
�� PPRROOBBLLEEMM
The ability to recognize when an agent abandons a plan or goal is important to successful implementation of plan
recognition in real systems.

�� AAPPPPRROOXXIIMMAATTIIOONN BBYY MMOODDEELL RREEVVIISSIIOONN
Laskey [1991], Jensen [Jensen et al., 1990], Habbema [1976] have suggested that unexpectedly small values for
the statistic of P(observations\model) indicate a model mismatch. In our case this mismatch can be interpreted as
the abandonment of a goal.
In this light, consider computing the probability that none of the observed actions in a subsequence (from say s to
t) contribute to one of the goals (call it G), (we denote this as P(notContrib(g,s,t)|model, observations)). If this
probability gets unexpectedly small, it is evidence of a mismatch between the model which predicts that the agent
is still working on the goal and the reality that the agent has abandoned it.
Computing “notContrib”

Given this very simple plan library and assuming the following sequence of observations:
happen (a,0), happen (b,1), happen (g,2), happen (g,3), the probability of seeing c at time 2 is
given by (m / |PS2 |), where m is the number of elements in the pending set that have c as the
next action. The probability that we don’t see c is then:

To handle more than one time step and to handle partially ordered plans, this formula must be generalized slightly.

�� IIMMPPLLEEMMEENNTTAATTIIOONN

Accuracy
Investigations into the algorithm’s accuracy employed a very simple plan library with three root goals, each having
eight unordered steps. These plans were randomly interleaved preserving the intra-plan ordering. At each time
step, one of the goals could be chosen for abandonment. A thousand randomly generated data points were run, at
each of nine notContrib threshold values between 0.1 and 0.9.

Runtime
Runtime tests were done using the test library:

If mG,i represents the number of elements in the pending set at time i that contribute to goal G, then (s-1) is the
last time we saw an action contribute to G and t
is the current time, P(notContrib(G,s,t)|model,obs) =

By allowing the user to set a threshold on this statistic and marking any explanation that drops below this
threshold as abandoned we can now generate explanations that involve the abandonment of goals.
Estimating abandonment
Estimating the probability that a given goal has actually been abandoned requires a further step. If one computes
P(notContrib(G,s,t)|model, obs) for each G and threshold, one can produce explanations of the observations in
which goals have been abandoned and estimate the probability of a specific goal’s abandonment:

Evidential Theory
Note that as the ratio of the number of contributing actions to the size of
the pending set drops, the number of actions required to drive notContrib
down to a particular threshold value increases significantly.

�� TTHHEE EEXXAACCTT SSOOLLUUTTIIOONN
Background
[Goldman et al., 2002; Geib and Goldman, 2001b; 2001b] provide an algorithm for plan recognition based on a
model of the execution of hierarchical task network (HTN) plans. As the agent executes one of the set of pending
actions, a new set of pending actions is generated from which the next action will be chosen, and so forth.

Introducing plan/goal abandonment in the model critically changes the way in which pending sets are generated.

Thus, computing the exact probability of an explanation considering goal abandonment presents two problems:
• The existing search space is multiplied by 2n (the number of possible sets of abandoned goals)
• The need for a probability distribution over the set of goals the agent could abandon
These issues makes explicitly computing the exact probability of goal abandonment unrealistic.

Note that the number of test sequences “not explained” drops to zero as the PAT is raised. Likewise, the number
“not abandoned” rises as the PAT (Probability of Abandonment Threshold) rises exactly as expected.

The chart below shows seventeen hundred randomly
generated two-goal observation streams with the PAT set at
0.75. The system believed 1138 of the runs had at least one
abandoned goal, but still completed the majority of runs in
less than one second.

For each valid explanatory hypothesis (set of
goals, chosen plans, observed actions), there is
at least one corresponding series of pending sets
which are generated from previous sets by
removing the action just executed and adding
actions enabled by the executed action.

The execution of an action no longer generates a
unique new pending set because the agent also
chooses a set (possibly the empty set) of goals to
be abandon, greatly multiplying the possible
alternatives.

Theoretical Evidential Curves
Three theoretical curves for the probability
of “notContrib” for different sizes of the
pending set with only a single action
contributing to the desired goal.

Plan/Goal Library Used to
Generate Runtimes

Runtimes of
1700 Runs with
2 Goals Each

Empirical Accuracy

abandoned—where PHATT believed with probability greater than 0.5 that the correct goal
had been abandones.

not abandoned—where PHATT did not believe with porbability greater than 0.5 that the
correct goal had been abandoned

not explained—where PHATT was unable to explain the set of observations. In all cases,
this was a result of the system believing that a goal was abandoned before it actually had
been. The system was therefore unable to account for the remaining actions in that test
data point.

�� HHIISSTTOORRIICCAALL AAPPPPRROOAACCHHEESS
Existing plan recognition systems have adopted a number of methods to work around the problem.
• Only worry about the agent’s current goal [Horvitz et al., 1998].
• Assume the agent only has one goal [Conati et al.,1997; Gertner et al., 1998]
• Assume the agent will always come back [Katz and Allen, 1986]
• Rely on a cooperative agent for disambiguation

C03111

