

Learning Models of Human Behavior with Sequential Patterns

Valerie Guralnik and Karen Haigh

C02117-01

Introduction

I.L.S.A. Needs and Challenges

- i be able to automatically configure system to
 - ñ minimize the time and labor involved in set-up and maintenance
 - ñ improve default installation parameters
- i adapt to changing conditions
- i capture userís preferences

Applied sequential patterns discovery to learn models of elderly regular activities

Sequential Patterns

Sequential Patterns

- i In 75% of days, $A \rightarrow B$
- i In 75% of days, Bedroom-Motion sensor → Bathroom-Motion Sensor

More Useful Patterns

i In 75% of days, Bedroom-Motion sensor [06:45-07:45] → Bathroom-Motion Sensor [07:00-08:00]

Naûe approach 1: Partition times during sequential patterns discovery phase

i Intractable

Naûe approach 2: Partition Time Line of each sensor into equal size bins.

i Drawback: Quality of learning depends on the arbitrary choice of intervals

Better approach: Use Estimate of *probability* density function

i.L.s.a. Example of Estimated PDF

ils. Sequential Pattern Learning

Map each sensor reading into a partition

i Bed Side at 7:50 maps to Bed Side between 7:30 and 8:00

Sequential Pattern Learning

Map each sensor reading into a partition

i Bed Side at 7:50 maps to Bed Side between 7:30 and 8:00

Map each partition into event identifier

i Bed Side between 7:30 and 8:00 maps into event 1

Use existing sequential patterns discovery algorithm on event data

Large Number of redundant patterns Only interested in **interesting** patterns Defined 3 interestingnessî filters

- i à closeness in timeî domain filter
- i redundancy filter
- i è event repetition î domain filter

i Closeness in Timei Filter (domain filter)

- i Bedroom Motion [6:00-7:00] \rightarrow Bathroom Motion [6:00-7:00]
- i Kitchen Motion [12:00 -13:00] → Dining Room
 Motion [12:30-13:30] → Kitchen Motion [13:00-14:00]
- i Bedroom Motion [6:00-7:00] → Bathroom Motion [6:00-7:00] → Kitchen Motion [12:00 -13:00] → Dining Room Motion [12:30-13:30] → Kitchen Motion [13:00-14:00]

iRedundant Patternsî Filter, based on definition of closed sets

- i Bedroom Motion [6:00 7:00] \rightarrow Bathroom Motion [6:00-7:00], support = 3
- i Kitchen Motion [6:30 7:30] \rightarrow Garage Motion [7:15-8:00], support = 4
- i Bedroom Motion [6:00 7:00] \rightarrow Bathroom Motion [6:00-7:00] \rightarrow Kitchen Motion [6:30 7:30] \rightarrow Garage Motion [7:15-8:00], support = 3
- i First and third patterns are redundant

i Event Repetitioni Filter (domain specific)

- i Bedroom Motion [6:00 7:00] \rightarrow Bathroom Motion [6:00-7:00]
- ï Bedroom Motion [6:00 7:00] → Bedroom Motion [6:00 7:00] → Bathroom Motion [6:00-7:00] → Bathroom Motion [6:00-7:00]
- i Second pattern is confusing to human reviewers

Experimental Setup

House Number	Number of Occupants		Number of Days of Collected Data	Number of days of Useful Data
1	1 adult, 1 80-lb dog	16	80	62
2	2 adults	20	87	40
3	2 adults	10	123	81
4	1 adult	10	63	34

Needed to discard some data due to the following factors

i sensors designed and configured for a slightly different task

i server went down

i occupants left home for vacation

Number of Occupants		•	
	Sensors	of Collected Data	of Useful Data
1 adult, 1 80-lb dog	16	80	62

Pattern Pattern	Support
UpstairsMotion[06:48-09:58] \rightarrow LivingRoomMotion[06:48-09:58] \rightarrow BathroomSinkPressurePad[7:07-09:58] \rightarrow LivingRoomMotion[7:07-09:58]	64.5%
BackDoor[16:12-19:07] \rightarrow LivingRoomMotion[16:53-19:07] \rightarrow KitchenMotion[16:53-19:07] \rightarrow LivingRoomMotion[16:53,19:24]	62.9%

Minimum Support	Number of	Number of Patterns	
Threshold	Patterns Found	after Filtering	
60%	11411	119	

Number of Occupants		Number of Days of Collected Data	•
2 adults	20	87	40

Pattern	Support
LivingRoom/DiningRoomMotion[15:19-16:59]→ KitchenMotion[15:19-17:43]	55.0%
BathroomMotion[21:29-23:56]→ LivingRoom/DiningRoomMotion[21:53-23:56]	52.5%

Minimum Support	Number of	Number of Patterns
Threshold	Patterns Found	after Filtering
50%	5375	50

Number of Occupants		Number of Days of Collected Data	
2 adults	10	123	81

Pattern Pattern	Support
TV/LivingRoomMotion[21:45-23:25] \rightarrow KitchenMotion[21:45-23:25] \rightarrow TV/LivingRoomMotion[21:45-23:43] \rightarrow BedroomMotion[21:45-23:43] \rightarrow BathroomMotion[21:45-23:43] \rightarrow BedroomMotion[21:45-23:43]	75.3%
BedroomMotion[03:44-07:28] \rightarrow Bathroom Motion[04:53-07:28] \rightarrow BedroomMotion[04:53-07:38] \rightarrow KitchenMotion[05:25-07:42]	75.3%

Minimum Support	Number of	Number of Patterns
Threshold	Patterns Found	after Filtering
75%	2725	182

Number of Occupants		Number of Days of Collected Data	•
1 adult	10	63	34

Pattern

Support

BedroomPreasurePad[04:23-06:12] \rightarrow

52.9%

KitchenMotion[06:12-08:23] \rightarrow

Cupboard[06:45-09:04] \rightarrow FrontDoor[06:56-08:43]

Minimum Support	Number of	Number of Patterns
Threshold	Patterns Found	after Filtering
50%	340	54

Summary of Results

House	Minimum	Number of	Number of	
Number	Support	<i>Patterns</i>	Patterns after	
	Threshold	Found	Filtering	
1	60%	11411	119	1.04%
2	50%	5375	50	0.93%
3	75%	2725	182	6.67%
4	50%	340	54	15.88%

i.L.s.a. Post Processing: Clusters

In some cases the number of filtered patterns is still large

Can use clustering to present results in batches of similar patterns

- i each cluster represents different variations of the same activity
- i vector-space k-means clustering algorithm
 - ñ dimensions are distinct event types
 - ñ patterns are n-dimensional vectors of zeros and ones

Example of Cluster of Patterns

Pattern	Support
UpstairsMotion[06:48-10:30]→BathroomSinkPressurePad[7:07-10:30]	69.3%
$BathroomSinkPreasurePad[7:07-10:28] {\rightarrow} KitchenMotion[7:07-10:28]$	62.9%
$Living Room Motion [06:19-09:58] {\rightarrow} Bathroom Sink Pressure Pad [07:07-10:28]$	66.1%
LivingRoomMotion[06:19-09:58] \rightarrow BathroomSinkPressurePad[07:07-10:28] \rightarrow KitchenMotion[07:07-10:28]	61.2%
UpstairsMotion[06:48-09:58] \rightarrow	011270
LivingRoomMotion[06:48-09:58] \rightarrow BathroomSinkPressurePad[07:07-09:58] \rightarrow LivingRoomMotion[07:07-09:58] \rightarrow BathroomSinkPressurePad[07:07-10:30]	61.2%
UpstairsMotion[06:48-09:58] \rightarrow LivingRoomMotion[06:19-09:58] \rightarrow BathroomSinkPressurePad[07:07-09:58] \rightarrow LivingRoomMotion[07:07-09:58]	64.5%
LivingRoomMotion[06:19-09:58] →	
BathroomRoomSinkPressurePad[07:07-19:30] → LivingRoomMotion[06:19-09:58]→BathroomSinkPressurePad[07:07-10:30]	62.9%

Related Work

Other Behavior Models

- i Hidden Markov Models
- i Decision Trees
- i All work in supervised learning setting

Applications to sequential patterns discovery

- i retail customers buying patterns
- i plant failures
- i network alarms

Interestingness filters

- i unexpectedness filter
- i informativeness filter

Conclusions

Results appear promising Still need a lot of work

- i Validate approach in the house of elderly people
- i Be able to use learned patterns in I.L.S.A.
 - ñ recognize patterns
 - ñ adapt and improve I.L.S.A. responsiveness relative to the needs of the elderly
 - ñ automatically configure I.L.S.A.

