PROMOTING HEAP ALLOCATIONS TO THE STACK IN LLVM

Overview

Daniel Anderson and Jatin Arora
Carnegie Mellon University

Cheeky mallocs

e Heap allocations can become a performance bottleneck in many programs.

e |In some cases, users may use heap-allocated memory, perhaps unknowingly
through the use of a library data structure, in a situation where the lifetime is
obvious in advance.

e Moving suitable heap allocations to the stack can provide a speedup and enable
further optimizations

Why the stack?

Allocating on the stack is more efficient when possible

e Fewer instructions: Moving the stack pointer is a single instruction, rather than
the many required to perform malloc and free

e Less memory fragmentation: Memory allocated by malloc calls is reclaimed
manually, if at all. This creates holes in memory.

e Better locality: Stack allocations are contiguous and experience better spatial
locality. This reduces the cost of accessing the allocations

Removing mallocs enables further optimization

e Stack-allocated objects are more amenable to optimisations than heap allocated
objects

e Analyses on objects that are stored in the heap are difficult as they generally
require concrete heap models.

e Heap models are either very expensive or very abstract

Capture tracking

e An object on the heap can promoted to the stack if it does not outlive the scope
of it's creation. Capture tracking is used for conservatively estimating the lifetime
of objects

e Capture tracking determines for a given pointer, whether a copy of it is made
that outlives the function that it was defined in.

e If the pointer is not captured, the object can not be accessed outside the scope
of the function. Therefore, it is a candidate for stack promotion

e |f a pointer is captured, its precise lifetime is hard or impossible to determine,
so we conservatively assume that it is accessible outside the scope

/{ A nmon-capturing function /f A capturing function
int f{int* p) { int f{int* p) {
return 2 + *p; global list.push_back(p);
} return *p - 3;
]

Fig. 1: A function that captures and one that does not

e Given a candidate for stack promotion, we need to determine whether it is safe
to promote to the stack

e Main problem: Need to ensure that the memory is only deallocated in the
scope in which it was allocated, so that we do not accidentally try to deallocate
the stack memory!

e We say that a malloc call is cheeky if it is possible to reach an exit of the
enclosing function without passing through a corresponding free

e |f a malloc is not cheeky, we prove that we can safely convert it to a stack
allocation and delete the corresponding frees

i A non-cheeky malloc _-"'_-"' A ChesEy alloc
int £() { int £() {
int* p = (int*)malloc(16+4); int* p = (int*)malloc(16+4);
plLO] 1; // This function MIGHT free p
for (int 1 = 1; i < 16; i++) { int answer = compute(p):
plil = pli-1] + i; if (answer < 0) {
1 free(p);
int answer = p[15]; }
free(p); return answer;
return answver, }

Fig. 2: An example of a non-cheeky malloc and a cheeky malloc

Algorithm for finding cheeky mallocs

Algorithm 1 Finding Cheeky Mallocs

1: procedure ISCHEEKY(m : Instruction)

2: local visited|b| < false for all basic blocks b
3: procedure DFS(b : BasicBlock)

4 visited|b| - true

5: for each Instruction [in b do

6 if | = free(m) then

7 return false

8 else if [is a return instruction then

9 return true

10: for each BasicBlock s in SUCCESSORS(b) do
11: if not visited|s| then

12: if DFS(s) then

13: return true

14: return false

15: return DFS(PARENT(m))

Fig. 3: Pseudocode for finding cheeky mallocs using depth-first search

References

[1] Bruno Blanchet. “Escape analysis for Java: Theory and practice”. In: ACM Transactions on

Programming Languages and Systems (TOPLAS) 25.6 (2003), pp. 713—775.

[2] Lukas Stadler, Thomas Wurthinger, and Hanspeter Mossenbock. “Partial escape analysis and

scalar replacement for Java”. In: CGO. 2014.

Carnegie
Mellon
University

Computer
Science
Department

Benchmarks We implemented three programs: Fibonacci number calculation
(fib), merge sort (msort) and matrix multiplication (mult).

01 01 + heap-to-stack | SU 03 heap-to-stack + 03 SU

fib 0.043 0.020 2.15 | 0.038 0.016 2.375
msort | 19.497 10.530 1.85 | 19.557 10.548 1.85
mult | 0.320 0.318 0.99 | 0.374 < 0.001 > 100

Fig. 4: Performance on three benchmarks with different allocation patterns (time in seconds)

e Comparison between 01 and 01 + heap-to-stack illustrates the benefits of
our optimisation, in isolation

e Comparison between 03 and heap-to-stack + 03 illustrates the impact of
further optimisations that additionally heap-to-stack reveals to 03

Performance results

e The speedup shown by £ib and msort demonstrate that moving heap alloca-
tions to the stack can lead to a significant speedup

e The speedup obtained by mult is owed to the fact that after removing the
malloc call, the optimizer realized that it could remove a large amount of un-
necessary computation. It could not realize this when the malloc was present.

Limitations and future work

Allocations inside loops

e Our current implementation does not remove mallocs inside loops.

e This is because the stack has to be carefully popped on each iteration man-
ually, or the allocation must be hoisted outside the loop (a la LICM), which is
difficult to get right

Dynamic Promotion

e Our current implementation does not remove mallocs that allocate a variable
number of bytes.

e This would involve deferring the decision to allocate on stack to runtime, or
performing additional static analysis to find dynamic allocations that are guar-
anteed to be small

e Careful checks need to be placed to ensure that dynamic promotion does not
lead to stack overflow.

Related Work

e Capture tracking and escape analysis have been used somewhat extensively
in the context of languages that make frequent use of the heap, such as
Java [1]

e WUrthinger [2] develop a path-sensitive version of escape analysis, called par-
tial escape analysis, which allows more optimizations to be performed in cases
where an allocation may escape in one branch but not another

