
From Heap to Stack
Moving heap-allocated objects to the stack in LLVM

Daniel Anderon
dlanders@cs.cmu.edu

Jatin Arora
jatina.cs.cmu.edu

March 2020

1 Project Information

Project Title From Heap to Stack – Moving heap-allocated objects to the stack in LLVM

Group Info Daniel Anderson (dlanders) and Jatin Arora (jatina)

URL For the Project Web Page Project URL

Project Description Frequent heap allocations can become a performance bottleneck in many
programs. Heap-allocated memory is ideal for use in situations when the lifetime of the memory
is unknown at the time of creation. In some cases however, users may use heap-allocated memory,
perhaps unknowingly, through the use of a library data structure, in a situation where the lifetime is
obvious in advance. In such a situation, space providing, the heap-allocated memory could instead
be allocated on the stack, which removes the need for system calls to malloc and free, and thus
may provide a speedup.

Ideas like this have been studied under the context of escape analysis. Escape Analysis is a static
analysis that determines if the lifetime of the data exceeds it’s static scope. If it is the case, then
the object can be allocated on the stack despite the programmer’s specification of where it should
be stored. In this project, we plan to implement this heap-to-stack transformation in the LLVM
compiler infrastructure and benchmark it on programs written in C++.

• 75% Goal: Provide an empirical study of the performance improvements that can be achieved
by using escape analysis (possibly using LLVM’s existing escape analysis if ours does not work)

• 100% Goal: Implement a fully functional escape analysis and heap-to-stack transformation and
benchmark its performance against existing implementations, providing an empirical study of
the benefits.

• 125% Goal: Implement a fully functional escape analysis and benchmark its performance
against existing implementations. Demonstrate theoretically or experimentally that our im-
plementation improves over the performance of existing methods.

• 200% Goal: Investigate and implement other applications of escape analysis, such as elimi-
nating unnecessary synchronization in concurrent programs in situations where the objects in
question never escape their allocating scope.

1

http://www.cs.cmu.edu/~jatina/cs15745.html


2 Logistics

Schedule

1. (Week 1: 23rd March): Submit Project Proposal (Both)

2. (Week 2: 30th March): Investigate escape analysis literature and existing work (Both)

3. (Week 3: 6th April): Get familiar with LLVM’s implementation of escape analysis and have
an algorithm to implement (Both)

4. (Week 4: 13th April): Implement the algorithm (Both)

5. (Week 5: 20th April): Implement the algorithm and benchmark the performance (Both)

6. (Week 6: 27th April): Project due on the 29th April (Both)

The bottleneck is likely to be coming up with possible improvements to existing algorithms. If
we fail to do this, we will implement some existing methods and compare them. We will work
collaboratively throughout the project. The main points at which we will divide work are when
implementing the different parts of the algorithm (Week 4 and 5) and when implementing and
analysing the results of benchmarks (Week 5). We will do the division once we are familiar enough
with the algorithms to decide.

Milestone By April 16th, we plan to have designed an algorithm that we want to implement and
to have begun implementing it (see schedule Weeks 1—4).

Literature Search

1. Escape Analysis for Java

2. Incrementalized Pointer and Escape Analysis

3. Implementing Andersen Alias Analysis in LLVM

4. Pointer and escape analysis for multithreaded programs

Resources Needed We anticipate the need of the following resources:

1. A computer

2. LLVM compiler infrastructure

3. ACM digital library

We will use the latest stable release of the LLVM infrastructure, which is LLVM 9 at the time
of writing (https://apt.llvm.org/).

Getting started: Constraints preventing you from getting started immediately

1. Being stuck in another city due to coronavirus-related travel restrictions.

2

https://dl.acm.org/doi/10.1145/945885.945886
http://www.cse.iitm.ac.in/~krishna/courses/2013/odd-cs6013/VivienRinard01.pdf
http://raiith.iith.ac.in/1621/1/CS13M1012.pdf
https://dl.acm.org/doi/abs/10.1145/568014.379553?casa_token=mJ0KDrTGspsAAAAA:x9qezsWobItqZ8eBaluAojoJze7U1FIZmmAo4KWZusUB6_nQPHegvawI3j-7nlLODrpUGK7SeGGlew
https://apt.llvm.org/

	Project Information
	Logistics

