TD(0) to the game of
backgammon [Sutton, 1988, Tesauro, 1992]. It is also
similar to the instance-based approach to represent-
ing value functions used in [Peng, 1993]. Trajectories
through the MDP model are generated repeatedly, us-
ing the current approximation of the value function to
guide standard Boltzmann-style exploration [Barto et
al., 1995]. At each step of each trajectory, a one-step
backup operation (Eq. 1) is performed and the func-
tion approximator is updated.

In Memory-based RTDP, the value function is repre-
sented by a nonparametric memory-based function ap-
proximator [Cleveland and Delvin, 1988, Moore et al.,
1995, Atkeson et al., 1995]. Memory-based learning
simply accumulates training data points, rather than
running a training algorithm on them. Then whenever
a query is made, the approximator’s output is com-
puted by a weighted average or weighted polynomial
regression over nearby points in memory.

Achieving good performance with Memory-based
RTDP requires an appropriate choice of the Boltz-
mann exploration temperature and the local regression
kernel width. These values were tuned empirically to
obtain the results presented in Section 4. Although the
training points generated by Memory-based RTDP’s
early trajectories are undoubtedly inaccurate samples
of V*, we did not find it necessary to include an ex-
plicit “forgetting” mechanism in the learning; the bad
points are quickly overwhelmed by later, more accu-
rate samples.

3.3.2 ROUT

ROUT is an active learning algorithm for value func-
tion approximation that is specifically designed for the
subclass of acyclic MDPs [Boyan and Moore, 1996].
Note that the scheduling MDP is certainly acyclic,
since its state representation includes the time counter
t. Using simulations of the process, ROUT repeatedly
identifies a new state « at which (1) the function ap-
proximator is currently in error, and (2) an accurate
sample of V* can be obtained from a 1-step backup.
Unlike Memory-based RTDP and most other reinforce-
ment learning methods, ROUT explicitly tries to pre-
vent the function approximator from seeing any inac-
curate samples of V*.

Details of how ROUT identifies such states automat-

ically are given in [Boyan and Moore, 1996]. One by
one, these useful states are accumulated into a train-
ing set of accurate samples of V*(z). The training set
grows backwards from the terminal states. As soon as
the start state zg is itself added to the training set,
ROUT declares victory, outputs its learned training
set and learned approximation of V*, and terminates.

If the function approximator cannot represent V* ac-
curately, then ROUT may become stuck, repeatedly
adding points near the terminal states and never pro-
gressing backwards. However, if the function approx-
imator can represent V* to within the specified tol-
erance, then ROUT can be guaranteed to eventually
find it. For ROUT to find V* efficiently, the func-
tion approximator must extrapolate well from a small
training set.

4 Experimental Results

We have experimented with two instances of the real-
world production scheduling task described in Sec-
tion 2.2. The first instance is heavily simplified so
that the exact optimal closed-loop scheduling policy
can be calculated tractably. The second instance is a
more realistic model, for which only heuristic solutions
are available.

4.1 Simplified Scheduling Instance

In the simplified instance, the task is to schedule 8
weeks of production; however, configurations may be
changed only at 2-week intervals, and only 17 config-
uration choices are available. Of these 17, nine have
deterministic production rates; the other eight each
have two stochastic outcomes, producing only 1/3 of
their usual amount with probability 0.5. With a to-
tal of 9 x 1 + 8 x 2 = 25 outcomes possible from ev-
ery state, there are 25* = 390,625 possible trajecto-
ries through the space. The optimal policy can be
computed by tabulating V*(z) at every possible in-
termediate state x of the factory, of which there are
1+ 254 252 + 253 = 16,276. The optimal policy re-
sults in an expected cumulative reward of —$22.8M.
By contrast, a random schedule attains a reward of
—$923M on average! A greedy policy, which at each
step selects a configuration to maximize only the one-
step reward from the current state, attains —$97.9M.

We applied ROUT to this instance, trying three
different function approximators: 1-nearest neigh-
bor, locally-weighted linear regression, and global
quadratic regression. KD-trees were used to keep the

computation efficient [Moore et al., 1997]. For the lo-
cally weighted regression, a kernel width of 273 of the
range of each input dimension in the training data was
used. ROUT’s exploration and tolerance parameters
were tuned manually. Table 1 summarizes the results.

When nearest-neighbor was used as the function ap-
proximator, ROUT did not obtain sufficient general-
ization from its training set and failed to terminate
within a limit of several hours. However, with both
local linear and global quadratic regression models,
ROUT did run to completion and produced an approx-
imate value function which significantly outperformed
the greedy policy. Moreover, over half of the ROUT
runs did indeed terminate with the optimal closed-loop
scheduling policy. In these cases, ROUT’s final self-
built training set for value function approximation con-
sisted of only about 100-150 training points—a sub-
stantial reduction over the 16,276 required for full tab-
ulation of V*. ROUT’s total running time (= 1 hour
on a 200 MHz Pentium Pro) was roughly half of that
required to enumerate V* manually.

From these preliminary results, we conclude that
ROUT does indeed have the potential to approximate
V* extremely well, given a suitable function approx-
imator for the domain. However, since it runs quite
slowly on even this simplified problem, we believe
ROUT will not scale up to practical scheduling in-
stances without further refinements.

4.2 Practical Scheduling Instance

In this section we present experimental results on a
larger scheduling problem. In doing so, we lose the
ability to determine the optimal policy for compari-
son. However, it gives a better demonstration of how
the competing methods perform on industrial-scale
scheduling problems. The task is to schedule eight
weeks of production at one week intervals. There are
eight products, eight machines, and a total of 421 le-
gal configurations to consider, including the “closed”
configuration.

Our experiments consider both deterministic and noisy
versions of the problem. To build the deterministic
version of the problem, we ran long (stochastic) sim-
ulations for each of the 421 actions and cached the
mean observed production rate for each. For the noisy
versions, we could have used the noisy outcomes di-
rectly from the stochastic simulation, but instead we
simply added Gaussian noise to the cached, determin-
istic production rates. This enabled our experiments
to run significantly faster, and also allowed us to eas-

Algorithm Mean Profit 95% C.I. | optimal runs
Optimal -22.8 1
Random -923.2 +58.7 0
Greedy -97.9 +15.1 0
ROUT + global quadratic -57.0 +23.5 10/16
ROUT + local linear -45.0 +16.9 10/16

Table 1: Results for 4-timestep, 17-configuration stochastic scheduling problem.

ily generate empirical results with varying amounts of
noise.

Table 2 shows experimental results. The computation
times reported are on a 200 MHz Pentium Pro. The
first section contains results for the case where the fac-
tory output is deterministic and known. The purpose
of the first two lines is to delimit the range of results we
should expect from good algorithms. The “Random”
algorithm builds a schedule by choosing 8 configura-
tions at random, and it loses an enormous amount of
money. Much of the cost is due to heuristic penalties
for failing to satisfy customer demand.

The “Planlt” algorithm, developed by Schenley Park
Research, is the proprietary algorithm currently used
to schedule the real factory’s production. It has sev-
eral advantages over the other algorithms in this table.
First, it is finely tuned to schedule this factory using
a combination of simulated annealing, linear program-
ming, constraint propagation, and several heuristics.
Second, it is not restricted to choosing configurations
for pre-discretized time steps, but can choose an ar-
bitrary number of configurations and switch between
them at arbitrary times. Our experience with this
scheduler leads us to believe that the average profit
of $13.81M is very near optimal for this instance, so it
can be considered an unattainable upper bound for the
other results. In particular, Planlt achieves its results
by using an average of around 13 configurations in its
schedules while the other algorithms are restricted to
8 fixed-sized time steps. It usually incurs no heuristic
penalties in its schedules, so that figure is a profit in
real dollars.

The simulated-annealing, greedy-exploration, and
Memory-based RTDP algorithms are run as described
in the previous sections. The simulated annealing runs
made use of the successful “modified Lam” adaptive
annealing schedule [Ochotta, 1994]. Memory-based
RTDP used kernel regression with a kernel width of
275 of the range of each state variable, and used KD-
trees for efficiency [Moore et al., 1997]. Boltzmann
exploration (without cooling) was used for the deter-

ministic case, but proved unnecessary in the stochastic
case because the noise alone caused sufficient explo-
ration.

The poor result from Greedy in the deterministic case
shows that generating trajectories based solely on the
one-step cost of configurations is not an effective way
to search, even when compared to a randomized search
method such as simulated annealing. The search effi-
ciency gained by computing a value function is shown
by the favorable Memory-based RTDP results. They
are obtained from only 200 trajectories through the
state space, meaning the value function at each time
step is represented with 200 training points. All of the
algorithms can do better with more computation time,
but they were cut off at 10 minutes since Planlt gets
its results in that much time.

The second and third sections of the table show results
with 10% and 20% noise added. The Planlt algorithm
cannot be run in these cases since it does not handle
stochastic outcomes; however, we still expect its re-
sult in the deterministic case to be a reasonable upper
bound for the other algorithms.

Open-loop simulated annealing means that all the
computation is spent at the beginning and the result-
ing best schedule is executed without observing ac-
tual production statistics along the way. This algo-
rithm suffers because it cannot update the schedule to
account for variances in actual production. By con-
trast, closed-loop simulated annealing replans the rest
of the schedule after each week of actual production
is observed. In order to keep the total computation
the same, the computation allotted for each week’s
decision was divided by the number of weeks (8).
The results show that replanning does improve over
open loop execution. We note that all the simulated-
annealing schedulers have high variance, which can be
a disadvantage of using that algorithm.

Memory-based RTDP uses its computation at the be-
ginning to compute a value function. Each run used
400 trajectories for these results. The value function
determines a closed-loop policy valid for any state

Noise level Algorithm Mean Profit 95% C.I.
Deterministic Random -466.35 +59.45
(= 10 min computation) | Planlt 13.81 +0.08

Simulated Annealing 5.66 +3.68
Greedy + Exploration -1.93 +3.21
Memory-based RTDP 7.70 +1.57
10% Noise Greedy (c.l.) -17.69 +1.94
(= 45 min computation) | Simulated Annealing (o.l.) 6.48 +1.21
Simulated Annealing (c.l.) 9.03 +1.04
Memory-based RTDP 10.16 +0.84
20% Noise Greedy (c.l.) -25.92 +1.12
(=~ 45 min computation) | Simulated Annealing (o.l.) 2.55 +1.91
Simulated Annealing (c.l.) 2.40 +3.95
Memory-based RTDP 7.02 +0.67

Table 2: Results for 8-timestep, 421-configuration scheduling problem. The numbers shown represent profits in
millions of dollars. On the noisy problems, Memory-based RTDP is statistically better than the other algorithms

at the 95% significance level.

reached during actual production. As discussed ear-
lier, it not only executes closed-loop, but also makes
its decisions “knowing” that it will be executing closed-
loop. The results show both a favorable expected
profit as well as smaller variance across runs.

5 Discussion and Future Work

We expect Memory-based RTDP to outperform sim-
ulated annealing on a stochastic problem based on
the intuition from Sec. 3.2, and our experimental re-
sults show that it does. It is interesting to observe
that Memory-based RTDP does well against simu-
lated annealing even in the deterministic case where
the stochastic modeling capability of MDPs is not
needed. This provides further evidence that search
based on value functions can improve efficiency. While
simulated annealing is forced to try configurations at
random, value function based methods can explicitly
reason about which intermediate states are good and
which actions will reach those states.

To our knowledge, this work represents the first appli-
cation of reinforcement learning to production schedul-
ing with multiple products made on multiple machines.
The scheduling of machine maintenance is discussed
in [Mahadevan et al., 1997], and transfer line pro-
duction scheduling is discussed in [Mahadevan and
Theocharous, 1998]. In their task, each product or
sub-product is produced on a single machine and each
machine makes a local decision on whether to produce
one of its products or go down for maintenance. A

reinforcement learning approach to the Space Shuttle
scheduling problem is described by [Zhang and Diet-
terich, 1995]. In that framework, states are complete
schedules and actions are modification operators ap-
plied to the schedules. Their feature representation
introduces noise, but the underlying problem is deter-
ministic.

Our empirical work to date covers stochasticity only in
production. Another large source of uncertainty in real
problems is the inadequacy of demand forecasts. This
can be handled heuristically within the MDP formu-
lation described here by the addition of appropriate
noise to the demands during simulations. However,
it may also be possible to gain extra efficiencies by
incorporating demands explicitly into the MDP state
space. Further empirical work is required to answer
that question.

As the size of the scheduling problem increases, it
becomes increasingly expensive to compute the value
function accurately. However, even an inexact value
function can be useful as the basis for a quasi-greedy
search or “rollout” search performed online [Tesauro
and Galperin, 1997]. We intend to test such methods
in future work on larger scheduling problems.

Acknowledgements

The second author acknowledges the support of a
NASA GSRP fellowship. The third author acknowl-
edges the support of an NSF Career Award.

References

[Atkeson et al., 1995] C. Atkeson, S. Schaal, and
A. Moore. Locally weighted learning. Al Review,
1995.

[Barto et al., 1995] A. G. Barto, S. J. Bradtke, and
S. P. Singh. Real-time learning and control using
asynchronous dynamic programming. Artificial In-
telligence, 1995.

[Bellman, 1957] R. Bellman. Dynamic Programming.
Princeton University Press, 1957.

[Boyan and Moore, 1996] J. A. Boyan and A. W.
Moore. Learning evaluation functions for large
acyclic domains. In L. Saitta, editor, Machine
Learning: Proceedings of the Thirteenth Interna-
tional Conference. Morgan Kaufmann, 1996.

[Cleveland and Delvin, 1988] W. Cleveland
and S. Delvin. Locally weighted regression: An ap-
proach to regression analysis by local fitting. Jour-
nal of the American Statistical Association, pages

596-610, September 1988.

[Mahadevan and Theocharous, 1998] S. Mahadevan
and G. Theocharous. Optimizing production manu-
facturing using reinforcement learning. In Eleventh
International FLAIRS Conference, 1998.

[Mahadevan et al., 1997] S. Mahadevan, N. Marchal-
leck, T. Das, and A. Gosavi. Self-Improving Fac-
tory Simulation using Continuous-Time Average-
Reward Reinforcement Learning. In Proceedings
of the 14th International Conference on Machine
Learning (IMLC ’97), Nashville, TN. Morgan Kauf-
mann, July 1997.

[Moore et al., 1995] A. Moore, C. Atkeson, and
S. Schaal. Locally weighted learning for control. A7
Review, 1995.

[Moore et al., 1997] A. Moore, J. Schneider, and
K. Deng. Efficient locally weighted polynomial re-
gression predictions. In International Conference on
Machine Learning, 1997.

[Ochotta, 1994] E. Ochotta. Synthesis of High-
Performance Analog Cells in ASTRX/OBLX. PhD
thesis, Carnegie Mellon University Department of
Electrical and Computer Engineering, April 1994.

[Peng, 1993] J. Peng. Efficient Dynamic Programming
based Learning for Control. PhD. Thesis, North-
eastern University, December 1993.

[Sutton, 1988] R. S. Sutton.
by the methods of temporal differences.
Learning, 3, 1988.

Learning to predict
Machine

[Tesauro and Galperin, 1997] G. Tesauro and G. R.
Galperin. On-line policy improvement using Monte-
Carlo search. In M. C. Mozer, M. 1. Jordan, and
T. Petsche, editors, Advances in Neural Information
Processing Systems, volume 9. MIT Press, 1997.

[Tesauro, 1992] G. Tesauro. Practical issues in tem-
poral difference learning. Machine Learning, 8(3/4),
May 1992.

[Zhang and Dietterich, 1995] W. Zhang and T. G. Di-
etterich. A reinforcement learning approach to job-
shop scheduling. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI),
pages 1114-1120, 1995.

[Zweben and Fox, 1994] M. Zweben and M. Fox. In-
telligent Scheduling. Morgan Kaufmann, 1994.

