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Overview

• Heap allocations can become a performance bottleneck in many programs.

• In some cases, users may use heap-allocated memory, perhaps unknowingly
through the use of a library data structure, in a situation where the lifetime is
obvious in advance.

• Moving suitable heap allocations to the stack can provide a speedup and enable
further optimizations

Why the stack?

Allocating on the stack is more efficient when possible

• Fewer instructions: Moving the stack pointer is a single instruction, rather than
the many required to perform malloc and free

• Less memory fragmentation: Memory allocated by malloc calls is reclaimed
manually, if at all. This creates holes in memory.

• Better locality: Stack allocations are contiguous and experience better spatial
locality. This reduces the cost of accessing the allocations

Removing mallocs enables further optimization

• Stack-allocated objects are more amenable to optimisations than heap allocated
objects

• Analyses on objects that are stored in the heap are difficult as they generally
require concrete heap models.

• Heap models are either very expensive or very abstract

Capture tracking

• An object on the heap can promoted to the stack if it does not outlive the scope
of it’s creation. Capture tracking is used for conservatively estimating the lifetime
of objects

• Capture tracking determines for a given pointer, whether a copy of it is made
that outlives the function that it was defined in.

• If the pointer is not captured, the object can not be accessed outside the scope
of the function. Therefore, it is a candidate for stack promotion

• If a pointer is captured, its precise lifetime is hard or impossible to determine,
so we conservatively assume that it is accessible outside the scope

Fig. 1: A function that captures and one that does not

Cheeky mallocs

• Given a candidate for stack promotion, we need to determine whether it is safe
to promote to the stack

• Main problem: Need to ensure that the memory is only deallocated in the
scope in which it was allocated, so that we do not accidentally try to deallocate
the stack memory!

• We say that a malloc call is cheeky if it is possible to reach an exit of the
enclosing function without passing through a corresponding free

• If a malloc is not cheeky, we prove that we can safely convert it to a stack
allocation and delete the corresponding frees

Fig. 2: An example of a non-cheeky malloc and a cheeky malloc

Algorithm for finding cheeky mallocs

Fig. 3: Pseudocode for finding cheeky mallocs using depth-first search
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Results

Benchmarks We implemented three programs: Fibonacci number calculation
(fib), merge sort (msort) and matrix multiplication (mult).

Fig. 4: Performance on three benchmarks with different allocation patterns (time in seconds)

• Comparison between O1 and O1 + heap-to-stack illustrates the benefits of
our optimisation, in isolation

• Comparison between O3 and heap-to-stack + O3 illustrates the impact of
further optimisations that additionally heap-to-stack reveals to O3

Performance results

• The speedup shown by fib and msort demonstrate that moving heap alloca-
tions to the stack can lead to a significant speedup

• The speedup obtained by mult is owed to the fact that after removing the
malloc call, the optimizer realized that it could remove a large amount of un-
necessary computation. It could not realize this when the malloc was present.

Limitations and future work

Allocations inside loops

• Our current implementation does not remove mallocs inside loops.

• This is because the stack has to be carefully popped on each iteration man-
ually, or the allocation must be hoisted outside the loop (à la LICM), which is
difficult to get right

Dynamic Promotion

• Our current implementation does not remove mallocs that allocate a variable
number of bytes.

• This would involve deferring the decision to allocate on stack to runtime, or
performing additional static analysis to find dynamic allocations that are guar-
anteed to be small

• Careful checks need to be placed to ensure that dynamic promotion does not
lead to stack overflow.

Related Work

• Capture tracking and escape analysis have been used somewhat extensively
in the context of languages that make frequent use of the heap, such as
Java [1]

• Würthinger [2] develop a path-sensitive version of escape analysis, called par-
tial escape analysis, which allows more optimizations to be performed in cases
where an allocation may escape in one branch but not another


