Probabilistic Plan Recognition for Hostile Agents

Christopher W. Geib and Robert P. Goldman
Honeywell Technology Center
Minneapolis, MN 55418 USA
{geib,goldman} @htc.honeywell.com

Abstract

This paper presents a probabilistic and abductive the-
ory of plan recognition that handles agents that are
actively hostile to the inference of their plans. This
focus violates a primary assumption of most previous
work, namely complete observability of the executed
actions.

Introduction

This paper extends a theory of plan recognition (Gold-
man, Geib, & Miller 1999) to handle agents that are
actively hostile to the inference of their plans. This
focus violates a primary assumption of most previous
work, namely complete observability of the executed
actions. Confronting hostile agents means, we can no
longer assume that we see all of the agents actions.

The plans of hostile agents also require an account
of the effects of: world state/context, multiple inter-
leaved plans, partially ordered plans, and negative ev-
idence (lack of a report of an action). In our previ-
ous work (Goldman, Geib, & Miller 1999) (GG&M)
we presented a probabilistic, abductive theory of plan
recognition centered around plan ezecution, which ad-
dressed these i1ssues. This work extends our previous
work to the case of hostile agents.

In this paper, we provide an understanding at the
“knowledge level.” We have implemented our plan
recognition model, and the examples we discuss are
taken from this implementation. However, we do not
claim to provide an efficient solution to the plan recog-
nition problem. There are many ways our model could
be implemented; we discuss some of these in GG&M .

The rest of this paper is organized as follows. First
we give a brief definition and review of plan recognition,
then we present a brief review of our previous work in
probabilistic plan recognition providing the intuition
underlying the model. Following this, we discuss the
problems raised by hostile agents and outline answers.

Plans

In this paper, we use simple hierarchical (task decom-
position) plans(Erol, Hendler, & Nau 1994), as most
plan recognition work does. We assume that agents
have a plan library that provides recipes for achieving

goals. Figure 1 shows a plan library for a “hacker” in
a simplified computer network intrusion example.

If a hacker has a goal like stealing information from
a computer (theft), the plan library breaks that goal
into five steps: scan the system to determine vulner-
abilities (recon), exploit the system’s weaknesses to
gain entry (break-in), escalate privileges (gain-root),
export desired data (steal), and hide traces of presence
on computer (clean). Ordering constraints within a
method are represented by directed arcs. For example,
the hacker must break-in before she can gain-root.

Finally, notice that there is a condition/event that
is tied to the action clean. The dashed line represents
the fact that this condition results from the execution
of the action. Thus, if clean is executed 1t will result
in deleted event logs (deleted-logs). This informa-
tion about action effects will be critical to inferring the
execution of unobserved actions.

Plan Recognition

Plan recognition is the process of inferring the goals
of an agent from observations of an agent’s actions.
Previous work in this area has assumed that the agent
being observed is not actively hostile to the process of
plan recognition.

In 1986, Kautz and Allen (K&A) published “Gener-
alized Plan Recognition,” (Kautz & Allen 1986) that
framed almost all work in plan recognition. K&A de-
fined the problem of plan recognition as the problem of
identifying a minimal set of top-level actions sufficient
to explain the set of observed actions.

They treated the problem as one of computing min-
imal explanations, in the form of vertex covers, based
on the plan graph. For example, if one observed recon
(See Figure 1) the minimal explanations would be

(theft) vV (vandalism) V (info)

In fact, with only this observation we have no evidence
to rule out the possibility that the agent has multiple
goals. Therefore the system should also consider the
possibility of two or even three top-level goals in order
to explain this observation.

One problem with this work is that it does not take
into account differences in the a prior: likelihood of
different plans. Charniak and Goldman (C&G) (1993)

argued that, since plan recognition involves abduction,

Ndeleted-logs

Ndeleted-logs

Figure 1: A hierarchical plan library in diagram form.

plan plan plan
1 2 cee n

pending pending pending pending cee
0) 1) (2 3)

happen happen happen cee
(?A4,1) (?A,,2) (?A3,3)

C970870-01

Figure 2: Generation of pending sets.

it could best be done as probabilistic (Bayesian) infer-
ence. Bayesian inference supports the preference for
minimal explanations, in the case of hypotheses that
are equally likely, but also correctly handles explana-
tions of the same complexity but different likelihoods.

Recognition based on execution

The plan recognition framework developed in GG&M
is based on the realization that plans are executed dy-
namically and that at any given moment the agent is
able to choose to execute any of the actions that have
been enabled by its previous actions. Thus, at any
time an agent will have a pending set of actions that
are enabled by its previous actions. The agent is free
to choose to execute any of the actions in the current
pending set.

To formalize this slightly, initially the executing
agent has a set of goals and chooses a set of plans to
execute to achieve these goals. The set of plans chosen
determines the set of pending primitive actions. As the
episode proceeds, the agent will repeatedly execute one
of the pending actions, and generate a new set of pend-
ing actions from which further actions will be chosen.

The new pending set is generated from the previous
set by removing the action just executed and adding
newly enabled actions. Actions become enabled when
their required predecessors are completed. This process
is illustrated in Figure 2. To provide some intuition,
the sequence of pending sets can be seen as a Markov
chain, and the addition of the action executions with
unobserved actions makes it a hidden Markov model.

To use this model to perform probabilistic plan recog-

nition, we use the observations of the agent’s actions as
an execution trace. By stepping forward through the
trace, and hypothesizing goals the agent may have, we
can generate the agent’s resulting pending sets. Once
we have reached the end of the execution trace we will
have the complete set of pending sets that are con-
sistent with the observed actions and the sets of hy-
pothesized goals that go with each of these sets. Once
we have this set we establish a probability distribution
over it. We can then determine which of the possible
goals the agent is most likely pursuing.

Notice that the observations of the agent’s actions
are used to construct the execution traces. In the case
of hostile agents, the observations will not, in general,
be a complete record of the execution trace. Instead it
will be necessary to consider execution traces contain-
ing unobserved actions.

This theory was designed to handle: partially or-
dered actions, overloaded actions, the effects of con-
text, and negative evidence from not observing actions
(i.e. the dog didn’t bark). While some of these prob-
lems are partially handled by other systems, no other
system handles all of them. We refer the reader to
GG&M for a complete discussion of this formalism.
We will now consider extending this formalism to the
problems presented by hostile agents.

Infering unobserved actions

Existing work on plan recognition has assumed com-
plete observability of the agents actions. The central
idea behind this research is to remove this assumption.
That is, we want to infer the goals of an agent given
that the behavior of the agent is only partially observ-
able. The rest of this paper will be organized as follows,
first we will discuss two kinds of reasoning that we can
do to infer the execution of unobserved actions: in-
ferring unobserved actions from observed actions, and
inferring unobserved actions from state changes. We
then discuss our general algorithm for plan inference
and we will conclude with a discussion of the assump-
tions and limitations of the algorithm.

Inferring unobserved actions from
observed actions

Consider the following observations:
(gain-root,mod-webpage)

These two observations indicate with very high prob-
ability the hacker is engaged in both stealing informa-
tion from a computer and defacing a webpage. We can
conclude this because these actions are members of dis-
joint plans, that is, no single root goal will explain both
of these actions.

However these actions are even more informative
since they are both unenabled by the observed actions.
We define an unenabled action is one that is observed
without having first observed the actions the plan li-
brary specifies must come before it. In this case, the
plan library specifies that recon and break-in must
occur before gain-root or mod-webpage. Therefore,
in order to explain these two observations we must as-
sume the execution of at least one instance of recon
and break-in each. Thus, these two actions provide
evidence of two distinct plans:

(recon, break-in, mod-webpage)
and
(recon, break-in, gain-root)

Consider our model of plan recognition. Unenabled
actions provide more information for us to use to re-
construct the agent’s actual actions than other ob-
servations. They require that the action itself be in
the sequence, but they also provide evidence of un-
observed actions. Consider generating the execution
traces needed to produce the pending sets for the last
example. Not only does this set of observations allow
us to prune out any execution sequence that doesn’t
contain a gain-root, followed sometime later by a
mod-webpage, but it also allows us to ignore any
trace that doesn’t have a recon followed by a break-in
preceding the gain-root. These unenabled actions are
very important pieces of information when attempting
to infer the plans of hostile agents.

Note that in this discussion, we have implicitly as-
sumed the agent can perform any action without detec-
tion, however in practice this is not true. Some actions
are simply harder to hide the execution of than others.
For example, the probability that a person could con-
duct a port scan of my machine without my knowledge
is much higher than the probability that they could
successfully carry out a denial of service attack against
it without my noticing. In this framework it is trivial
to add probabilities about the likelihood of an agent
performing a specific action undetected.

Inferring unobserved actions from state
changes
Most existing work on plan recognition has ignored re-

ports of the effects of actions. Simply put, reports of
state changes are unnecessary and redundant when one

has a complete log of the agent’s actions. However,
there are a large number of domains where the actions
of the agent cannot be observed directly. Instead in-
direct observation is the only possible course. In these
cases, reports of state changes, can provide evidence of
the agent’s unobserved actions.

Often, when it is possible to prevent an observer from
seeing the performance of an action, it is not possible
to prevent the observation of the action’s effects. Con-
sider weapons testing, while a nation might be able
to covertly build a nuclear device, testing one is hard
to hide. In our network security domain consider the
clean action; the execution of the action might be hid-
den, but the deleting the log files is very visible.

Reports of state changes can provide evidence of un-
observed actions that have the desired effect. From
them we can infer that the action must occur before
the report of the state change. Reports of state change
can also simply provide confirming information about
a previously observed action.

Consider the following sequence of observations:

(recon,break-in,deleted-logs)

The report of the deleted event logs implies an unob-
served clean action. Further the ordering constraints
in the plan library imply that it must fall between the
execution of break-in and the report of deleted-logs.

However, if the sequence of observations were:

(recon, break-in, clean, deleted-logs)

The report would provide no extra information since
it 1s consistent with the observed actions. Like acquir-
ing evidence from unenabled actions these reports give
more information about the execution traces that are
consistent with the observation.

Gathering this information from state change reports
requires a subtle assumption. We must assume there is
only a single report for any given state change. Since
this approach assumes that reports indicate changes in
the state, multiple reports of the same state change
will cause the system to believe that the given propo-
sition has changed state more than once. In our net-
work intrusion detection domain this assumption is not
a problem. “Chattering” sensors that would produce
multiple reports of the same change can be filtered.

The use of reports of state changes along with ac-
tion observations is a significant contribution to plan
recognition in its own right. We know of no other plan
recognition systems that makes use of reports of state
changes. However, it is particularly powerful when ob-
serving non-cooperative agents if an action’s effects are
harder to hide than the action’s execution.

The solution

The central idea behind our original plan recognition
algorithm is the production of a probability distribu-
tion over the set of all pending sets. This is gener-
ated using the observations as an execution trace of
the agent’s actions. Since each pending set represents

the results of at least one execution trace, we generated
the pending sets by stepping through observations. In
the case of cooperative agents with complete and cor-
rect observations, this is sufficient.

However, as we have pointed out, in the case of hos-
tile agents we face a problem with the execution traces.
We can no longer assume that the observation stream
is complete; it no longer represents the complete exe-
cution trace. Instead, for each set of observations we
must construct the set of possible execution traces, in-
serting hypothesized unobserved actions to complete
them.

For easy implementation we have assumed a bound
on the number of unobserved actions. The next sec-
tion discusses removing this assumption. Given a fi-
nite set of primitive actions, bounding the number of
unobserved actions provides a limit on the length and
number of execution traces that must be considered. In
the worst case we only need to consider all execution
traces whose length is equal to the maximum number
of unobserved actions plus the number of observed ac-
tions.

This sounds like a very large search space, however
we can prune this set of execution traces with the order-
ing constraints provided by the observations. We are
only interested in execution traces consistent with the
observations, therefore if a sequence does not contain
all the observed actions or doesn’t obey the ordering
constraints imposed by the sequence or plan library it
cannot generate one of the pending sets we are inter-
ested in and therefore can be filtered from consider-
ation. The execution traces can also be filtered to be
consistent with the unobserved actions that are implied
by unenabled actions and observed state changes.

To summarize then, we handle hostile agents by ex-
tending the observed sequence of actions with hypoth-
esized unobserved actions consistent with both the ob-
served actions, observed state changes, and the plan
graph to create a set of possible execution traces. Then
we follow the plan recognition algorithm as before. We
use the set of execution traces to construct the pending
sets and then the probability distribution over the sets
of hypotheses of goals and plans implicated by each of
the traces and pending sets.

Example

The following example will illustrate this algorithm at
a high level. Consider the following set of action and
state change observations with a bound of three unob-
served actions.

(break-in,deleted-logs)

Given these observations and the bound on unob-
servable actions, the algorithm (implemented in Poole’s
PHA (Poole 1993)) walks forward through the list of
observations, adding unobserved actions as required to
build a set of consistent execution traces. To explain
the given observations requires the introduction of two
unobserved actions, one to enable the action break-in

and one to cause the state change reported in deleted-
logs. The complete process results in 9 possible exe-
cution traces. The first:

(recon,break-in,clean,deleted-logs)

is consistent with the agent not having executed any
further unobserved actions beyond those required to
justify the observations. This trace is only consistent
with the high level goals of theft or vandalism.

There are four traces that are consistent with the
execution of a second unobserved recon action per-
formed at various points in the sequence. These traces
are not shown here, however they would be consistent
with the goal of pursuing any two of the top level goals
concurrently.

Of the four remaining traces:
(recon,break-in,gain-root, clean,deleted-logs)
and
(recon,break-in,clean,deleted-logs,gain-root)

are consistent only with the goal of theft. Note the
ordering differences due to the partial ordering in the
plan library. The final two execution traces:
(recon,break-in,mod-webpage,clean,deleted-logs)
and
(recon,break-in,clean,deleted-logs, mod-webpage)

are consistent only with the goal of vandalism. Again,
note the ordering differences due to the partial ordering
in the plan library.

In constructing this set of possible execution traces
PHA has already established a probability distribution
over the explanations and establishes the most likely
goal. In this case, since the number of explanations
for theft and vandalism are equal and there are no
environmental factors that would weigh in favor of one
over the other, these goals are equally likely. The con-
junctive plans of theft or vandalism with info is a
much less likely third alternative.

Assumptions

In our implementation of this algorithm we have made
two assumptions about the observation stream: 1)
There is a fixed and known upper bound on the num-
ber of unobserved actions, and 2) the given observa-
tions are true and correctly ordered. Neither of these
assumptions is strictly necessary. We will consider each
of them in turn.

Bounding the number of possible unobserved actions
enables reasoning about where the agent could be in
the execution of its plans. Suppose we bound the num-
ber of unobserved actions at two, and we observe a
break-in action. This observation is not consistent
with the agent having already executed steal. We have
seen one action and the agent may have executed two
more unobserved. The agent can have executed a total
of three actions. Since, steal is the fourth step in its
plan, the agent could not yet have executed it.

This bound can be removed from the algorithm in
a number of ways including: running the algorithm

multiple times with increasing bounds or replacing the
bound with a probability distribution over the num-
ber of unobserved actions and weighing the execution
traces accordingly. We see determining the best way
to remove this limitation as an area for future work.

Second, we assumed that the observed actions hap-
pen and in the order indicated by the sequence. Thus
if we have a sequence of three observations: recon,
break-in, and gain-root, we know recon happened
before break-in which happened before gain-root.
The observation sequences are not assumed to be com-
plete, therefore we can’t conclude clean didn’t happen
between break-in and gain-root or even after gain-
root. However, ordering constraints provided by the
plan library allow us to rule out some possibilities. For
example, the ordering constraints allow us conclude
that if clean did occur unobserved it couldn’t have oc-
curred before the break-in unless there were an earlier
unobserved break-in.

This assumption means we need not question the va-
lidity of observations. However, in environments with
hostile agents, this assumption must be questioned.
Consider a military example, if we receive a report of
troops massing at a particular location, we must first
determine the validity of the report before consider-
ing the effect this would have on our assessment of the
enemy’s goals. It is however straightforward to com-
plicate the model by including a traditional model of
noisy observations.

Conclusions

In this paper we have extended a probabilistic model
of plan recognition to handle hostile agents. We have
extended a model of plan recognition based on plan ex-
ecution to enable the inference of unobserved actions
on the basis of observations of changes to the world
state and the execution of unenabled actions. These
extensions remove a major assumption of previous re-
search in plan recognition and significantly broadens
the areas where plan recognition can be applied.

Acknowledgments

This material is based upon work supported by the
DARPA Cyber Panel program and the Air Force Re-
search Laboratory under Contract No. F30602-99-C-
0177. Any opinions, findings and conclusions, or rec-
ommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
DARPA, the U.S. Government, or the Air Force Re-
search Laboratory. Special thanks to David Poole for
providing his Probabilistic Horn Abduction PHA in-
terpreter and help and guidance on working with it.

References
Charniak, E., and Goldman, R. P. 1993. A Bayesian

model of plan recognition. Artifictal Intelligence

64(1):53-79.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP:
A sound and complete procedure for hierarchical task
network planning. In Hammond, K. J., ed., Arti-
ctal Intelligence Planning Systems: Proceedings of the
Second International Conference, 249-254. Los Altos,
CA: Morgan Kaufmann Publishers, Inc.

Goldman, R. P.; Geib, C. W.; and Miller, C. A. 1999.
A new model of plan recognition. In Proceedings of
the 1999 Conference on Uncertainty n Artificial In-
telligence.

Kautz, H., and Allen, J. F. 1986. Generalized plan
recognition. In Proceedings of the Fifth National Con-
ference on Artificial Intelligence, 32-38.

Poole, D. 1993. Logic programming, abduction and
probability: a top-down anytime algorithm for stimat-
ing prior and posterior probabilities. New Generation

Computing 11(3-4):377-400.

