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ABSTRACT
The field of adaptable communication networks is a rich ap-
plication area for artificial intelligence technology. Recent
developments in software defined radio technology have cre-
ated the opportunity to develop networks that are, in princi-
ple, highly adaptable and effective under a much wider range
of operating conditions than currently possible, but few re-
searchers are addressing the issue of how to take advantage
of this new flexibility. This paper briefly discusses some of
the Artificial Intelligence techniques that can and have been
be leveraged in this domain.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Network Communica-
tions; C.2.1 [Computer-Communication Networks]:
Network Operations; I.2.6 [Artificial Intelligence]: Learn-
ing; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search; I.2.8 [Artificial Intelli-
gence]: Distributed Artificial Intelligence
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1. INTRODUCTION
The demand is increasing for networking technologies

that support robust communication and functionality
under challenging operating conditions. In general, net-
work configurations are hand-tuned and remain static
during operations. However, since user needs and oper-
ating conditions both change over time, cognitive net-
works must be designed that are aware of their perfor-
mance needs, determine if their needs are being met,
and revise system configurations to better meet their
needs.

Recent developments in software defined radio tech-
nology have opened up the opportunity to develop net-
works that are, in principle, highly adaptable and effec-
tive under a much wider range of operating conditions
than currently possible [3, 9, 26]. However, while these
tools provide new flexibility, few are addressing the issue
of how to manage or control them. This paper briefly
discusses some of the Artificial Intelligence techniques
that can (and should) be leveraged in this domain, and
highlights specific cases of successful implementations.

A Mobile Ad hoc NETwork (MANET) is a type of
ad hoc network that consists of “mobile platforms...
which are free to move about arbitrarily... At a given
point in time... wireless connectivity in the form of
a random, multi-hop graph or ‘ad hoc’ network ex-
ists between the nodes” [15]. MANETs are charac-
terized by dynamic topologies, bandwidth-constrained,
variable capacity links, energy-constrained operation,
and limited physical security. A MANET is needed for
self-forming, self-configuring, and self-healing operation
where the media and communications channels un-
dergo rapid changes (e.g., over free space optical, RF,
and underwater acoustic links) and nodes freely enter
and leave the network. MANETs are not needed when
links are unchanging, e.g., GEO satellite links, LOS mi-
crowave tower links, fiber optics, Ethernet and wired
infrastructure. For these reasons, MANETs have criti-
cal requirements for rapid and accurate adaptivity.

Artificial Intelligence (AI) techniques enable real-time,
context-aware adaptivity that have the potential to meet
the needs of networks in general, and MANETs in par-



ticular. To meet this grand vision, there are several key
challenges that need to be addressed.

• The network must be able to identify and forecast
network conditions, including communications en-
vironment and performance.

• The network must be able to adapt to constantly
changing conditions—communication needs change,
communication conditions change, and participants
may join or depart.

• The network must balance the needs of many users—
military, commercial, civilian, and government—
while conforming to official regulations and Poli-
cies such as rules-of-engagement.

Intelligent cognitive radios require multiple interacting
capabilities for situation assessment, planning and learn-
ing. Cognitive networks require those capabilities to
operate cooperatively in a distributed, diverse environ-
ment.

2. A BRIEF INTRO TO ARTIFICIAL INTEL-
LIGENCE

Given that the majority of readers of this paper come
from the communications and networking community, it
may be useful to provide a little context.

Artificial Intelligence (AI) is the branch of computer
science concerned with the automation of intelligent be-
haviour [36], usually associated with human thinking
such as decision making, problem solving and learn-
ing [2]. In 1950, Alan Turing proposed the Turing
Test [62] which called for a human judge to interact
through a terminal to both another human and a com-
puter; if the judge cannot tell which is which, then the
machine is said to pass the test and would be consid-
ered intelligent. The term Artificial Intelligence was
coined in 1956 by notable researchers including Herb
Simon, Allen Newell, John McCarthy and Marvin Min-
sky, at the Dartmouth Conference [40]. McCorduck [41]
presents a comprehensive history of AI, while Russell
and Norvig [56] describe AI techniques appropriate for
building decision-making agents that make rational ac-
tions for their given context.

AI draws techniques from a broad variety of fields in-
cluding mathematics, psychology, economics, and con-
trol theory. AI has a huge variety of subfields, including
plannning and scheduling, machine learning, knowledge
engineering and fusion, and constraint reasoning.

Natural language processing, speech recognition, ma-
chine vision and robotics all had origins in AI. Practical
AI successess are often pulled into their own domains,
leaving AI researchers to deal with the unsolved prob-
lems. Larry Tesler is often misquoted as having said“AI
is whatever hasn’t been done yet” [27]. Tesler corrects
the quote to “Intelligence is whatever machines haven’t
done yet” [60].

The Odd Paradox

Practical AI successes, computational programs that
actually achieved intelligent behavior, were soon as-
similated into whatever application domain they were
found to be useful in, and became silent partners
alongside other problem-solving approaches, which left
AI researchers to deal only with the “failures,” the
tough nuts that couldn’t yet be cracked.

McCorduck, 2004 [41]

3. NETWORKING PROBLEMS AMENABLE
TO AI

Artificial Intelligence techniques could plausibly be
used in any Networking problem that involves some
form of situation assessment and/or decision making.
The following list is a small sample of some of the spe-
cific domain problems that AI techniques may be able
to help solve:

• Cyber Security1

• Network Configuration and Planning
• Network Control and Coordination
• Policy and Constraint Management
• Performance Analysis

These application areas appear in wired networks,
wireless networks, and MANETs to different degrees.
Because the cost of cabling is so high in wired net-
works, network configuration and planning is a critical
requirement, but is unlikely to change rapidly; plan-
ning systems can therefore take their time to generate
extremely high-quality plans. In a wireless network, ac-
cess control, policy management and fairness, take on
increasing importance. In a mobile ad hoc network,
particularly those used by the military, connectivity is
extremely dynamic, nodes may be more heterogeneous
and applications may be supporting more time-critical
needs. Tactical MANETs may further face adversarial
conditions and limited knowledge.

AI systems are often described using the cognition
loop of “Sense, Plan, Act, and Learn,” similar to the
OODA loop: “Observe, Orient, Decide, Act” [6, 7]. Joe
Mitola proposed the OOPDAL cognition loop specifi-
cally for cognitive radio that effectively merges these:
“Observe, Orient, Plan, Decide, Act and Learn” [44].

In the Observe step, the system must both collect
the raw sensor data and cluster that data into hypoth-
esized events, and then validate that data by paring
the set of hypothesized events down to the set of likely
events. Network modules need to expose internal state,
including current values of controllable parameters, cur-
rent values of monitored parameters, and current activ-
ity. AI modules need to integrate these values across the
layers in the stack, and provide the modules with guid-
ance on important element, including setting param-
1Because cyber security is a huge research area unto itself,
we do not further address these issues in this paper.



eters and performance objectives. The AI also needs
to collect patterns of activity and track performance
trends.

In the Orient step, the system must assess the situa-
tion (situation assessment). This process involves infer-
ring what else might be true if the event has happened
to collate a common understanding of the overall situ-
ation. Intent Inference infers the goals of other agents
based on observations of their actions. Finally, impact
analysis examines the potential ramifications of the cur-
rent situation, including predicting future states given
possible dynamism in the domain and selected courses
of action. The network modules need to expose any de-
rived computations, including analyses of performance
or network state. If network modules estimate future
conditions, these estimates should also be exposed. The
AI needs to interpret these observations and identify po-
tential factors (or root causes) of situations, and com-
pute progress toward performance goals. The AI then
needs to estimate future conditions and the likelihood
of achieving goals, so that it can decide on the urgency
of responding to problems.

In the Plan step, the system must first identify goals
to be achieved (and when). This step involves managing
the multi-objective performance criteria for all current
tasks and upcoming reservations. (Note that network-
wide goals are often different from node-specific goals.)
The system must then generate plans to achieve those
goals. Planning involves causality reasoning, conditional
planning (or “what-if” analyses), temporal reasoning,
constraint reasoning, and resource management. Given
the current state of the network, the planner must pre-
dict the effect of potential actions on the future state of
the network. Plans can be generated at multiple time-
scales, handling immediate concerns at a fine-granularity,
and longer-term issues at a coarse-granularity (poten-
tially allowing negotiation with other nodes). Given
that MANETs operate in a multi-objective space, a
planner may generate several plans that tradeoff meet-
ing one objective for another, ideally on a pareto-optimal
curve. Finally, the system must schedule to allocate spe-
cific resources to specific activities over time. Planning
& scheduling often operate iteratively, in the sense that
tasks cannot be selected for a plan if no schedule ex-
ists. Traditionally, network modules contain significant
scheduling capabilities, but the planning capabilities are
implicit in the software, that is, the human network en-
gineer performs the planning.

The Decide step selects among the candidate plans
and schedules, and then allocates computational and ra-
dio resources. Given how quickly the domain changes,
a potential approach is to select actions that are com-
mon at the beginning of “most” of the candidate plans,
because the plan is likely to be revised as conditions
change.

In the Act step, the system implements the chosen
activities. This may include setting values of parame-
ters or replacing running modules or waveforms. Note
that if the radio or its software has actions that can
be selected, these should be exposed to the plan/decide
steps otherwise the system will be unable to use the full
breadth of system capability.

In the Learn step, the system uses experience to up-
date models so that the other steps can make more
accurate forecasts. The system can learn human and
application-level behaviour, including node mobility and
data-access patterns (which applications or humans or
roles are accessing the network, and what each of them
needs and when). The system can learn environmen-
tal conditions, including connectivity patterns and geo-
graphical factors. It can also learn node capabilities,
including capacity, reliability, and functionality. For
example, if the original description of the node’s ca-
pabilities are incorrect, then the plan/decide steps may
choose actions that cannot be implemented; the learner
should update these models. The learner can use both
explicit human feedback (e.g., QoS is below par), or
empirical performance data (e.g., statistics mapping pa-
rameter settings to QoS).

4. AI TECHNIQUES IN NETWORKING
While almost any AI technique could potentially prove

useful in a networking environment, certain techniques
are more promising and/or have already produced in-
teresting results. These include Knowledge Engineer-
ing, Planning and Scheduling, Machine Learning, Dis-
tributed AI and Multi-agent systems, including biolo-
gically-inspired approaches, and Game Theory.

Knowledge Engineering aims to capture knowledge
so that a computer system can solve complex prob-
lems [19]. Different knowledge representation approaches
are used for different types of knowledge, and the differ-
ent ways that it will be used. Much knowledge engineer-
ing work is concerned with constructing Ontologies. In
the networking domain, this knowledge would include
models of physics and signal propagation, constraints on
the system, analysis of interactions, and rules of thumb
(e.g., about how to configure the system). A formal on-
tology may help a cognitive system reason about how
and when capabilities are interchangeable, e.g., recog-
nizing that either of two metrics for computing Quality
of Information may be used and that a metric for Qual-
ity of Service may be an appropriate replacement under
some conditions. Semantics and representations are im-
portant considerations for cognitive networks [22, 30].
Several researchers have developed knowledge bases and
heuristic rules to optimize the network [22, 33, 52].

Planning and Scheduling techniques are appropriate
for decision-making situations, where tasks need to be
organized and coordinated to meet performance objec-



tives, under resource constraints. In dynamic environ-
ments, the plan needs to be monitored because pre-
dictions about performance may have been inaccurate
or the conditions have changed such that previously-
selected actions are no be appropriate. In these cases
the strategy needs to be revised online. Multi-agent
planning, dynamic programming, constraint satisfac-
tion, and distributed or combinatorial optimization al-
gorithms are common techniques. Planning and schedul-
ing techniques in networks can decide what content to
move, where, when, and how, including power-aware
computing, node activity and task scheduling, and net-
work management. Scheduling packets and admission
control may also benefit from these approaches, but
strictly AI-based approaches may find the rapid-decision
cycle challenging. Chadha [10, 11] created a self-orga-
nizing network management hierarchy that dynamically
updates itself based on changes in connectivity or do-
main requirements. As an example task-allocation
scheme, mobile ad hoc networks can benefit from pre-
pulling or pre-pushing data towards the nodes at the
edge of the network. Intelligent search mechanisms can
similarly decide which nodes to use as resources for in-
formation [28, 67]. Chadha et al use machine learn-
ing, planning and domain expertise to dynamically se-
lect and place servers in MANETs [12]; Tapiador and
Clark [59] combine genetic algorithms with policies for
the same problem. Lau et al [32] use AI techniques for
planning under uncertainty to estimate the best oppor-
tunities for communicating with other nodes. PNUTS
[64] contains an adaptive scheduler for handling server
queries.

Machine Learning (ML) techniques aim to improve
the performance of a system by observing the environ-
ment and updating models that describe the interac-
tions of observables [31, 42, 43]. ML techniques are
appropriate in every domain that is imperfectly mod-
elled. Most complex domains (including networking)
fall into this category. Because the set of all possible
behaviors is too large to be covered by observed ex-
amples, the learner must generalize so that the learned
model is useful for new (previously unseen) cases. ML
techniques include artificial neural networks, support
vector machines, clustering, explanation-based learning,
induction, reinforcement learning, genetic algorithms,
nearest-neighbour methods, and case-based learning.
Data Mining techniques are a subset (or close cousin) to
ML techniques, in that they identify patterns in large
datastores. Data Mining results can be used in a ML
system to improve its models.

Dietterich and Langley [17] provide a good overview
of ML techniques and how they could be applied to
Cognitive Networks, but cite only one concrete exam-
ple of a realized system in communications networking.
Possibly the earliest use of ML in networking, Littman

and Boyan [5] introduced a reinforcement-learning ap-
proach to routing in networks. Other researchers have
extended this work to a wireless environment, to handle
dynamic load, to manage energy and to plan node mo-
bility [13, 14, 34, 55, 58]. Another rich area for ML is
learning how parameters interact with each other and
with the domain. Rieser [53] and Rondeau [54] used
genetic algorithms to tune parameters and design wave-
forms. The experiments show no data about how fast
it works and moreover the learning appears to operate
offline; Rieser states explicitly that it “may not be well
suited for the dynamic environment where rapidly de-
ployable communications systems are used.” All demos
involve one receiver, one transmitter, and one jammer,
although in theory the approach should not be limited.
Newman et al [48, 47] similarly use genetic algorithms to
optimize parameters in a simulated network; they also
show no time results. Montana et al [46] used a genetic
algorithms approach for parameter configuration in a
wireline network that can find the 95% optimal solu-
tion in “under 10 minutes.” Haigh et al [24, 25, 61] were
the first to demonstrate ML in an on-line (real-time)
real-world (not simulation) MANET. Their distributed-
learning approach met the requirements for speed, low-
communication, heterogeneous mobile ad hoc networks,
and dramatically improved the overall performance of
the MANET.

MANET networks are often organized into cluster hi-
erarchies to achieve performance guarantees [68]; ML
techniques could be leveraged here. ML techniques could
also be used to build patterns of users in forward-
deployed enclaves: to understand the relationship be-
tween task (or role) and topics of interest, and when
those files will be needed [70].

Distributed AI and Multi-agent Systems are concerned
with finding distributed solutions for AI problems [21,
50, 66]. Techniques address domains that have the fol-
lowing characteristics:

Discrete: Local goals and constraints
Deprived: Locally resource constrained
Distributed: Embedded in a physical world
Decentralized: Local decisions and local views of the

environment (i.e., no centralized decision maker)
Diverse: Different capabilities and different roles
Dynamic: Changing task/mission and domain

DAI and MAS approaches generally decompose central-
ized techniques to make them appropriate for the decen-
tralized environment, often with some calculation of the
tradeoff between optimality and latency. While concep-
tually appropriate for the communications networking
environment [20], these traditional techniques have to-
date not acknowledge or address a key requirement for
communications networks, namely that the task being
negotiated is the communications itself. In other words,
traditional AI has always assumed that that communi-



cation is “safe,” negotiating and coordinating only the
application-level tasks [39, 45, 69]; moreover they gen-
erally require massive communications with non-neigh-
bours, universally do not support mobility (changing
connections or constraints between the nodes), and uni-
versally do not support a changing objective function.
These drawbacks are so significant that extensive re-
search and redesign are required to make them applica-
ble in this domain.

Biologically-inspired computing approaches are light-
weight coordination mechanisms [63], and have been
used for a variety of networking problems. AntHoc-
Net [16] uses both proactive and reactive schemes to up-
date the routing tables, and outperforms AODV. Konak
et al [29] use particle swarm optimization and agents to
improve network connectivity. Sesum-Cavic and Kühn
use swarm intelligence for dymanic load balancing. Paru-
nak and Brueckner use a stigmergic approach to decide
where to locate services on a MANET [51]. Biologically-
inspired methods are often slower in reaction than con-
ventional control systems, and may lose optimality, but
can offer greater resilience.

Game theory is a branch of applied mathematics that
is used for analyzing the interaction among agents whose
decisions affect each other. Game theory is becoming a
common formalism for studying strategic and cooper-
ative interaction in multi-agent systems [18]. Applica-
tions of game theory to wireless communications have
also received significant interest by the research com-
munity; Nisan et al [49] and Liu and Wang [34] present
good introductions. Previous research includes enforc-
ing fairness and thwarting selfish behavior in shared
medium [37], multi-hop packet relaying [1, 8], multi-
carrier (OFDM) systems [4], MIMO [57], interactions
between communicating nodes [35], and overlay net-
works [65].

5. AI CHALLENGES IN NETWORKING
There are many interesting challenges for AI in net-

working. Characteristics that make this an interesting
domain for AI include:

Dynamic: Very few things in a MANET environment
are static. Military missions change, user require-
ments change, users join or leave the network, hard-
ware fails, and mobility causes continuous fluctu-
ations in connectivity.

Resource constrained: Most notably, nodes are band-
width-constrained: it would overwhelm the net-
work for nodes to share all knowledge with other
nodes. In fact, as noted above, most MAS nego-
tiation techniques are unsuitable for this reason.
Power management is a critical requirement for
remote operations.

Partially-observable: Many factors that affect com-
munication cannot be observed. Few radios, for

example, have a “fog” sensor.
Ambiguous observations: Detection and understand-

ing of a change in situation is not always simple.
For example, how does the system automatically
tell the difference between short-term fade versus
entering a building?

Diverse: Nodes in a MANET have a wide variety of ca-
pabilities, from small hand-held radios to large ra-
dios with satellite communications (satcom); these
vary both in communications and compute power.
This heterogeneity requires different solutions on
different nodes.

Massive scale: There are roughly 600 observable pa-
rameters and 400 controllable parameters (possi-
bly continuous-valued) to configure per node2. We
thus have a distributed, heterogeneous, low-comm-
unication, partially-observable, high-latency opti-
mization problem of approximately µPN choices
per timestep3; one second would be a large timestep.

Complex interactions: Networking parameters have
deep, poorly-understood interactions with each
other and with system performance. In many cases,
specific pair-wise interactions can be identified,
such as increased power reduces battery life. How-
ever, most of these pair-wise interactions are care-
fully caveatted by the networking community, with
conditionals that are rarely observable or com-
putable. Cognitive control in the general case is
therefore seldom simple: the level at which symp-
toms appear may not be the level at which changes
to the node configuration must be made; symp-
toms may be ambiguous at one level or at a given
time and require more context; changes at one
layer may impact other layers and may cause new
issues; and the timing of changes may be critical.

High-latency: Many actions cause a delayed effect.
For example, data transmissions from one node
may only affect downstream nodes; the result takes
time to propagate back to the first transmitter.

Complex temporal feedback loops: Within a node,
certain activities occur at very rapid speeds (e.g.,
between the Medium Access Control (MAC) and
Physical layers) requiring very a very tight feed-
back loop to support cognitive control. Other ac-
tivities (e.g., at the Routing layer) occur on a longer
time-scale and cognitive control algorithms may
need to take into account a wider range of factors

2We include the ability to dynamically reconfigure the IP
stack as control parameters; we model alternate configura-
tions by creating a control parameter x for each available
network module, where x = 1 when the module has been in-
voked, and x = 0 when the module is not operating [25]. No
current system exposes all of these parameters; the highest
known is about 100 parameters, of which 30 are controllable.
3P = number of parameters, N = number of nodes, and µ
is the average number of values that a parameter can take.



in a slow feedback loop. Between nodes, there is
yet a longer feedback loop between changes that
are made and the effects that are observed in net-
work-level performance. The variety of temporal
loops and their dramatic speed differences means
that correlating cause and effect of actions is par-
ticularly challenging.

Discrete: As a result of the limited communication
and frequent disconnections, nodes have to make
decisions locally, considering local requirements and
constraints.

Heterogeneous Intercommunication: There is a
very strong norm in the networking community
that all nodes must be designed and (statically)
configured to interoperate; typical ad hoc networks
build a group of homogenous nodes. Cognitive net-
works break this assumption: each node can have
an independent cognitive controller, and thus net-
work nodes may be heterogeneous, and may fall
into in non-interoperable configurations.4 Mean-
while traditional AI has always assumed that that
communication is “safe,” negotiating and coordi-
nating only the application-level tasks [39, 45, 69];
moreover they also generally require very high com-
munications overhead. Ensuring that multiple
nodes are coordinated enough to maintain basic
communications is a key research area for cogni-
tive networking.

Complex Access Policies: Due to the heterogeneous
nature of the data and the nodes, access policies
may restrict the set of nodes that are permitted
to hold or transmit specific data. This issue is
especially true in military MANETs.

Complex multi-objective performance require- .
ments: Multiple users have interacting require-
ments and policies, thus creating a complex multi-
objective function that captures mission, situational
and social standpoints [24]. It can include a wide
variety of issues including bandwidth, application-
level quality of service, energy, network connectiv-
ity, and security.

In other domains, AI techniques are capable of ad-
dressing the full richness of most of these challenges. In
the networking domain, AI techniques are just begin-
ning to scratch the surface. We need to bring these tech-
niques into the networking domain, and address them in
depth. Moreover, AI techniques have addressed many
of these challenges in the same system (e.g., robotics),
with the notable exception of automatic heterogeneous
intercommunication. This challenge has never been ad-
dressed by the AI community or the Networking com-

4The alternative is to have one cognitive controller for sev-
eral nodes; while coordination issues are reduced, communi-
cation overhead increases dramatically and intelligent con-
trol is vulnerable to network partitions.

munity. ADROIT [61], by giving each node its own
learning system, represented a radical departure from
the traditional networking stance that requires homo-
geneous configurations. ADROIT was the first system
to demonstrate a effective heterogeneous MANET. As
AI techniques are slowly given greater access to network
configuration, this challenge will be critical to solve.

An important consideration is that Networking soft-
ware is not typically designed to support AI-based con-
trol. The networking software architectures do not ex-
pose the states and controls needed to effectively adapt
networking operations. Tight coupling between the net-
working software architecture and AI-based control has
been demonstrated in ADROIT [61], a communications
network based on an architecture proposed by Haigh et
al [23].

6. CONCLUSIONS
By dynamically changing their communications pat-

terns based on the current conditions, cognitive net-
works can communicate (interoperate) with both cog-
nitive and conventional radios, adapt to changes in in-
frastructure, and modify behavior to avoid or mitigate
threats.

There are many powerful AI techniques that address
knowledge engineering, situation assessment, planning,
scheduling, and learning in distributed environments.
AI techniques are ready to be challenged with this com-
plex real-world domain, just as Networking requirements
are reaching the limits of what can be done without AI.
We are at a nexus from which interesting ideas and ca-
pabilities will develop.

The challenges outlined above are all technical. There
is a social-engineering challenge to address as well: the
human-to-human interaction of the AI community dif-
fers dramatically from that of the networking commu-
nity; we must find ways to address these cultural differ-
ences [23].
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