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Abstract 

This paper presents a discussion of the theoretical 
complexity of plan recognition on the basis of an analysis of 
the number of explanations that any complete plan 
recognition algorithm must consider given various 
properties of the plan library.  On the basis of these results 
it points out properties of plan libraries that make them 
computationally expensive. 

Introduction   
Plan recognition is a well studied problem in the Artificial 
Intelligence literature.  Following others, we distinguish 
between plan recognition/task tracking and goal 
identification.  By plan recognition we mean the process of 
identifying not only the top level goal an agent is pursuing 
but also the plan that is being followed and the actions that 
have been done in furtherance of the plan. 
 The algorithms that have been used to address plan 
recognition range from, graph covering (Kautz 1986), to 
Bayes nets (Bui 2003, Horvitz 1998), to Probabilistic State 
Dependent Grammars (Pynadath 2000).  While a 
significant amount of information is known about the 
complexity of these algorithms what has previously been 
lacking in the literature is a discussion of how hard the 
actual problem for an individual plan library is.  Without a 
discussion of the complexity of the actual problem, we 
may find ourselves using very powerful algorithms to 
solve problems that are amenable to simpler algorithms.   
 The rest of this paper is organized as follows, we will 
discuss HTN plans as a representation for plan libraries 
and define an explanation for a given set of observations.  
Then, making sure to divorce ourselves from any particular 
plan recognition algorithm, we will discuss the complexity 
of a plan library in terms of the number of possible 
explanations licensed by a given set of observations and 
the features of the domain that control this.  This will leave 
us in a position to make predictions about the difficulty 
any complete algorithm for plan recognition will have with 
a particular domain. 
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Modeling Plans and Explanations 
Much of the past work in plan recognition has at least 
tacitly been based on simple hierarchical task networks 
(HTN) (Kutluhan, Hendler, and Nau 1994a, 1994b) as the 
representation for plans. Figure 1 is an HTN plan library 
represented as partially ordered and/or trees.  In most plan 
recognition systems this kind of plan library is given to the 
system to define the set of plans it is expected to recognize.  
In the figure, interior “and nodes” representing plan 
decomposition (all the children must be performed for the 
parent to be achieved) are represented by an undirected arc 
across the lines connecting the parent node to its children.  
Interior “or nodes”, which represent choice points in the 
plan (only one of the children must be performed to 
achieve the parent) do not have this arc. Finally, basic 
actions that are directly observable by a plan recognition 
system are shown as leaf nodes of the trees. Directed arcs 
represent ordering constraints between plan nodes.  For 
example, in Figure 1, action zt must be executed before ips 
and ps.  In this paper, we will be considering the 
complexity of plan recognition limited to plans that can be 
represented in this formalism. 
 We define an explanation of a set of observations as a 
minimal forest of instances of plan trees with expansions 
chosen for “or” nodes sufficient to allow an assignment of 
each observation to a specific basic action in the plan.  For 
example, Figure 2 shows one of many possible 
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explanations for the set of observations (action, time 
pairs): {(zt, t1), (ips, t2), (zt, t3), (ps, t4), (pod, t5)} given 
the plan library shown in Figure 1.  Note that the second 
Dos-Attack is not expanded in this explanation since it is 
not required to explain the observations.  Also note that in 
this discussion we will be using an integer time notation. 
 Figure 2 shows two instances of the DOS (Denial of 
Service) goal being explained by this series of 
observations.  Much research in plan recognition (Geib 
2003, 2001a, 2001b, Goldman 1999, Goldman 1993) is 
committed to recognizing the interleaved execution of 
multiple goals that are active at the same time.  In defining 
what is an acceptable explanation for a series for 
observations we will follow this tradition.   What is less 
accepted in the research community is that plan 
recognition algorithms should consider multiple instances 
of the same goal as part of an explanation.  Allowing 
multiple instances of the same goal makes the problem of 
plan recognition significantly harder, therefore we will 
provide a short justification for why algorithms must 
address this case. 

Multiple Instances of the Same Goal 
Consider the cyber security domain from Figure 1.  In the 
real world, it is common for a determined cyber attacker to 
launch multiple different attacks against a single host, and 
even multiple instances of the same attack, to achieve a 
single goal.  This is done for a number of reasons: 
diversity of target susceptibility, attack success likelihood, 
and to create confusion, among others.  Thus in this 
domain it is very common to see multiple instances of the 
same goal being pursued by different, very similar, or even 
identical instances of plans. The explanation presented in 
Figure 2 has remained agnostic about the specific Dos-
Attack that will be launched, however since the zt (zone-
transfer) observed at time t3 is consistent with a second 
DOS goal any complete algorithm for plan recognition 
must consider the possibility that there are multiple 
interleaved instances of this goal being pursued by a single 
agent at the same time. 
 Having explicitly, stated that we will be looking at 
multiple interleaved goals and multiple instances of the 
same goal.  It is worth noting some possible aspects of plan 
recognition that will not be covered in this discussion.  

Plans with explicit looping constructs, observations that 
contribute to more than one plan, domains that are only 
partially observable, questions of the certainty of a given 
observation, and the possible abandonment of plans, can 
all increase the number of viable explanations for a given 
set of observations and hence the complexity of the plan 
recognition task.  A complete treatment of these issues are 
outside the scope of this paper, however, since they all 
result in increasing the number of possible explanations for 
a set of observations, this work can be seen as a lower 
bound on the complexity of plan recognition in domains 
that address these issues. 

Counting Explanations 
We are interested in the worst case complexity of each 
problem domain.  One way to examine the complexity of a 
domain to examine the maximal number of explanations 
that a given set of observations can have.  Since any 
complete algorithm for plan recognition will have to 
examine all of the viable explanations for a given set of 
observations, this will give us a handle on the complexity 
of the domain.  However, long sets of observations may 
result in more explanations than short sets.  Therefore, we 
need to find a way to examine the complexity of the 
domain outside of a specific set of observations.  That is, 
we are interested in identifying those plan properties that 
result in large sets of possible explanations.  We will 
identify these properties by examining a single 
explanation, observing how the addition of a single 
observation changes the number of explanations that are 
licensed, and then identifying the properties of the plans in 
the explanation that enabled the changes.  
 One of the properties of an explanation is that each 
observation is assigned to a specific basic action.  We will 
say an observation explains a basic action if it can be 
legally bound to the basic action within an explanation.   
Further, we define an attachment point as any basic action 
that does not have an observation assigned to it that could 
be explained by the current observation. 
 As with other highly constrained systems, the addition 
of a single observation can increase, decrease, or leave 
unchanged the number of explanations.  That is, given an 
explanation, a new observation is either inconsistent with 
the explanation, in which case the number of explanations 
decreases, or it is consistent with the explanation in which 
case  then number of explanation remains the same or 
increases. 
 In the following subsections we will examine the 
addition of an observation to a single explanation under 
various conditions and the effects it will have on the 
number of licensed explanations.  We will first consider 
the simple case of observations that do not introduce new 
root goals to the explanation and then consider the case of 
adding observations that do. 
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No New Root Goals 
We will break the case of observations that merely extend 
the root goals that are already in an explanation into two 
sub-cases.  First we consider the case where there is only a 
single attachment point in the explanation for the 
observation.  In this case, the observation is added, the 
explanation remains consistent and no new explanations 
need to be introduced.  An example of this is shown in 
Figure 3.  Note that if there were no basic actions the 
observation could explain then the explanation could be 
discarded and the number of explanations would decrease. 
 Second, we consider the more interesting case where 
there are multiple attachment points for the observation in 
the explanation.  In this case, the number of consistent 
explanations is multiplied by the number of attachment 
points.  A complete algorithm must consider the possible 
binding of the observation to each of the candidate 
attachment points resulting in multiple possible 
explanations. 
 Informal empirical evaluation of one complete, 
incremental plan recognition algorithm (Geib and 
Goldman 2003, 2001a, 2001b) over three different 
domains suggest that the most common cases that do not 
introduce new root goals  are those where there is only a 
single possible attachment point.  While there are many 
cases in these domains where multiple instances of the 
same basic action could have potentially resulted in 
multiple attachment points, the incremental nature of the 
algorithm and the restrictions imposed by ordering 
constraints within the plan libraries prevented it.  Thus 
both theoretical and empirical analysis suggest that these 
are not the computationally expensive cases for plan 
recognition.  

New Root Goals the Simple Case 
To discuss observations that introduce new goals, it will be 
helpful to define a leader as any basic action such that 
there exists a root goal in the plan library, such that, 
neither the basic action, nor any of its ancestors, is ordered 
after some other action within at least one possible plan for 

the root goal.  Intuitively, a leader could be the first 
observed action within a plan for the designated goal.  As 
in the case where no new goal is introduced it will be 
helpful to divide our discussion into two cases: the 
introduction of root goals and plans for them that have a 
single leader action and those that have multiple leader 
actions. 
 The introduction of single leader plans is very similar to 
the cases that do not introduce a new root goal.  The 
number of explanations increases linearly with the number 
of root goals for which the action is a leader.  Thus, it is 
actually only necessary to introduce a new explanation for 
each of the possible root goals that could be introduced by 
the action.  In effect, each of the root goals for which the 
action is a leader can be seen as continually active 
attachment point.   Figure 4 presents an example of this 
case. 

New Root Goals with Multiple Leaders 
For the rest of this discussion, we will make a small 
alteration to the plan library that we have been using in our 
examples.  For the rest of this discussion we will assume 
that the ordering constraints from zt to ips and ps have 
been deleted.  That is zt is no longer the sole leader for all 
three of the root goals.  Instead all three goals share the 
common set of unordered leaders {zt, ips, ps}. 
 The first observed leader for a root goal with multiple 
leaders is very similar to the previous case of a new goal 
with a single leader.  The new observation only requires 
that the set of explanations be increased linearly in the 
number of root goals for which the observed action is a 
leader.  In our example plan library, this means that 
observing any one of zt, ips, or ps will generate three 
explanations, one where the observed action contributes to 
a new instance of each of DOS, Theft, or Brag.  This 
looks just like Figure 4 from the previous case.  However, 
a very different thing happens when a second leader for the 
same root goal is seen. 
 Since the second observed leader for the root goal is 
unordered with respect to the first, we are no longer 
allowed to assume that it must be part of the same root 
goal.  That is, we cannot be certain if the observation is 
contributing to an existing plan or if it is introducing a new 
goal.  Thus if we are to consider all the possible 
explanations, we must consider both the possibility that the 
observation is contributing to the existing goal and that it 
is introducing a new root goal.  An example of this is 
shown in Figure 5.   
 Now consider what happens when the third leader for 
this example is seen.  We must consider three cases: 1) all 
three actions are contributing to the same goal, 2) that any 
two of them may be contributing to a single goal and the 
other to a second goal, and 3) that all three contribute to 
distinct root goal instances.  On top of this all three of 
these cases must be enumerated for all goals that share the 
common leaders. 
 If we extend this case to have m unordered leaders that 
are shared by n root goals then, when we see all m leaders 
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we will be forced to consider the set of all subsets of the up 
to m instances of the n root goals and all the possible 
distributions of the m leaders between them.  Clearly this 
will grow quite fast, but having identified this as the case 
that will result in a large increase in the number of 
explanations, the question remains, how fast does this 
grow?  Given a plan library that has a set of m unordered 
leaders shared by n plans.  Then in the worst case where 
one of each of the unordered leaders is observed in a row, 
a single explanation will expand to exactly: 

 
explanations. The summation captures the fact that the 
number of possible root goals varies from one to m.  The 
first term in the summation represents the distribution of 
observed leaders to root goal instances, captured by 
Sterling’s numbers of the second kind (Bogart 1990).  This 
number is exactly the number of ways that the m actions 
can be distributed to the i root goals so that each goal has 
at least one action.  The second term in the summation 
reflects the number of possible permutations of the root 
goals.  To provide some intuition about the rate of growth 
of this function, consider the following. This function is 
bounded below by mn  which is seen by considering the 
last term of the summation.   
 The function is also bounded above by ( )mmn .   This 
can be seen by creating an alphabet of letters to assign to 
each observed unordered leader to tell us what goal it 

contributes to.  Since we know that in the worst case there 
will be m goals, each possible shared goal α  is given m 
letters 1 2, ,... mα α α  each one representing the possible 
goal instances ofα .  This creates an alphabet of mn 
letters. If each leader is given one letter to indicate which 
instance of which goal it contributes to.  Since we are 
interested in the case of m observations there are 
( )mmn such combinations.  This represents an upper 
bound because, many of these combinations are not legal 
assignments of leaders to root goal instances.  For 
example, none of the leaders could be assigned to 
contribute to the second instance of a particular goal unless 
there were already a first instance of the same goal, 
however, nothing in the construction of our alphabet or the 
assignment of letters to leaders prevents this. 
 mn represents significant growth in the number of 
explanations and will be a dominating source of 
complexity for the domain.  Note that multiple instances of 
any one of the leaders will not have this kind of 
exponential growth.  Consider the case of the following 
observations {(zt, 1), (zt, 2), (zt,3)}.  Since any given 
instance of the root goals can only have one instance of zt 
we know that each of these observations must introduce a 
new root goal.  Since they can’t contribute to each other 
the set of explanations remains constant in size 
(introducing a new goal with each action.) 
 It is important to realize that while this problem is 
significantly amplified by having multiple root goals that 
share the unordered leaders, this problem occurs even 
when the leaders are not shared.  Note that the exponent of 
this problem is the length of the unordered leader, not the 
number of goals sharing the leader.  Thus the number of 

Figure 4: The Explanations that result from observing the single leader for three root goals 
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explanations will grow exponentially even if the leaders 
are not shared.  That is, since, any complete algorithm will 
have to consider multiple instances of the same root goal, 
this problem will occur even for a single plan with 
unordered leaders, albeit to a lesser degree. 

Implications 
To summarize, shared unordered leaders in a plan library 
have the potential to exponentially increase the number of 
explanations that have to be considered by any complete 
plan recognition algorithm.  All other cases have, at worst, 
a increase in the number of explanations that is linear in 
the number of attachment points.  Thus, plan libraries that 
have exceptionally large numbers of repeated actions or 
long shared unordered plan leaders will likely produce 
very large runtimes.  Note that this shows that partial 
ordering of the plans can in fact have a more significant 
impact on the runtime of any plan recognition algorithm 
than even the sharing of actions across plans. 
 What is the most disheartening about this result is that 
this growth in the number of explanations will happen 
even when there is only a single instance of the root goal 
that is intended and a single set of the shared unordered 
leaders is executed.  Encouragingly, in the case where 
there is only a single instance of one of the root goals 
being executed by the agent, once the leaders have all been 
executed a significant reduction of the number of 
explanations is possible.  Given the ordering constraints 
that by definition end the unordered leaders, we can begin 
to eliminate explanations that involve multiple goals since 
they will be inconsistent.  For example, consider the 
following set of observations: {(ips, 1), (ps, 2), (zt, 3), 

(pod, 4) again taken from the plan library of Figure 1 (with 
the initial ordering constraints removed between zt, ips 
and ps.).  If we had just the unordered shared leaders the 
set of explanations would be quite large, however for the 
presence of the pod action to be legal within this plan 
library all three of the shared leaders must contribute to a 
single instance of the scan action.  This allows us to 
eliminate all but one of the possible explanations. 
 Given these results some might be tempted to artificially 
introduce ordering into the plans in the library in order to 
reduce the number of possible explanations.  One could 
enumerate all of the possible orderings for the shared 
unordered leaders, producing a plan library that had only 
shared ordered leaders.  Of course in the end all this will 
do is push the implicit complexity of the ordering 
constraints into explicit complexity of the plan library 
itself.  Further since all of the orderings must be 
enumerated and none of the complexity associated with 
multiple goals is addressed, this will not succeed in 
reducing the complexity of the problem. 

To Enumerate or Not 
Beyond the conclusions about the properties of plan 
libraries that make plan recognition complex, these results 
shed light on the question of when to use which plan 
recognition algorithm.  Some algorithms call for an explicit 
enumeration of the explanation space before seeing any of 
the observations (Bui 2003, Kautz 1986).  Since the size of 
the explanation space depends on the number of 
observations that will be processed these approaches have 
often limited themselves to a single instance of each root 
goal.  Further, as these results have shown, enumeration of 
the explanation space will require an exponential number 
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of cases for some plan libraries.  Thus these results should 
caution against such approaches to plan recognition in 
domains with shared unordered leaders.  Instead, 
approaches that are incremental and only build those 
portions of the explanation space that are needed by the 
observations will be more effective. 

Conclusions  
In this paper we have examined the way in which the set of 
possible explanations for a given set of observations grows 
in an effort to understand the complexity of complete plan 
recognition algorithms.  We have demonstrated that the 
number of such explanations can grow exponentially in the 
number of root goals that share a common unordered 
prefix of actions.   
 These results have given us a concrete handle on those 
aspects of a plan library that may make it computationally 
difficult.  Shared leaders are a result of having domains 
where many different plans for different goals have a 
“common prefix” of actions.  Where the steps of such a 
prefix are unordered plan recognition will involve 
consideration of a large number of explanations. 
 This strongly argues that when given a choice, if a plan 
library must contain multiple plans for root goals with a 
common prefix that this prefix should be kept as short as 
possible and that ordering constraints should be introduced 
whenever possible within such a prefix. 
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