
PROMOTING HEAP ALLOCATIONS TO THE STACK IN LLVM
Daniel Anderson and Jatin Arora

Carnegie Mellon University

PROMOTING HEAP ALLOCATIONS TO THE STACK IN LLVM
Daniel Anderson and Jatin Arora

Carnegie Mellon University

Overview

• Heap allocations can become a performance bottleneck in many programs.

• In some cases, users may use heap-allocated memory, perhaps unknowingly
through the use of a library data structure, in a situation where the lifetime is
obvious in advance.

• Moving suitable heap allocations to the stack can provide a speedup and enable
further optimizations

Why the stack?

Allocating on the stack is more efficient when possible

• Fewer instructions: Moving the stack pointer is a single instruction, rather than
the many required to perform malloc and free

• Less memory fragmentation: Memory allocated by malloc calls is reclaimed
manually, if at all. This creates holes in memory.

• Better locality: Stack allocations are contiguous and experience better spatial
locality. This reduces the cost of accessing the allocations

Removing mallocs enables further optimization

• Stack-allocated objects are more amenable to optimisations than heap allocated
objects

• Analyses on objects that are stored in the heap are difficult as they generally
require concrete heap models.

• Heap models are either very expensive or very abstract

Capture tracking

• An object on the heap can promoted to the stack if it does not outlive the scope
of it’s creation. Capture tracking is used for conservatively estimating the lifetime
of objects

• Capture tracking determines for a given pointer, whether a copy of it is made
that outlives the function that it was defined in.

• If the pointer is not captured, the object can not be accessed outside the scope
of the function. Therefore, it is a candidate for stack promotion

• If a pointer is captured, its precise lifetime is hard or impossible to determine,
so we conservatively assume that it is accessible outside the scope

Fig. 1: A function that captures and one that does not

Cheeky mallocs

• Given a candidate for stack promotion, we need to determine whether it is safe
to promote to the stack

• Main problem: Need to ensure that the memory is only deallocated in the
scope in which it was allocated, so that we do not accidentally try to deallocate
the stack memory!

• We say that a malloc call is cheeky if it is possible to reach an exit of the
enclosing function without passing through a corresponding free

• If a malloc is not cheeky, we prove that we can safely convert it to a stack
allocation and delete the corresponding frees

Fig. 2: An example of a non-cheeky malloc and a cheeky malloc

Algorithm for finding cheeky mallocs

Fig. 3: Pseudocode for finding cheeky mallocs using depth-first search

References
[1] Bruno Blanchet. “Escape analysis for Java: Theory and practice”. In: ACM Transactions on

Programming Languages and Systems (TOPLAS) 25.6 (2003), pp. 713–775.

[2] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. “Partial escape analysis and
scalar replacement for Java”. In: CGO. 2014.

Results

Benchmarks We implemented three programs: Fibonacci number calculation
(fib), merge sort (msort) and matrix multiplication (mult).

Fig. 4: Performance on three benchmarks with different allocation patterns (time in seconds)

• Comparison between O1 and O1 + heap-to-stack illustrates the benefits of
our optimisation, in isolation

• Comparison between O3 and heap-to-stack + O3 illustrates the impact of
further optimisations that additionally heap-to-stack reveals to O3

Performance results

• The speedup shown by fib and msort demonstrate that moving heap alloca-
tions to the stack can lead to a significant speedup

• The speedup obtained by mult is owed to the fact that after removing the
malloc call, the optimizer realized that it could remove a large amount of un-
necessary computation. It could not realize this when the malloc was present.

Limitations and future work

Allocations inside loops

• Our current implementation does not remove mallocs inside loops.

• This is because the stack has to be carefully popped on each iteration man-
ually, or the allocation must be hoisted outside the loop (à la LICM), which is
difficult to get right

Dynamic Promotion

• Our current implementation does not remove mallocs that allocate a variable
number of bytes.

• This would involve deferring the decision to allocate on stack to runtime, or
performing additional static analysis to find dynamic allocations that are guar-
anteed to be small

• Careful checks need to be placed to ensure that dynamic promotion does not
lead to stack overflow.

Related Work

• Capture tracking and escape analysis have been used somewhat extensively
in the context of languages that make frequent use of the heap, such as
Java [1]

• Würthinger [2] develop a path-sensitive version of escape analysis, called par-
tial escape analysis, which allows more optimizations to be performed in cases
where an allocation may escape in one branch but not another


