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Abstract

The Independent Lifestyle Assistant (I.L.S.A.) is an
agent-based system to aid elderly people to live longer
in their homes. One of the biggest challenges for
I.LL.S.A. is that every installation will (1) be in a home
with a different layout and suite of sensor and actu-
ator capabilities, and (2) supporting a technophobic
client with unique capabilities, needs and care-giving
support network. I[.L.S.A. therefore must be able to
adapt to its environment over time. This paper de-
scribes our approach to modelling one particular aspect
of the [.I..S.A. domain: using sequential pattern learn-
ing to learn models of human behaviour. We describe
the problem, our enhancements to the basic algorithm,
and present experimental results collected from four
test sites '.

Introduction

Historically, 43% of Americans over the age of 65 will
enter a nursing home for at least one year. When it
becomes apparent that a loved one can no longer safely
take care of themselves, a nursing home is often the only
option, in spite of the financial and emotional strain
placed on the family.

We are developing an automated monitoring and
caregiving system called Independent LifeStyle Assis-
tant (I.L.S.A.) that will be a better alternative [8]. Re-
searchers and manufacturers are developing a host of
home automation devices that will soon be available.
[.LL.S.A. will be the integration of these individual func-
tions, augmented with advanced reasoning capabilities
to create an intelligent, coherent, useful assistant that
helps people enjoy a prolonged independent lifestyle.

One of the biggest challenges for I.L.S.A. is due to the
fact that every I.L.S.A. installation will (1) be in a home
with a different layout and suite of sensor and actuator
capabilities, and (2) supporting a technophobic client
with unique capabilities, needs and care-giving support
network. I.L.S.A. thus must be rapidly deployable, easy

! This work was performed under the support of the U.S.
Department of Commerce, National Institute of Standards
and Technology, Advanced Technology Program, Coopera-
tive Agreement Number 70NANBOH3020

to configure and easy to update as the client ages and
technology changes.

We have been exploring Machine Learning (ML) tech-
niques to enable I.LL.S.A. to adapt to its environment
over time. Success in this domain requires that [.L.S.A.
capture the complex interactions of its resources, and be
responsive to constant changes. Using ML techniques,
the fielded system will 1) tune itself to its actual op-
erating environment, greatly reducing the amount of
tuning and knowledge acquisition required at setup, 2)
respond to changes in the users and the domain, di-
rectly reducing maintenance costs, and 3) capture the
user’s preferences, enhancing system usability. Machine
Learning will permeate I.L..S.A. in almost every one of
its functions.?

This paper describes one particular approach to mod-
elling one particular aspect of the I.L.S.A. domain; here
we focus on using sequential pattern learning [1] to learn
models of human behaviour. We extended the approach
to incorporate reasoning about the time of the activi-
ties. We also define and present our domain-specific
filter to identify useful patterns.

In the following section we outline the problem do-
main in more detail. We then follow with a description
of the technical approach, including how we incorporate
time and the postprocessing filters. We then present re-
sults from data collected in four homes.

Technical Approach

One of the machine learning goals we have for I.LL.S.A.
is to model human behaviour with enough accuracy to
recognize their actions and respond to situations. Our
data is sensor firings. We need to learn what sensor fir-
ings correspond to what activities, in what order, and
at what time. The technique of sequential pattern min-
ing [1] provides a basis for recognizing these activities
and their order. A sequential pattern in our context is
a list of sensor firings ordered in time. Sequential pat-
tern mining addresses the problem of finding frequent
sequential patterns. We extend the basic approach to

2This work is being patented as [7].



incorporate reasoning about the time of the activities.
Examples of discovered sequential patterns are:

e The Bathroom-Motion sensor fires after the Bed-
room-Motion sensor fires 75% of the time

e The pattern Kitchen-Motion sensor followed by
Living-Room-Motion sensor followed by Bedroom-
Motion sensor occurs in 60% of the days
Unfortunately, one cannot simply apply the sequen-

tial pattern algorithm to sensor data and hope to dis-
cover sequential patterns which will meaningfully model
a human’s behavior. The reason for this is that we can-
not accurately explain what each discovered pattern re-
spresents. For example, the Bedroom-Motion sensor
may represent several types of activity, such as a per-
son waking up in the morning, or a person entering
bedroom in the evening to go to sleep. One way of at-
taching a meaning to a pattern is to determine the time
periods during which the sensors are each firing. The
examples of sequential patterns above now become:

e The Bathroom-Motion sensor fires between 7:00 AM
and 8:00 AM after the Bedroom-Motion sensor fires
between 6:45 AM and 7:45 AM 75% of the time.

e The pattern Kitchen-Motion sensor fires between 6:00
PM and 6:30 PM followed by Living-Room-Motion
sensor firing between 6:20 PM and 7:00 PM followed
by Bedroom-Motion sensor firing between 9:00 PM
and 10:00 PM occurs in 60% of the days.
Identification of appropriate time periods for each

sensor makes it easier to attach a meaning to the pat-
tern learned through unsupervised learning. In the
above example, the first pattern might represent a per-
son’s waking-up routine, while the second pattern might
represent the person’s after work evening routine.

The pattern learning algorithm generates many thou-
sands of sequences, and hence the final step of our al-
gorithm 1s to filter the set of discovered patterns, and
then cluster them for presentation to an analyst.

Calculating Time Intervals

The first step in identifying intervals of occurrence of
each event in the pattern is to identify appropriate time
periods for each sensor.

One possible approach is to generate the intevals dur-
ing the sequential patterns discovery phase. However,
the overhead is intractable, since all possible intervals
must be considered.

Our solution to this problem is to predetermine the
time intervals before learning the sequential patterns.
This approach has the potential drawback that the
quality of the discovered patterns can be affected by
the way the expert defines the intervals. However, to
minimize this possibility, we do not predefine fired-
width time intervals, but instead determine time inter-
vals based on the distribution of sensor firings during
the day. We use a probability density function, which
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Figure 1: Individual Probability Density Function for four sen-
sors in house 1.

Let s be the sensor of interest
Let 7 be the timestamps of all firings of s
Let P be the probability density function of 7

Let M be the timestamps corresponding to the local
minima of P

Let M’ be the sorted list [0:00, M, 24:00]

Y pairs(m;, m;y1) € M’
Let x be t; € T such that m; <t; and
Ati € T such that m; <t <t;
Let w be t;41 € T such that ¢;4; < m;y; and
Aty € T such that t;41 <1 < miyq
interval; « [z, w]

Table 1: Calculating Time Intervals

is essentially a smoothed histogram of sensor firings, to
determine the distribution. The area under the curve
from time ¢; to time 2 gives us the probability that a
sensor will fire between ¢; and ¢».

We define the time intervals as intervals between suc-
cessive local minimas of the probability density func-
tion. The key idea behind this approach is that a per-
son usually performs each daily activity during a cer-
tain time period. For example, a person may typically
wake-up between 8 AM and 9 AM. A sequence of sen-
sor firings with attached timings will hence represent
an activity.

Since some sensors fire more frequently than others,
and moreover measure different kinds of activity, we
determine time intervals by calculating probability den-
sity functions for each sensor separately. Figure 1 shows
four different density functions, where one can see, for
example, that the bathroom sink is used much more
heavily during the morning routine.

The algorithm is presented in table 1. We first cal-
culate the probability density function for each sensor,
based on all the data, and use this function to calculate
the time intervals. Then, for each sensor firing and its
assoclated timestamp, we attach its interval.



Sequential Pattern Learning

Let us now cast the problem of learning a model of
human daily activities into sequential pattern discovery.

First, let us define some terms from sequential dis-
covery. Each distinct sensor and time partition pair is
an item. A sequence is an ordered list of items. A se-
quence « is denoted as (a; = as — ... = ), where
each sequence element o is an item. An item can occur
multiple times in a sequence.

After the time intervals are determined, the list of
daily event sequences is translated into a data set suit-
able for learning sequential patterns. A sensor event
maps to an item, and has a unique identifier. Without
loss of generality, we assume that no event sequence has
more than one event with the same time-stamp, and
that the events are sorted by the time of occurrences.

The input database consists of a number of these
event sequences. The support of a pattern « is the
fraction of sequences (or days) in the database that con-
tain that pattern. According to this definition, the sup-
port of a pattern « is counted only once per sequence
even though it may occur multiple times. Given a user-
specified threshold called minimum support, we say that
a pattern is frequent if its support is greater than the
minimum support.

Once the list of sensor firings 1s mapped to database
of sequences, the frequent sequential patterns can be
computed efficiently using a variety of sequential pat-
tern discovery algorithms [1; 10; 13]. For experiments
described in this paper we used tree projection sequen-
tial patterns algorithm [6]. This algorithm is partic-
ularly suitable for data sets with a small number of
distinct items and long sequences.

Post Processing

Due to the complicated structure and redundancy of
the data, the algorithm generates an enormous number
of highly frequent, but not necessarily useful sequential
patterns. In data sets with characteristics like I.L.S. A,
the number of patterns generated by pattern analysis
can be the same magnitude as the number of sensor
firings in the data set [2]. A list of several thousand
patterns is only marginally more useful than raw data.
Our goal 1s to find interesting sequences that will help
us create a model of person’s activities during the day.

Our first filter is a domain heuristic, based on the
assumption that the closeness in time of occurrence of
events provides evidence in support of those firings re-
lated to one activity. The closer the events occur in
time, the more likely that events belong to the same
activity. Notice that domain knolwedge is fairly fuzzy,
and 1t is hard to define specific parameter values for
"closeness in time’.

In experiments described in this paper we use a sim-
ple heuristic that states that a pattern represents two

different activities if it contains events that have non-
itersecting time intervals. Let’s consider the following
example:

e Bedroom Motion [6:00 - 7:00] — Bathroom Motion

[6:00 - 7:00]

e Kitchen Motion [12:00 - 13:00] — Dining Room Mo-

tion [12:30 - 13:30] — Kitchen Motion [13:00 -14:00]
e Bedroom Motion [6:00 - 7:00] — Kitchen Motion

[12:00 - 13:00] — Dining Room Motion [12:30 - 13:30]

While the first two patterns represent one activity
each (waking up and having lunch, respectively), the
third respresents a combination of the parts of those
two activities. Application of this filter generally limits
the learned patterns to ones that represent one activity.

Our second filter eliminates redundant patterns by
removing all subpatterns that have the same support-
ing days. The closed set [15] reduces the set of all fre-
quent patterns by several orders of magnitude, while
not losing any information. Let’s consider the follwing
example:

e Bedroom Motion [6:00 - 7:00] — Bathroom Motion

[6:00 - 7:00]

e Bedroom Motion [6:00 - 7:00] — Kitchen Motion [6:30

- 7:30]

e Bedroom Motion [6:00 - 7:00] — Bathroom Motion

[6:00 - 7:00] — Kitchen Motion [6:30 - 7:30]

Let’s assume that the first pattern is supported by
days 1, 4, 14, 21 and the last two patterns are supported
days on 1, 4, and 21. The second filter will eliminate
the second pattern since it is a subpattern of the last
one and both are supported by the same set of days.
The first pattern is not redundant because the set of its
supporting days is different fromt the set of supporting
days of the last pattern even though the first pattern is
a subpatterns of the last one.

Our third filter exploits the domain knowledge that
some sensors will keep firing even though the same event
triggered them. For example, if a person is cooking din-
ner in the kitchen for half an hour, the motion detector
will keep firing with regular intervals.

The potential users of our approach have indicated
that this kind of pattern is confusing, and they would
much rather be presented with its subpattern, in which
multiple sequential firings of the same sensor are re-
duced to one.

We show in our results section that our interesting-
ness filters substantially reduce the number of patterns
presented to analysts. Nevertheless, this number is oc-
casionally still large enough to require further aggrega-
tion of patterns. To facilitate analysts’ understanding
of patterns, we apply clustering techniques to the re-
maining patterns. Each cluster then represents difer-
ent variations of the same activity. In experiments pre-
sented in this paper, we used a vector-spaced k-means
algorithm [14]. To apply this algorithm we needed to



map our patterns to a vector space: dimensions are the
distinct event types of the all the patterns. In n is
the dimensionality of that space, then a pattern is rep-
resented as an n-dimensional vector of zeros and ones,
with ones corresponding to all the events present in that
particular pattern.

Experimental Results
Experimental Setup

I.LL.S.A. has been installed in the homes of four of the
project engineers, with 10-20 sensors per home. These
sensors include motion detectors, pressure pads, door
latch sensors, toilet flush sensors, and a panic button.

We have been collecting data from this prototype sys-
tem since July 2001. Table 2 briefly describes each home
and shows the total data collected. Since these installa-
tions were primarily focussed on configuring the system,
we did not use all of the data — the table indicates how
much of the data was useful.

One of the reasons we discarded data was due to sen-
sors designed and configured for a slightly different task.
Door sensors for example, are designed for security sys-
tems and raise an alarm when the door is opened. The
sensor, however, is not appropriate for a continuous
monitoring environment when doors are often left open
for long periods of time: the sensor starts ‘shouting’
and drowning out the signals of other sensors.

As we grew to understand the characteristics of the
sensors, we built simple filters to remove corrupted files,
aggregate signals and remove noise. We also replaced
problematic sensors with sensors from different manu-
facturers or different sensing specifications.

We also removed several “exceptional” days, for ex-
ample, when the data server went down, or the occu-
pants left the home on vacation.

Learning Results

Our experiments to date have focussed on two impor-
tant questions: (1) whether we can learn patterns that
can explain the lifestyle of household, and (2) whether
we miss important patterns. To answer these questions
we tried to draw some conclusions based on the patterns
we found for each household, and then interviewed the
occupants about our perceptions. Given that patterns
are calculated over many days of data, it is not feasible
to compare to a ground truth, say a continuous video
tape of activity. Examples of the patterns learned in
each test houses are shown in Table 3.3

Our observations of house 1 indicate that the occu-
pant lives a very regular lifestyle. She is in bed every
night by midnight, and up at around 8am. She almost
universally exits the house through the back door. The
bathroom sink is used every morning, but rarely in the

? Abbreviations: LR = LivingRoom, DR = Dining Room,
PP = Pressure Pad, M = Motion Sensor

House Pattern Sup-
Num port

1 UpstairsM [06:48,09:58] — 64.5%
LivingRoomM [06:48,09:58] —
BathrmSinkPP [07:07,09:58] —
LivingRoomM [07:07,09:58]

1 BackDoorl [16:12,19:07] —
LivingRoomM [16:53,19:07] —
KitchenM [16:53,19:07] —
LivingRoomM [16:53,19:24]

2 | LR/DRM [15:19,16:59] —
KitchenM [15:19,17:43]

2 BathroomM [21:29,23:56] —
LR/DRM [21:53,23:56]

3 TV-LRM [21:45,23:25] —
KitchenM [21:45,23:25] —
TV-LRM [21:45,23:43] —
BedroomM [21:45,23:43] —
BathroomM [21:45,23:43] —
BedroomM [21:45,23:59]

3 BedroomM [03:44,07:28] —
BathroomM [04:53,07:28] —
BedroomM [04:53,07:38] —
KitchenM [05:25,07:42]

4 BedRmPP [04:23,06:12] —
KitchenM [06:12,08:23] —
Cupboard [06:45,09:04] —

62.9%

55.0%

52.5%

75.3%

75.3%

52.9%

FrontDoor [06:56,08:43]

Table 3: Example Patterns Found

evenings. We were unable to explain the firings of the
motion sensors that occur for an hour during the late-
afternoon before the back door opens, but the occupant
immediately recognized that the dog starts getting ex-
cited about her pending return from work.

Unfortunately not all sensors were working correctly
when we started collecting data in house 2. For exam-
ple, only the last 20 useful days contained data from the
bedroom and bathroom. In addition, there were a lot
of sensors that didn’t fire at all: some sensors are de-
signed to fire only in extreme circumstances, e.g. glass
break and keypad panic. As a result, the majority of fir-
ings recorded for house 2 came from only three sensors:
Living Room Motion, Back Door and Front Door.

The majority of patterns we learned involved only
those sensors, typically consisting of repeated firings of
Living Room Motion sensors interleaved with other sen-
sors such as the Back Door. As a result, it was very
hard interpret what the learned patterns meant. One
interesting observation is that the sensors fired during
the day on weekdays. It turns out that one person in
the household works from home. Another conclusion
we drew is that the residents of that house prefer to use
the Back Door over the Front Door.

The patterns obtained from data of house number 3



House Number of Number of Number of Days  Number of Days
Number Occupants Sensors of Collected Data  of Useful Data
1 1 adult, 1 80-1b dog 16 80 62
2 2 adults 20 87 40
3 2 adults 10 123 81
4 1 adult 10 63 34
Table 2: Collected Data
House | Minimum Number of =~ Number of through, and hence we use clustering techniques (as de-
Number | Support Patterns  Patterns After scribed above) to group patterns similar to each other.
Threshold Found Filtering The analyst can then look at the discovered patterns in
1 60% 11411 119 batches. An example of one such cluster containing pat-
2 50% 5375 50 terns test house 1 is presented in Table 5. The patterns
3 5% 2725 182 in that cluster probably represent a morning routine.
4 50% 340 54

Table 4: Number of Patterns Found

suggested that its residents wake up very early in the
morning and go to bed very late at night — the occu-
pant later confirmed that the alarm clock is set to 5:15
on weekday mornings. Another observation was made
that people in that household consistently go to the
kitchen late in the evening (between 9 pm and 11 pm).
It turned out that the residents get an evening snack
to eat in front of TV in the evening. We also accu-
rately identified that the only access to the bathroom
is through the bedroom. Table 3 shows that the occu-
pants enter and use the bathroom before going to the
kitchen for breakfast.

After looking at the patterns learned in household 4,
it became clear that the engineer living in that house
lives a hectic life. While there were some morning pat-
terns that can be interpreted as “getting ready to go to
work patterns (with a regular breakfast)”, there were
very few evening patterns. The results were confirmed
by the engineer, who told us that he had not expected
us to find any patterns in his house.

Table 4 summarizes learning results obtained from
the four test houses. The first observation we can
make 1s that increasing the minimum support threshold
does not guarantee an increase in number of patterns
learned. In fact, the number of patterns is determined
by two factors:

1. how regular the person’s daily activities are, and

2. how may different sensors that fire regularly are in-
stalled in the house (sensors like glass-breakage fire
extremely rarely).

The second observation we can make is that while
the pattern discovery algorithm produces an enormous
number of patterns, the post-processing step reduces it
to a reasonable number. While it i1s impossible for a
human analyst (e.g. care giver) to analyze 5375 pat-
terns, he will be able to comprehend 50 patterns. It
can be argued that 182 patterns (as in case of house-
hold 3) is still a large number for analysts to navigate

Related Work

The problem of mining for sequential patterns was first
introduced in Agrawal and Srikant [1]. A generaliza-
tion of the class of patterns being mined and perfor-
mance enhancements were presented in [13]. There are
many domains where sequence mining has been applied,
which include discovering customer buying patterns in
retail stores, identifying plan failures [16], finding net-
work alarm patterns [9], and so on. There are several
differences between data in those domains and data in
ours.

First, in those domains each event has a unique iden-
tifier, whereas in our domain each sensor firing can
represent different types of events. For example, the
Bedroom-Motion sensor can fire due a person walk-
ing into the bedroom, exiting the bedroom, or mov-
ing within the bedroom. Second, the usual data sets
contain thousands of different types of events, whereas
each house in our application has no more of 20 sensors
installed. Third, the sequences in regular applications
contain about 20 events, whereas a regular sequence in
our application contains hundreds of sensor firings col-
lected each day.

Performance issues aside, these differences mean that
straightforward application of the sequential discovery
algorithm to I.L.S.A. data will most likely yield almost
all the possible combination of sensors. The discovered
patterns will not be useful in modeling human’s daily
activities. Hence we must exploit whatever additional
information we have, notably time.

The search space of patterns satisfying some statis-
tical properties of dominance is still large. Moreover,
as pointed out by Silberschatz and Tuzhilin [11], not
all patterns that are statistically dominant are of inter-
est. The notion of ‘interestingness’ for event sequences
is addressed by Berger and Tuzhilin [3] who suggest
that a pattern is interesting if the ratio of its actual by
expected occurrences exceeds a given threshold. Das
et al [4] perform sequence mining and rank discovered
rules according to their ‘informativeness’. They use the



Pattern

Support

LRM [06:19,09:58]

BathroomSinkPP [07:07,10:30]

UpstairsM [06:48,10:40] — BathroomSinkPP [07:07,10:30]

BathroomSinkPP [07:07,10:30] — KitchenM [06:54,10:28]

LRM [06:19,09:58] — BathroomSinkPP [07:07,10:30]

LRM [06:19,09:58] — BathroomSinkPP [07:07,10:30] — KitchenM [06:54,10:28]

UpstairsM [06:48,10:40] — LRM [06:19,09:58] — BathroomSinkPP [07:07,10:30] —
LRM [06:19,09:58] — BathroomSinkPP [07:07,10:30]

UpstairsM [06:48,10:40] — LRM [06:19,09:58] — BathroomSinkPP [07:07,10:30] —

LRM [06:19,09:58] — BathroomSinkPP [07:07,10:30] — LRM [06:19,09:58] —

69.3%
62.9%
66.1%
61.2%
61.2%

64.5%

62.9%

Table 5: A cluster of Patterns

J-measure of informativeness proposed by Smyth and
Goodman [12]. A common theme among the various
criteria for measure of interest is the concept of nouv-
elty or unexpectedness of a rule, where results that were
previously known by the data anlaysts are not consid-
ered interesting. Our measure of interest on the other
hand is the usefulness of a pattern for our modelling
purposes.

Conclusion and Future Work

We are currently working on several enhancements to
the pattern learner. The first, and most important, is
to use the learned patterns as a basis for [.LL.S.A.’s au-
tomatic behaviour recognition system. We also would
like to utilize a clustering algorithm that takes event
order into account, such as described in [5]. We also
suspect that sensors that are co-located are indicative
of the same behaviour, and would like to explore this
hypothesis to bias the learner. Finally, one complaint
that we received from engineers is that the time inter-
vals of events in the patterns are too wide. Our sus-
picion is that weekend vs. weekday patterns are suf-
ficiently different that the learner is unable to create
fine-grained time intervals; however, due to the small
amount of available data, we have not yet partitioned
the data set.

ML has been discussed as a means to enhance the ac-
curacy and coverage of fielded monitoring systems, with
no serious effort to evaluate 1ts capabilities, in part be-
cause of an assumption that the domains had strong
structure and little variance (e.g. piloting fighter jets,
airline ticket sales, logistics form generation, etc.). Not
only are those assumptions radically untrue in I.LL.S.A.’s
domain, they’ve also proved somewhat false in the other
domains as well. I.L.S.A., by utilizing learning in each
decision-making component of the system, for many
types of sensor data, and over an extended lifetime, will
be a significant step forward.

The discovered patterns can be used to construct be-
haviour models of the elderly, which in turn will be able
to provide means for on-going adaptation and improve-
ment of [.L..S.A ’s responsiveness relative to the needs of

the elderly. The behaviour models will enable I.L..S.A.
to automatically configure itself and to adapt to chang-
ing conditions, minimizing the time and labor involved
in set-up and maintenance. Further, the learned models
of behaviour can be employed to assist in selecting the
most apporiate response plan to actions of the elderly.
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