
1

Open GL and
Graphics Hardware

Overview of OpenGL
Pipeline Architecture
Alternatives

2Computer Graphics 15-462 (Fall 2002)

How many of you have programmed in OpenGL?

How extensively?

3Computer Graphics 15-462 (Fall 2002)

What is OpenGL?
• A low-level graphics API for 2D and 3D

interactive graphics. OS independent.

• Descendent of GL (from SGI)

• Implementations: For the Linux PCs we have
Mesa, a freeware implementation.

4Computer Graphics 15-462 (Fall 2002)

What it isn’t:
A windowing program or input
driver because those couldn’t be
OS independent.

GL: core graphics capability
GLU: utilities on top of GL
GLUT: input and windowing functions

5Computer Graphics 15-462 (Fall 2002)

How does it work?

From the programmer’s point of view:
•Specify geometric objects
•Describe object properties
•Define how they should be viewed
•Move camera or objects around for animation

6Computer Graphics 15-462 (Fall 2002)

How does it work?

State machine with input and output:
• State variables: color, current viewing
position, line width, material properties...

• These variables (the state) then apply to
every subsequent drawing command

• Input is description of geometric object
• Output is pixels sent to the display

2

7Computer Graphics 15-462 (Fall 2002)

How does it work?

From the implementor’s perspective:

OpenGL pipeline

Rotate
Translate
Scale

Is it
visible? 3D to 2D Convert to

pixels

Primitives
+ material
properties

Walk through the pipeline…

8Computer Graphics 15-462 (Fall 2002)

Primitives: drawing a polygon

• Put GL into draw-polygon state
glBegin(GL_POLYGON);

• Send it the points making up the polygon
glVertex2f(x0, y0);

glVertex2f(x1, y1);

glVertex2f(x2, y2) ...

• Tell it we’re finished
glEnd();

Build models in appropriate units (microns, meters, etc.).
Transform to screen coordinates (pixels) later.

9Computer Graphics 15-462 (Fall 2002)

Specifying Primitives

Code for all of today’s examples available from
http://www.xmission.com/~nate/tutors.html

6KDSHV�H[H

10Computer Graphics 15-462 (Fall 2002)

Primitives: points, lines, polygons

11Computer Graphics 15-462 (Fall 2002)

Primitives: points, lines, polygons

Why triangles, quads, and strips?

Hardware may be more efficient for triangles
Strips require processing less data (fewer vertices)

12Computer Graphics 15-462 (Fall 2002)

Primitives: Material Properties

• glColor3f(r, g, b);
All subsequent primitives will be this color—

colors are not attached to objects but this call

changes the state of the system

Everyone who learns gl gets bitten by this!

Red, green & blue color model

Components are 0-1

3

13Computer Graphics 15-462 (Fall 2002)

Primitives: Material Properties

Many other material properties available:
glEnable(GL_POLYGON_STIPPLE);

glPolygonStipple(MASK); /* 32x32 pattern of bits */

…

glDisable (GL_POLYGON_STIPPLE);

14Computer Graphics 15-462 (Fall 2002)

Primitives: Material Properties
Ambient: same at every point on the surface

Diffuse: scattered light independent of angle (rough)

Specular: dependent on angle (shiny)

15Computer Graphics 15-462 (Fall 2002)

Primitives: Material Properties

16Computer Graphics 15-462 (Fall 2002)

Light Sources

Most often point light sources

lightpositions.exe

17Computer Graphics 15-462 (Fall 2002)

Transforms

• Rotate

• Translate

• Scale

• glPushMatrix(); glPopMatrix();

transformations.exe
18Computer Graphics 15-462 (Fall 2002)

Position it relative to the camera

Different views of the objects in the world

4

19Computer Graphics 15-462 (Fall 2002)

Position it relative to the camera

Lines from each point on the image are drawn through
the center of the camera lens (the center of projection).

20Computer Graphics 15-462 (Fall 2002)

Position it relative to the camera
Many camera parameters…
For a physical camera:

position (3)
orientation (3)
lens (field of view)

Orthographic projection: long telephoto lens.
Flat but preserving distances and shapes. All the
projectors are now parallel.
glOrtho (left, right, bottom, top, near, far);

21Computer Graphics 15-462 (Fall 2002)

Position it relative to the camera
Perspective projection

22Computer Graphics 15-462 (Fall 2002)

Camera Transformations

Camera positioning just results in more
transformations on the objects:
transformations that position the object
wrt to the camera

23Computer Graphics 15-462 (Fall 2002)

Clipping
Not everything should be visible on the screen

24Computer Graphics 15-462 (Fall 2002)

Rasterizer
Go from pixel value in world coordinates to
pixel value in screen coordinates

5

25Computer Graphics 15-462 (Fall 2002)

Special Tricks
• Gouraud Shading:

Change the color between setting each vertex, and
GL will smooth-shade between the different vertex
colors.

• Shadows on ground plane:
Render from the position of the light source and

create shadow map

26Computer Graphics 15-462 (Fall 2002)

Special Tricks
• Fog:

fog.exe

27Computer Graphics 15-462 (Fall 2002)

Drawing A Box

void DrawBox()
{

MakeWindow("Box", 400, 400);

glOrtho(-1, 1, -1, 1, -1, 1);

glClearColor(0.5, 0.5, 0.5, 1);
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 0.0, 0.0);

glBegin(GL_POLYGON);
/* or GL_LINES or GL_POINTS... */

glVertex2f(-0.5, -0.5);
glVertex2f(0.5, -0.5);
glVertex2f(0.5, 0.5);
glVertex2f(-0.5, 0.5);

glEnd();
}

28Computer Graphics 15-462 (Fall 2002)

Setting up the window

• The coordinate system
glOrtho(left, right, bottom, top, near, far);

e.g., glOrtho(0, 100, 0, 100, -1, 1);

For now, near & far should always be -1 & 1

• Clearing the screen
glClearColor(r, g, b, a);

a is the alpha channel; set this to 0.

glClear(GL_COLOR_BUFFER_BIT);
glClear can clear other buffers as well, but we’re only

using the color buffer...

29Computer Graphics 15-462 (Fall 2002)

Getting Started
• Example Code

We will give you example code for each assignment.

Modifying existing code is much easier than writing
“hello world” (unfortunately)

• Documentation:
Book

Html-ified OpenGL man pages are on the course
software page.

30Computer Graphics 15-462 (Fall 2002)

Hardware

First “graphics” processors just did
display management, not rendering per se.
bitblit for block transfer of bits

6

31Computer Graphics 15-462 (Fall 2002)

Goal

Very fast frame rate on scenes with lots
of interesting visual complexity

Complexity from polygon count and/or
texture mapping

32Computer Graphics 15-462 (Fall 2002)

Pipeline Architecture

• Pioneered by Silicon Graphics, picked up by
graphics chips companies (Nvidia, 3dfx, S3,
ATI,...).

• OpenGL library was designed for this architecture
(and vice versa)

• Good for opaque, textured polygons and lines

33Computer Graphics 15-462 (Fall 2002)

Why a Pipeline Architecture?

Higher throughput

But potentially long latency

… …

Parallel pipeline architecture
each stage can employ multiple specialized

processors, working in parallel, busses between
stages

#processors per stage, bus bandwidths carefully tuned
for typical graphics use

34Computer Graphics 15-462 (Fall 2002)

Pipeline Stages

• transform

• light

• clip

• perspective divide

• rasterize (scan convert)

• texture & fog

• z-buffer test

• alpha blend, dither

Immediate mode rendering
application generates stream of

geometric

primitives (polygons, lines)

system draws each one into buffer

entire scene redrawn anew every frame

35Computer Graphics 15-462 (Fall 2002)

Implementing Algorithms in Hardware

• Z-buffer
computations are bounded, predictable

Some work well, others are harder

36Computer Graphics 15-462 (Fall 2002)

Implementing Algorithms in Hardware
• Ray tracing

poor memory locality

computational cost difficult to predict (esp. if adaptive)

SIMD (single instruction, multiple data) parallel approach

keep copy of entire scene on each processor

7

37Computer Graphics 15-462 (Fall 2002)

Current chip design may not be the
long term answer

• Observation: # triangles == # of pixels

• Could focus on interactivity
Latency becomes a problem

• Could focus on animation
Avoid repeating computations

Image-based rendering?

38Computer Graphics 15-462 (Fall 2002)

Pixel Planes and Pixel Flow (UNC)
http://www.cs.unc.edu/~pxfl/

programmable processor per pixel
good for programmable shading, image processing

can be used for rasterization

Pixel-Planes 4: 512x512 processors with 72bits of memory

But most processors idle for most triangles

Pixel-Planes 5: divide screen into ~20 tiles each with a bank

of processors. Network is limit. 2Million tri/sec.

39Computer Graphics 15-462 (Fall 2002)

Pixel Planes and Pixel Flow (UNC)
Pixel-Flow: Image composition. Subdivide geometry to
processors and recombine by depth using special hardware

Rendered on simulator and predicted to run in real
time on physical hardware

40Computer Graphics 15-462 (Fall 2002)

Talisman (Microsoft)
http://research.microsoft.com/MSRSIGGRAPH/96/Talisman/

Observation: an image is usually much like the one
that preceded it in an animation.

Goal: a $200-300 board

image-based rendering
cache images of rendered geometry

re-use with affine image warping (sophisticated sprites)

re-render only when necessary to reduce bandwidth and

computational cost

41Computer Graphics 15-462 (Fall 2002)

Current & Future Issues
• interaction
• geometry compression
• progressive transmission
• alternative modeling schemes (not polygon soup)

parametric surfaces, implicit surfaces, subdivision surfaces
generalized texture mapping: displacement mapping, light

mapping
programmable shaders

• beyond just geometry:
dynamics, collision detection, AI?

