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Introduction
This paper describes ongoing efforts to extend our work
(Geib & Goldman 2001b; 2001a) (G&G) on the Probabilis-
tic Hostile Agent Task Tracker (PHATT) to handle the prob-
lem of goal abandonment. As such, we will be discussing
both probabilistic intent inference and the PHATT system
and assume the reader is familiar with these areas. We refer
the interested reader to the complete paper and to our earlier
papers for more discussion of these issues.1

We are applying plan recognition methods, specifically
PHATT, to two real-life applications: building assistant sys-
tems for elderly patients in assisted living environments and
tracking hostile agents in computer network security. Both
of these application areas require us to be able to recognize,
and reason about, situations when the agents we observe
have abandoned a plan or goal. Consider the case of an el-
der2 who begins the process of taking her medication but
gets distracted and does not complete the plan. If a system
can recognize when that plan has been abandoned and will
not be completed, the system can provide helpful reminders.

In general, the ability to infer abandoned goals is an op-
erational requirement for any plan recognition system that
is executing incrementally and continuously. Abandoning
goals is something that any real observed agent will do. If
a plan recognition system is unable to recognize this fact,
the system will build up an ever increasing set of active or
open plans that the agent has no intention of completing.
Without some method of identifying abandoned plans a sys-
tem attempting to find completions for these open plans will
wind up considering unreasonable situations such as the el-
der begins making a sandwich which they didn’t finish until
several hours, days or even weeks later.

Existing plan recognition systems do not draw such in-
ferences. Instead a number of different domain assumptions
allow them to work around this problem:

� only consider the agent’s current goal: The Lumière
project, (Horvitz et al. 1998) discards all previous goals
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Figure 1: A very simple example plan library.

of an agent (although remembering a history of past help),
therefore there is no need for an explicit treatment of
abandoned goals.

� the agent has a single fixed goal: In tutorial applica-
tions (Gertner, Conati, & VanLehn 1998) there is often
only one goal the system is concerned with: namely the
agent’s acquiring a skill or knowledge from the system.
From the perspective of the system, effectively only those
actions that are part of the educational process are relevant
for recognition.

� the agent will always come back:(Kautz & Allen 1986)
Some systems assume that while an agent may interrupt
one goal in order to achieve another one, they will even-
tually return to the original goal.

� rely on a cooperative agent for disambiguation: (Lesh,
Rich, & Sidner 2001) Other systems expect that agents
can be counted upon to communicate that they have aban-
doned a goal, possibly in response to a direct query from
the system.

However, for a number of reasons, none of these assump-
tions are acceptable in our domains of interest.

As we will discuss, explicitly computing the probability
of a goal’s abandonment can result in an explosion in the
number of hypotheses that must be considered by the system
making the algorithms computationally prohibitive for real
world systems. Rather than explicitly computing the proba-
bility of goal abandonment, we believe the problem can best
be viewed as a case of probabilistic model revision.

Background
The PHATT framework is based on a model of the execu-
tion of simple hierarchical task network (HTN) plans (Erol,
Hendler, & Nau 1994) like the ones seen in Figure 1.

The central realization of the PHATT approach is that as
plans are executed the agent is able to execute any one of
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Figure 2: A simple model of plan execution.
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Figure 3: A model of plan execution and pending set gener-
ation with abandoned goals.

the actions in its plans that have been enabled by its previ-
ous actions. To formalize this, initially the executing agent
has a set of goals and chooses a set of plans to execute to
achieve these goals. The initial actions of the set of plans
chosen determines a pending set of primitive actions. The
agent executes one of the pending actions, generating a new
pending set from which the next action will be chosen.

Thus, for each possible explanatory hypothesis, there is a
unique corresponding sequence of pending sets. Each pend-
ing set is generated from the previous set by removing the
action just executed and adding newly enabled actions. Ac-
tions become enabled when their required predecessors are
completed. This process is illustrated in Figure 2.

Given this, plan recognition in PHATT can be viewed
as using probabilistic simulation of the generation of pend-
ing sets to produce the complete, exclusive and exhaus-
tive covering set of explanations for a given set of obser-
vations. Conditional probabilities of root goals or plan fea-
tures can then be computed from the set of explanations.
We refer the interested reader to (Geib & Goldman 2001b;
2001a) for a more extensive explanation of this process.

Exact Solutions
Adding plan abandonment to the model of plan execution
critically changes the way in which pending sets are pro-
gressed. We will assume that immediately after each action
in the observation sequence, the agent is able to abandon
one or more of the goals in its pending set. This means that
the previous pending set and the action observed no longer
uniquely determine the new pending set. Our model of plan
execution moves from the one seen in Figure 2 to that shown
in Figure 3.

Now we no longer have a deterministic model of hypoth-

esis progression. Previously, a pending set and an action
execution yielded a unique pending set for the next time in-
stant. However, now there are multiple possible alternatives.
In the figure these are denoted: Pending(t,0), Pending(t,1),...
Pending(t,i), where t represents the time step. As before, the
execution of an action generates a unique new pending set by
enabling new actions. However, now the agent also chooses
a set (possibly the empty set) of goals to be abandoned.

Since the agent may abandon more than a single goal at
a time, the number of pending sets equals the number of
possible subsets of the goals in the pending set that would
have resulted without considering abandonment. I.e. the
new hypotheses correspond to the power-set of the goals in
the original pending set. Thus, where the previous algorithm
had to consider a single pending set with n goals, our new
algorithm will have to consider �n pending sets for the next
observation.

This kind of explosion of the explanation space makes
explicitly computing the probability of goal abandonment
computationally very expensive.

Model Revision
Rather than explicitly considering all of the possible plans
that could be abandoned, the problem can be looked at as a
question of model fitting or model revision. If we are us-
ing a model of plan execution that does not consider plan
abandonment to recognize observation streams in which the
agent is abandoning plans, we expect that the computed
probabilities for the observation streams will be quite low.
Laskey (1991), Jensen (Jensen et al. 1990), Habbema (1976)
and others (Rubin 1984) have suggested that cases of an un-
expectedly small P �observationsjModel� should be used
as evidence of a model mismatch.

In the case where we are interested in recognizing a spe-
cific kind of model failure (namely that the agent is no
longer executing a plan that it has begun) the statistic of
P �observationsjmodel� is not sufficient. While this statis-
tic will drop rather rapidly as we fail to see evidence of the
agent carrying out the steps of their plan, it does not pro-
vide us with sufficient information to determine which of
the agent’s goals has been abandoned, the critical informa-
tion that we need in order to repair the model.

Instead of the general P �observationsjmodel� statistic
we propose the use of a more specific statistic. Our intuitions
about how we recognize plans will help us to find this statis-
tic. Suppose I am observing someone that I initially believe
has two high level goals, call them � and �. At the outset
they mostly alternate the steps of the plans, but at about half
way through the agent stops working on � and instead only
executes actions that are part of �. As the string of actions
that contribute only to � gets longer, and we see no more
actions that contribute to � we should start to suspect that
the agent has abandoned �.

We can formalize this idea as the probability that none
of the observed actions in a subsequence (from say s to t)
contribute to one of the goals (call it G), and we denote
it P �noneContrib�G� s� t�jmodel� observations�. If this
probability gets unexpectedly small we consider this as evi-
dence of a mismatch between the model and the real world.



Namely the model predicts that the agent is still working on
the goal, while the agent may have abandoned it. The fol-
lowing section will detail how to compute this probability.

For a Single Explanation
Consider the plan library shown in Figure 1. The first plan
is a very simple plan for achieving S by executing a� b, and
c and the second plan for R has only the single step of g.
Given this plan library, assume the following sequence of
observations:

happen�a� ��� happen�b� ��� happen�g� ��� happen�g� ���

In this case we know that at time 0 and 1 that the agent
has as a goal achieving S. In PHATT, we compute the prob-
ability of seeing c at time 2 by: �m�jPS�j� where m is the
number of elements in the pending set that have c as the next
action. The probability that we don’t see c (the probability
that any other element of the pending set is chosen at time
2) is:

�� �m�jPS�j�

or more generally the probability that we have seen b at time
�s � �� and not seen c by time t:

tY

i�s

�� �m�jPSij�

To handle partially ordered plans, this formula must be
generalized slightly. With partially ordered plans it is pos-
sible for more than a single next action to contribute to
the specified root goal. Thus, if mq�i represents the num-
ber of elements (with any next action) in the pending set
at time i that contribute to goal q, (s-1) is the last time
we saw an action contribute to q and t is the current time,
P �noneContrib�q� s� t�jmodel� obs� �

tY

i�s

�� �mq�i�jPSij�

Thus, under the assumptions that we have made we can
compute the probability of the subsequence of actions not
contributing to a given plan or goal. By computing this
value and setting a threshold, we can consider any drop in
this probability below the threshold as sufficient evidence of
a model mismatch and revise the model to reflect the goals
abandonment. This requires removing all the elements from
the current pending set that contribute to the abandoned goal.
Modeling of the execution of the rest of the goals can con-
tinue as before.

Conclusions
The full paper not only presents this argument in fuller de-
tail but also provides implementation details as well as some
preliminary results about the system’s runtime, effective-
ness, accuracy and limitations of this approach.

The ability to recognize when an agent abandons a plan
is an open problem in the plan recognition literature. This
paper presents a solution to the problem of recognizing when
an agent has abandoned a goals based on probabilistic model
revision. As such, it represents a significant extension to
recent work on abductive probabilistic plan recognition.
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