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Abstract. Keystroke dynamics—the analysis of individuals’ distinctive
typing rhythms—has been proposed as a biometric to discriminate le-
gitimate users from impostors (whether insiders or external attackers).
Anomaly detectors have reportedly performed well at this discrimination
task, but there is room for improvement. Detector performance might be
constrained by the widespread use of comparatively low-resolution clocks
(typically 10-15 milliseconds).

This paper investigates the effect of clock resolution on detector perfor-
mance. Using a high-resolution clock, we collected keystroke timestamps
from 51 subjects typing 400 passwords each. We derived the timestamps
that would have been generated by lower-resolution clocks. Using these
data, we evaluated three types of detectors from the keystroke-dynamics
literature, finding that detector performance is slightly worse at typical
clock resolutions than at higher ones (e.g., a 4.2% increase in equal-error
rate). None of the detectors achieved a practically useful level of perfor-
mance, but we suggest opportunities for progress through additional, con-
trolled experimentation.

Keywords: Anomaly detection; Insider-attack detection; Keystroke dy-
namics; Digital biometrics.

1 Introduction

Compromised passwords, shared accounts, and backdoors are exploited both by
external attackers and insiders. Lists of default passwords and password-cracking
programs are a staple in the toolbox of external attackers. In a study of insider
attacks (i.e., those conducted by people with legitimate access to an organiza-
tion), Keeney et al. [I1] found that the majority of insiders exploited shared
or compromised passwords, as well as backdoor accounts. However, if we had
some sort of “digital fingerprint” with which to identify exactly who is logging
into an account, and to discriminate between the legitimate user of an account
and an impostor, we could significantly curb the threats represented by both
insiders and external attackers. Of the various potential solutions to this prob-
lem, one technique that has been popular within the research community is
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keystroke dynamics—the analysis of individual typing rhythms for use as a bio-
metric identifier. Compared to other biometric data, typing times are relatively
easy to collect. When a user logs into a computer by typing his or her password,
the program authenticating the user could save not just the characters of the
password, but the time at which each key was pressed and released. One could
imagine a keystroke-dynamics detection algorithm that analyzes these typing
times, compares them to a known profile of the legitimate user of the account,
and makes a decision about whether or not the new typist is an impostor. In
fact, detectors have been designed to use typing rhythms as a biometric, not just
during password entry (which is our focus in this work), but also for free-text
typing [17].

In terms of accuracy, the European standard for access-control systems (EN-
50133-1) specifies a false-alarm rate of less than 1%, with a miss rate of no more
than 0.001% [3]. In other words, in order for a keystroke-dynamics detector to
be practical, it must correctly identify a legitimate user 99% of the time, and
it must correctly identify an impostor 99.999% of the time. At this point, no
proposed detector has obtained such numbers in repeated evaluations. When a
detector comes up short in evaluation, the common strategy is to go back to the
drawing board and try a new detector. However, it may be possible to boost the
performance of an existing detector by giving it better data.

Imagine the effect that timing noise might have on a detector. With enough
noise, subtle differences between typists will be masked, and even a good detector
will be ineffective. One obvious source of noise comes from the resolution of
the clock supplying timestamps for each keystroke. For instance, our testing
shows that the clock used by Microsoft Windows XP to timestamp keystroke-
event messages [15] (which we call the Windows-event clock) has a resolution
of 15.625 milliseconds (ms), corresponding to 64 updates per second. Figure
[ shows how the clock resolution affects the calculation of keydown-keydown
digram latencies. Specifically, if every time reported by the clock is a multiple of
15.625 ms (truncated to the nearest millisecond), then all latencies will appear
to fall in bands separated by 15 ms. The calculated latencies could differ from
the true latencies by as much as the resolution of the clock (approximately
+15 ms). If two typists differ in their typing times by less than 15 ms, then
the difference could be lost. This investigation empirically measures the effect of
clock resolution on the performance of a detector. Specifically, we look at whether
the performance of a detector can be boosted by increasing the resolution of the
clock, and whether or not detectors are robust to low-resolution clocks.

2 Background and Related Work

Detectors for discriminating between users’ and impostors’ keystroke dynamics
have been investigated for over 30 years. They were first considered in 1977 by
Forsen et al. [6], who distinguished a legitimate user from an impostor on the
basis of how each one typed the user’s name. In 1980, Gaines et al. [7] compared
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Fig. 1. The spacing between each horizontal band of keystroke latencies reveals that
the Windows-event clock has a resolution of 15.625 milliseconds. Any fine-grained dif-
ferences between the subjects are masked when all latencies are coarsened to a nearby
multiple of the clock resolution. Data are keydown-keydown digram latencies (between
100 and 200 ms) recorded by the 15.625 ms resolution clock when each of 51 subjects
typed a password 400 times. Double bands occur because Windows reports the time-
stamps as a whole number of milliseconds, sometimes rounding up and sometimes
rounding down.

several users’ keystrokes on a transcription task. Both studies presented positive
findings, but cautioned that their results were only preliminary.

Joyce and Gupta [10] were some of the earliest researchers to study the key-
stroke dynamics of passwords. They developed a detector that compared typing
characteristics of a new presentation of a password against the average (mean)
typing characteristics of the legitimate user. Cho et al. [] developed and com-
pared two new detectors, inspired by techniques from machine learning. One
was based on the nearest-neighbor algorithm, and the other used a multilayer
perceptron. A full survey of keystroke-dynamics detectors has been conducted
by Peacock et al. [I7], but we focus here on the work of Joyce and Gupta, and
Cho et al. Their work shows a diversity among available detection techniques,
and our investigation uses detectors similar to theirs.

In terms of timing considerations, Forsen et al. and Gaines et al. collected
data on a PDP-11. Forsen et al. reported times in 5-millisecond intervals, while
Gaines et al. reported millisecond accuracy. Both Joyce and Gupta, and Cho et
al. collected data on a Sun workstation. Cho et al. specified that they used X11,
which provides keystroke timestamps with a 10 ms resolution. The X11 clock
is typically used by researchers on UNIX-based platforms, while Windows users
typically use the Windows-event clock (e.g., Sheng et al. [T9]). Our testing shows
that the timestamps reported through this clock have a 15.625 ms resolution (see

Figure [II).
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3 Problem and Approach

Keystroke-dynamics detectors—programs designed to distinguish between a le-
gitimate user and an impostor on the basis of typing rhythms—will almost cer-
tainly be affected by the resolution of the clock that is used for timing the
keystrokes. However, the extent of this effect has never been quantified or mea-
sured. In this work, we investigate the effect that clock resolution has on the
performance of keystroke-dynamics detectors. We hope to boost detector per-
formance by using better clocks, and to quantify the error introduced by typical
clocks.

3.1 Investigative Approach

Our approach is outlined in the following four steps:

1. Password-data collection: We choose a password, and we implement a
data-collection apparatus that records high-resolution timestamps. We recruit
subjects to type the password. We collect keystroke timestamps simultane-
ously with a high-resolution clock and with a typical low-resolution clock.

2. Derived clock resolutions: We coarsen the high-resolution timestamps, in
order to calculate the timestamps that would be generated by a range of lower-
resolution clocks; we derive password-timing data at a range of resolutions.

3. Detector implementation: We develop three types of keystroke-dynamics
detectors similar to those reported in the literature: a mean-based detector,
a nearest-neighbor detector, and a multilayer perceptron.

4. Performance-assessment method: We construct evaluation data sets
from our password-timing data, and we use them to measure the performance
of the three detectors. We verify the correctness of our derivations (in step 2)
by comparing a detector’s performance on derived low-resolution data to its
performance on data from a real clock operating at that resolution. Finally,
we examine how the performance changes as a function of clock resolution.

In the end, we are able to quantify the effect that clock resolution has on several
diverse detectors. We show a small but significant improvement from using high-
resolution clocks. We describe the four steps of our investigation in Sections @H7

3.2 Controlling for Potential Confounding Factors

Our approach departs from typical keystroke-dynamics evaluations, where real-
ism is considered to have higher importance than control. A reason for designing
a controlled experiment is to remove confounding factors—variables that may
distort the effect of the variable of interest on the experimental outcome [5].

In our investigation, the variable of interest is the clock resolution, and the
experimental outcome is the performance of a detector. The clock might affect
detector performance because it subtly changes the keystroke times analyzed
by the detectors. All other factors that change these keystroke times are poten-
tial confounding factors that might obscure or distort this effect. They might
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change a detector’s performance, or even change how clock resolution affects the
detector’s performance. The presence of such a factor would compromise our
investigation by offering an alternative explanation for our results.

Ideally, we would test all potential confounding factors, to see whether they
actually do confound the experiment. However, to do so would require an ex-
ponential amount of data (in the number of factors). Practically, we control for
potential confounding factors by keeping them constant.

4 Password-Data Collection

The first step in our investigation was to collect a sample of keystroke-timing
data using a high-resolution clock. We chose a single password to use as a typing
sample. Then we designed a data-collection apparatus for collecting subjects’
keystrokes and timestamps. Finally, we recruited 51 subjects, and collected the
timing information for 400 passwords from each one (over 8 sessions).

4.1 Choosing a Password

Password selection is the first potential confounding factor we identified. Some
passwords can be typed more quickly than others. The choice of password may
affect a subject’s keystroke times, distorting the effect of clock resolution. To
control for the potential confounding factor, we chose a single fixed but repre-
sentative password to use throughout the experiment.

To make the password representative of a typical, strong password, we em-
ployed a publicly available password generator [21] and password-strength checker
[13]. We generated a 10-character password containing letters, numbers, and punc-
tuation and then modified it slightly, interchanging some punctuation and casing
to better conform with the general perception of a strong password. The result of
this procedure was the following password:

.tiebRoanl

The password-strength checker rates this password as strong because it con-
tains at least 8 characters, a capital letter, a number, and punctuation. The best
rating is reserved for passwords with at least 14 characters, but we decided to
maintain a 10-character limit on our password so as not to exhaust our subjects’
patience. (Other researchers used passwords as short as 7 characters [4].)

4.2 Data-Collection Apparatus

We wrote a Windows application that prompts a subject to type the password
50 times. Of course, in the real world, users do not type their password 50 times
in a row; they might only type it a few times each day. However, the amount
of practice a subject has at typing a particular password represents another po-
tential confounding factor (see Section [B2]). Practiced typists are usually faster,
and the amount of practice a subject has may affect his or her keystroke times.
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By having our subjects type the password in fixed-length sessions, we controlled
how much (and under what circumstances) our subjects became practiced at
typing the password.

The application displays the password in a screen along with a text-entry
field. In order to advance to the next screen, the subject must type the 10
characters of the password correctly in sequence and then type Return. If the
subject makes a mistake, the application immediately detects the error, clears
the text-entry field, and after a short pause, it prompts the subject to type
the password again. For instance, if a subject typed the first three characters
of the password correctly (.ti) but mistyped the fourth (w instead of e), the
application would make the subject type the whole password over again. In this
way, we ensure that the subject correctly types the entire password as a sequence
of exactly 11 keystrokes (corresponding to the 10 characters of the password and
the Return key). Forcing subjects to type the password without error is a typical
constraint when analyzing keystroke dynamics [4 [19].

When a subject presses or releases a key, the application records the event
(i.e., whether a key was pressed or released, and what key was involved), and
also the time at which the event occurred. Two timestamps are recorded: one is
the timestamp reported by the 15.625 ms resolution Windows-event clock; the
other is the timestamp reported by a high-resolution external reference clock.
The resolution of the reference clock was measured to be 200 microseconds by
using a function generator to simulate key presses at fixed intervals. This clock
reported the timestamps accurately to within £200 microseconds. We used an
external reference instead of the high-precision performance counter available
through Windows [I6] because of concerns that factors such as system load
might decrease the accuracy of the timestamps.

The data-collection application was installed on a single laptop with no net-
work connection and with an external keyboard. We identified keyboard selec-
tion as another potential confounding factor (see Section B.2]). If subjects used
different keyboards, the difference might affect their keystroke times. We con-
trol for the potential confounding factor by using one keyboard throughout the
experiment.

4.3 Running Subjects

We recruited 51 subjects, many from within the Carnegie Mellon Computer
Science Department, but some from the university at large. We required that
subjects wait at least 24 hours between each of their 8 sessions, so each session
was recorded on a separate day (ensuring that some day-to-day variation existed
within our sample). All 51 subjects remained in the study, contributing 400
passwords over the 8 sessions.

Our sample of subjects consisted of 30 males and 21 females. We had 8 left-
handed and 43 right-handed subjects. We grouped ages by 10-year intervals. The
median group was 31-40, the youngest group was 11-20, and the oldest group
was 61-70. The subjects’ sessions took between 1.25 minutes and 11 minutes,
with the median session taking 3 minutes. Subjects took between 9 days and 35
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Fig. 2. The absence of horizontal bands demonstrates that the high-resolution clock has
a resolution of less than 1 millisecond (200 microseconds, specifically). The keystrokes
are the same as in Figure [l but the latencies in this figure are based on the high-
resolution clock.

days to complete all 8 sessions. The median length of time between the first and
last session was 23 days.

5 Derived Clock Resolutions

The second step in our investigation was to use the high-resolution data to
reconstruct the data that would have been collected with lower-resolution clocks.
We developed a procedure to derive the timestamp of a low-resolution clock from
the corresponding timestamp of a high-resolution clock.

First, we examine the keydown—keydown latencies based on the high-resolution
timestamps. The latencies are shown in Figure[2l Compare these latencies to the
equivalent latencies from Figure[ll Whereas the horizontal bands in Figure[Il re-
veal that the Windows-event clock cannot capture any timing variation smaller
than 15.625 milliseconds, the absence of such bands in Figure[2ldemonstrates that
very subtle variations (smaller than 1 millisecond) can be captured by the high-
resolution clock.

Next, to determine what would have happened if the data had been collected
with a lower-resolution clock, we need to artificially decrease the resolution of
this clock. Consider how timestamps are normally assigned to keystroke events:
1. The operating system is notified of the pending key event by an interrupt

from the keyboard controller.

2. The operating system reads the key event from the keyboard device into
memory.

3. During the handling of the key event, the operating system queries a clock
for the current time.

4. The timestamp returned by the clock is included in the description of the
keystroke event and is delivered to any applications waiting on the event.
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Fig. 3. The presence of horizontal bands 15 ms apart suggests that the derived 15 ms
clock exhibits the same behavior as a real clock with a 15 ms resolution. The keystrokes
are the same as in Figures [[land [ but the derived 15 ms clock was used to calculate
the latencies. The bands resemble those of the real 15.625 ms clock in Figure [Il but
without double bands because the 15 ms clock resolution has no fractional part being
rounded to a whole millisecond.

For example, if we have a clock with a resolution of 15 ms (i.e., it is updated
every 15 ms), then the timestamp returned by the clock will be divisible by 15
ms. Specifically, it will be the largest multiple of 15 ms smaller than the actual
time at which the clock was queried. In general, if the clock was queried at time
thi-res, and we want to reproduce the behavior of a lower-resolution clock (with
a resolution of r), the low-resolution timestamp would be
tlo—res A I_thi—res/TJ xXr

where |z ] is the largest integer smaller than z (floor function).

Finally, with this formula and the high-resolution data, we can derive the
timestamps that would have been collected with lower-resolution clocks. For
instance, Figure ] shows keystroke latencies calculated from a clock with a de-
rived 15 ms resolution. Note the similarity to Figure [I, which shows latencies
calculated from a real Windows-event clock with a 15.625 ms resolution. (The
fractional part of the real clock’s resolution accounts for the slight differences.)

One limitation of this procedure is that we can only derive clock resolutions
that are evenly divisible by that of our high-resolution clock. This criteria allows
the small but non-zero inaccuracy of our high-resolution clock to be absorbed into
the inaccuracy of the lower-resolution clock. For instance, we should be able to
accurately derive a 1 ms clock resolution since 1 ms is evenly divisible by 200 mi-
croseconds (the resolution of the high-resolution clock). However, we could not
accurately derive a 1.5 ms clock resolution (or a 15.625 ms resolution) because it is
not evenly divided. Regardless of this limitation, the accuracy of results obtained
with these derived clock resolutions will be established by comparing detector per-
formance on derived 15 ms resolution data to that on the 15.625 ms resolution
Windows-event clock data. We derive data at the following 20 clock resolutions:
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Milliseconds: 1 2 5 10 15 20 30 50 75 100 150 200 500 750

Seconds: 125101530
The specific resolutions were chosen arbitrarily, but with the intent of includ-
ing a range of typical values (on the first line), and a range of extremely low-
resolution values (on the second line) in order to identify the point at which
detector performance degrades completely. In total, we have data at 22 different
clock resolutions: the 20 derived clocks, the high-resolution clock, and the 15.625
ms resolution Windows-event clock.

6 Detector Implementation

The third step in our investigation was to create detectors to test using our
data. We identified three different types of detector from the literature, and
implemented a detector of each type:

1. a mean-based detector,

2. a nearest-neighbor detector, and

3. a multilayer-perceptron detector.

By ensuring that we have diversity in the set of detectors we evaluate, we can
examine whether or not an observed effect is specific to one type of detector or
more generally true for a range of detectors.

6.1 Detector Overview

We constrained our attention to detectors that behave similarly in terms of their
input and output. For instance, each of our detectors must analyze password-
timing data, and aims to discriminate between a legitimate user and an impostor.
Each of the detectors expects the password data to be encoded in what is called
a password-timing vector. A password-timing vector is a vector of hold times
and intervals. A hold time is the difference between the key-press timestamp
and the key-release timestamp for the same key. An interval time is the (signed)
difference between the key-release timestamp of the first key in a digram and
the key-press timestamp of the second key.

The password-timing vector is 21 elements long for the password we chose
(.tiebRoanl). Each element is either a hold time for one of the 11 keys in the
password (including the Return key), or the interval between one of the 10
digrams, arranged as follows:

Index Element name
1 Hold(period)

2 Interval(period-t)
3 Hold(t)

4 Interval(t-i)

5 Hold(i)

19 Hold(1)

20 Interval(l-Return)
21  Hold(Return)
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where Hold(period) is the hold time of the period key, and Interval(period-t) is
the interval between the period key-release and the t key-press.

Each detector has two phases: training and testing. During training, a set
of password vectors from a legitimate user is used to build a profile of that
user. Different detectors build this profile in different ways, but the objective
of a successful detector is to build a profile that uniquely distinguishes the user
from all other typists (like a fingerprint). During testing, a new password-timing
vector (from an unknown typist) is provided, and the detector compares the
new vector against the profile. The detector produces an anomaly score that
indicates whether the way the new password was typed is similar to the profile
(low score) or different from the profile (high score). The procedure by which
this score is calculated depends on the detector.

In practice, the anomaly score would be compared against some pre-determined
threshold to decide whether or not to raise an alarm (i.e., whether or not the
password-typing rhythms belong to an impostor). However, in our evaluation, we
will use these scores directly to assess the detector’s performance.

The three detectors are implemented using the R statistical programming
environment (version 2.4.0) [I§]. The nearest-neighbor detector leverages an im-
plementation of Bentley’s kd-trees [I] by Mount and Arya [I4]. The multilayer
perceptron uses the neural-network package AMORE [12].

6.2 Mean-Based Detector

A mean-based detector models a user’s password-timing vectors as coming from
some known distribution (e.g., a multidimensional normal distribution) with an
unknown mean. During training, the mean is estimated, and during testing, a
new password-timing vector is assigned an anomaly score based on its distance
from this mean. Joyce and Gupta [I0] used a detector that fits this description
and the detector we implemented is similar to theirs, but not precisely the Same

During training, our mean-based detector estimates the mean vector and the
covariance matrix of the training password-timing vectors. The mean vector is
a 2l-element vector, whose first element is the mean of the first elements of
the training vectors, whose second element is the mean of the second elements
of the training vectors, and so on. Similarly, the covariance matrix is the 21-
by-21-element matrix containing the covariance of each pair of elements in the
21-element training vectors. These mean and covariance estimates comprise the
user’s profile.

During testing, the detector estimates the Mahalanobis distance of the new
password-timing vector from the mean vector of the training data. The

L Our detector differs from that proposed by Joyce and Gupta in both its mean-vector
calculation and the distance measure used. We calculated the mean vector using
all the training data while Joyce and Gupta preprocessed the data to remove out-
liers. We used the Mahalanobis distance while Joyce and Gupta used the Manhattan
distance. Our mean-based detector was intended to be simple (with no preprocess-
ing) while still accommodating natural variances in the data (with the Mahalanobis
distance).



The Effect of Clock Resolution on Keystroke Dynamics 341

Mahalanobis distance is a measure of multidimensional distance that takes into
account the fact that a sample may vary more in one dimension than another,
and that there may be correlations between pairs of dimensions. These variations
and correlations are estimated using the correlation matrix of the training data.
More formally, using the matrix notation of linear algebra, if x is the mean of
the training data, S is the covariance matrix, and y is the new password-timing
vector, the Mahalanobis distance (d) is:
d—(x-y)'S'(x-y)
The anomaly score of a new password-timing vector is simply this distance.

6.3 Nearest-Neighbor Detector

Whereas the mean-based detector makes the assumption that the distribution
of a user’s passwords is known, the nearest-neighbor detector makes no such
assumption. Its primary assumption is that new password-timing vectors from
the user will resemble one or more of those in the training data. Cho et al. [4]
explored the use of a nearest-neighbor detector in their work, and we attempted
to re-implement their detector for our investigation.

During training, the nearest-neighbor detector estimates the covariance ma-
trix of the training password-timing vectors (in the same way as the mean-based
detector). However, instead of estimating the mean of the training data, the
nearest-neighbor detector simply saves each password-timing vector.

During testing, the nearest-neighbor detector calculates Mahalanobis dis-
tances (using the covariance matrix of the training data). However, instead of
calculating the distance from the new password-timing vector to the mean of the
training data, the distance is calculated from the new password-timing vector
to each of the vectors in the training data. The distance from the new vector to
the nearest vector from the training data (i.e., its nearest neighbor) is used as
the anomaly score.

6.4 Multilayer-Perceptron Detector

Whereas the behaviors of the mean-based and nearest-neighbor detectors allow
for an intuitive explanation, the multilayer perceptron is comparatively opaque.
A multilayer perceptron is a kind of artificial neural network that can be trained
to behave like an arbitrary function (i.e., when given inputs, its outputs will
approximate the function’s output). Hwang and Cho [8] showed how a multi-
layer perceptron could be used as an anomaly detector by training it to auto-
associate—that is, to behave like a function that reproduces its input as the
output. In theory, new input that is like the input used to train the network
will also produce similar output, while input that is different from the train-
ing input will produce wildly different output. By comparing the input to the
output, one can detect anomalies. Cho et al. [4] used an auto-associative mul-
tilayer perceptron to discriminate between users and impostors on the basis of
password-timing vectors. We attempted to re-implement that detector.
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During training, the password-timing vectors are used to create an auto-
associative multilayer perceptron. This process is a standard machine-learning
procedure, but it is fairly involved. We present an overview here, but we must
direct a reader to the works by Hwang, Cho, and their colleagues for a compre-
hensive treatment [4}[§]. A skeleton of a multilayer perceptron is first created. The
skeleton has 21 input nodes, corresponding to the 21 elements of the password-
timing vector, and 21 output nodes. In general, a multilayer-perceptron network
can have a variety of structures (called hidden nodes) between the input and the
output nodes. In keeping with earlier designs, we had a single layer of 21 hidden
nodes. This skeleton was trained using a technique called back-propagation to
auto-associate the user’s password-timing vectors. We used the recommended
learning parameters: training for 500 epochs with a 1 x 10~ learning rate and
a 3 x 10~* momentum term

During testing, the new password-timing vector is used as input to the trained
multilayer perceptron, and the output is calculated. The Euclidean distance of
the input to the output is computed and used as the anomaly score.

7 Performance-Assessment Method

Now that we have three detectors and data at a variety of clock resolutions, the
final step is to evaluate the detectors’ performance. First, we convert the data
to password-timing tables. Then we devise a procedure for training and testing
the detectors. Last, we aggregate the test results into overall measures of each
detector’s performance at each clock resolution.

7.1 Creating Password-Timing Tables

As mentioned in Section Bl we have 22 data sets that differ only in the resolution
of the clock used to timestamp the keystroke events: the high-resolution clock,
the 15.625 ms Windows-event clock, and the 20 derived clocks. For each clock,
we have timing information for 51 subjects, each of whom typed the password
(.tiebRoanl) 400 times.

We extract password-timing tables from the raw data. Hold times and di-
gram intervals are calculated. We confirm that 50 password-timing vectors are
extracted from each one of a subject’s 8 sessions, and that a total of 20,400
password-timing vectors are extracted (50 passwords X 8 sessions x 51 subjects).

7.2 Training and Testing the Detectors

Consider a scenario in which a user’s long-time password has been compromised
by an impostor. The user is assumed to be practiced in typing her password,

2 Note that our learning rate and momentum are 1000 times smaller than those re-
ported by Cho et al. This change accounts for a difference in units between their
password-timing vectors and ours. (We record in seconds; they used milliseconds.)
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while the impostor is unfamiliar with it (e.g., typing it for the first time). We
measure how well each of our three detectors is able to detect the impostor,
discriminating the impostor’s typing from the user’s typing in this scenario.

We start by designating one of our subjects as the legitimate user, and the
rest as impostors. We train and test each of the three detectors as follows:

1. We train the detector on the first 200 passwords typed by the legitimate user.
The detector builds a profile of that user.

2. We test the ability of the detector to recognize the user herself by generating
anomaly scores for the remaining 200 passwords typed by the user. We record
these as user scores.

3. We test the ability of the detector to recognize impostors by generating anom-
aly scores for the first 5 passwords typed by each of the 50 impostors. We
record these as impostor scores.

This process is then repeated, designating each of the other subjects as the
legitimate user in turn. After training and testing a detector for each combination
of subject, detector, and clock-resolution data set, we have a total of 3,366 sets
of user and impostor scores (51 subjects x 3 detectors x 22 data sets).

It may seem that 200 passwords is an unrealistically large amount of training
data. However, we used 200 passwords to train because we were concerned that
fewer passwords might unfairly cause one or more detectors to under-perform
(e.g., Cho et al. [4] trained the multilayer perceptron on up to 325 passwords).
Likewise, an unpracticed impostor might seem unrealistic. If he knew that his
keystroke dynamics would be scrutinized, he might practice first. However, as
we argued in Section 2] the amount of practice a subject has had represents
a potential confounding factor. Consequently, all impostors in our experiment
were allowed the same level of practice. Our intuition was that the effect of clock
resolution on detector performance might be seen most clearly with unpracticed
impostors, and so we used their data (with plans to use practiced impostors’
data in future investigations).

7.3 Calculating Detector Performance

To convert these sets of user and impostor scores into aggregate measures of
detector performance, we used the scores to generate a graphical summary called
an ROC curve [20], an example of which is shown in Figure @l The hit rate is
the frequency with which impostors’ passwords generate an alarm (a desirable
response), and the false-alarm rate is the frequency with which the legitimate
user’s passwords generate an alarm (an undesirable response). Whether or not
a password generates an alarm depends on how the threshold for the anomaly
scores is chosen. Over the continuum of possible thresholds to choose, the ROC
curve illustrates how each one would change hit and false-alarm rates. Each point
on the curve indicates the hit and false-alarm rates at a particular threshold.
The ROC curve is a common visualization of a detector’s performance, and
on the basis of the ROC curve, various cost measures can be calculated. Two
common measures are the equal-error rate and the zero-miss false-alarm rate.
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Fig. 4. An example ROC curve depicts the performance of the nearest-neighbor de-
tector with subject 19 as the legitimate user and data from the derived 1 ms resolu-
tion clock. The curve shows the trade-off between the hit rate and false-alarm rate.
The proximity of the curve to the top-left corner of the graph is a visual measure of
performance.

The equal-error rate is the place on the curve where the false-alarm rate is equal
to the miss rate (note that miss rate = 1 — hit rate). Geometrically, the equal-
error rate is the false-alarm rate where the ROC curve intersects a line from
the top-left corner of the plot to the bottom right corner. This cost measure
was advocated by Peacock et al. [I7] as a desirable single-number summary of
detector performance. The zero-miss false-alarm rate is the smallest false-alarm
rate for which the miss rate is zero (or, alternatively, the hit rate is 100%).
Geometrically, the zero-miss false-alarm rate is the leftmost point on the curve
where it is still flat against the top of the plot. This cost measure is used by Cho
et al. [4] to compare detectors.

For each combination of subject, detector, and clock resolution, we generated
an ROC curve, and we calculated these two cost measures. Then, to obtain an
overall summary of a detector’s performance at a particular clock resolution,
we calculated the average equal-error rate and the average zero-miss false-alarm
rate across all 51 subjects. These two measures of average cost were used to
assess detector performance.

8 Results and Analysis

A preliminary look at the results reveals that—while the equal-error rate and the
zero-miss false-alarm rate differ from one another—they show the same trends
with respect to different detectors and clock resolutions. Consequently, we focus
on the equal-error-rate results and acknowledge similar findings for the zero-miss
false-alarm rate.
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Table 1. The average equal-error rates for the three detectors are compared when
using (1) the high-resolution clock, (2) the derived 15 ms resolution clock, and (3)
the 15.625 ms Windows-event clock. The numbers in parentheses indicate the percent
increase in the equal-error rate over that of the high-resolution timer. The results from
the 15 ms derived clock very closely match the results with the actual 15.625 ms clock.

Detectors
Nearest Multilayer
Clock Mean-based Neighbor Perceptron
(1) High-resolution 0.1100 0.0996 0.1624

1
(2) Derived 15 ms resolution  0.1153 (+4.8%) 0.1071 (+7.5%) 0.1631 (+0.4%)
(3) 15.625 ms Windows-event  0.1152 (+4.7%) 0.1044 (+4.8%) 0.1634 (+0.6%)

The accuracy of our results depends on our derived low-resolution timestamps
behaving like real low-resolution timestamps. Our first step is to establish the
validity of the derived clock data by comparing a detector’s performance on
derived low-resolution data to its performance on data from a real clock operating
at that resolution. Then we proceed to examine our primary results concerning
the effect of clock resolution on detector performance.

8.1 Accuracy of the Derived Clock

Table [Il shows the average equal-error rate for each of the three detectors, using
the high-resolution clock, the derived 15 ms resolution clock, and the real 15.625
ms resolution Windows-event clock. In addition to the equal-error rates, the table
includes a percentage in parentheses for the derived clock and the Windows-event
clock. This percentage indicates the percent increase in the equal-error rate over
that from the high-resolution clock.

To verify the correctness of the results using the derived low-resolution clocks,
we compare the second and third rows of Table[Il The results are almost exactly
the same except for the nearest-neighbor detector. Since the nearest-neighbor
detector is not robust to small changes in the training data, it is not surprising
to see a comparatively large difference between the derived 15 ms clock and the
real 15.625 ms clock. The similarity in the results of the other two detectors
indicate that the derived clock results are accurate.

Even if we had been able to directly derive a 15.625 ms clock (impossible
because of the limitations of the derivation procedure described in Section [H),
small differences between the derived and real timestamps would still cause small
differences in detector performance (e.g., differences resulting from small delays
in how quickly the real clock is queried).

8.2 Effects of Clock Resolution on Detector Performance

Figure Bl depicts the effect of clock resolution on the average equal-error rate of
the three detectors. Each panel displays a curve for each of the three detectors,
but at different scales, highlighting a different result.
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Fig. 5. The equal-error rates of the three detectors increase as clock-resolution goes
from fine to coarse. Panel (a) depicts the minor but significant change in performance
resulting from a transition from the high-resolution clock to typical 15 ms clocks. Panel
(b) shows how the error jumps significantly when the clock resolution is between 50 ms
and 300 ms. Panel (c) characterizes the variation in detector performance over the full
range of derived clock resolutions from 1 ms to 30 seconds (where the detector does no
better than randomly guessing).

Panel (a) shows the effect of clock resolutions in the range of 015 ms on the
equal-error rate. These are resolutions that we see in practice (e.g., in Windows
and X11 event timestamps). We observe some increase in the equal-error rate
for the mean-based and nearest-neighbor detectors, even from the 1 ms clock
to the 15 ms clock. The change from the 1 ms clock to the 15 ms clock does
not seem to have much effect on the multilayer perceptron (which could be
because that detector’s performance is already comparatively poor, rather than
because the multilayer perceptron is more robust to lower-resolution clocks). The
parenthetical percentages in Table [[] quantify the change from high resolution to
typical resolutions. When the detectors use the 15 ms clock, their equal-error rate
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is an average of 4.2% higher than with the high-resolution clock. While this loss
may not seem significant, keystroke dynamics needs near-perfect accuracy to be
practical (1% false-alarm rate and 0.001% miss rate according to the European
standard for access control [3]), so every possible boost in performance will help.

Panel (b) examines the effect of clock resolution beyond the 15 ms range. The
graph reveals that the equal-error rates of the mean-based and nearest-neighbor
detectors increase sharply after a resolution of 50 ms, and all three detectors’
equal-error rates increase together after a resolution of 150 ms. While such low-
resolution clocks are not used for keystroke dynamics, we can consider clock
resolution to be one of many factors that might affect a detector. (Other factors
include bus contention, system load, and even networking delays.) This panel
suggests that these detectors are not particularly robust to noise in the form of
low clock resolution. By extrapolation, it suggests that tens of milliseconds of
noise from any of these sources (or any combination thereof) could be a problem.

Panel (b) also reveals a peak in the equal-error rate of the mean-based and
nearest-neighbor detectors at a resolution of 100 ms. The cause of the peak is not
obvious; it could be an artifact of our particular subjects’ typing characteristics
and would disappear with more or different subjects. More typing data and
analysis would be necessary to determine whether such peaks appear consistently
for a particular detector and clock resolution, but the existence of a peak does
suggest that the effects of factors like clock resolution are not always easy to
predict.

Panel (c) demonstrates the effect of very-low-resolution clocks on the equal-
error rate of a detector. All three detectors’ equal-error rates tend to 0.5, which
is the theoretically worst possible equal-error rate (akin to random guessing).
That the equal-error rate goes to 0.5 is not surprising, but it is surprising that
the equal-error rate converges so slowly to 0.5. With a 1-second resolution, the
three detectors all have equal-error rates of about 0.3. While not great, it is
certainly better than randomly guessing. It is surprising that key-hold times
and digram intervals retain some (weakly) discriminative information even when
expressed as a whole number of seconds. It may be that the features being used
to discriminate users from impostors are present only because our impostors are
unpracticed; they type the password a few seconds more slowly than a practiced
user would. It is possible that a curve for practiced impostors would be steeper,
more quickly ascending to 0.5 (to be investigated in future work).

9 Discussion

Based on these findings, we take away two messages from this investigation, each
of which suggests a trajectory for the future. First, we have demonstrated that
clock resolution does have an effect on the performance of keystroke-dynamics
detectors, and as a result, we should consider the potential deleterious effects
of timing noise. Fortunately, the effect appears to be small for the typical clock
resolutions we see in practice, but we do get a small boost in performance by us-
ing a high-resolution clock. However, clock-resolution granularity is not the only
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factor that affects keystroke timestamps. Given these results, it seems almost
certain that other forms of noise (e.g., system load) will cause similar problems.
In the long term, we should try to eliminate noise from our timestamps, but in
the short term we should at least acknowledge and account for its presence by
carefully evaluating our timing mechanisms (e.g., by measuring and reporting
clock resolution).

Second, even with the high-resolution timestamps, our detectors’ performance
is less than ideal. The best performance we obtained was a 9.96% equal-error
rate for the nearest-neighbor detector, which is a long way from a 1% false-alarm
rate and a 0.001% miss rate. We were surprised, since the detectors we used are
similar to those that have performed well in the literature (e.g., by Joyce and
Gupta [10], and by Cho et al. [4]). However, it would be improper to compare our
results directly to those in the literature, because there are significant differences
between our experimental method and theirs. The most obvious difference is our
control of potential confounding factors (e.g., password selection and practice
effect).

We speculate that experimental control is indeed responsible for the poorer
performance of our detectors. Furthermore, we advocate the control of potential
confounding factors in future experiments. Why? While realistic but uncontrolled
experiments can demonstrate that a detector does well (or poorly), controlled
experiments are necessary to reveal a causal connection between experimental
factors (e.g., password choice or practice) and detector performance. If we are to
use keystroke dynamics as a biometric, causal factors must be identified—why it
works is as important as whether it works. For instance, it would be significant
to discover that, regardless of other factors, every typist has an immutable,
intrinsically identifiable quality to his or her typing. It would also be significant
(but unfortunate) to find that a detector’s performance depends primarily on
the number of times an impostor practiced a password, and that with enough
practice, any impostor could pass for a legitimate user.

We intend to conduct a survey of other detectors proposed in the literature
to see whether performance remains poor on our data. We also observe that
these detection algorithms tend to treat typing data as arbitrary points in a
high-dimensional space, ignoring the fact that the data are observations about
fingers typing. Perhaps better results can be obtained by building a detector that
relies upon a model of user typing (such as those proposed by Card et al. [2] or
John [9]).

10 Summary and Conclusion

The goal of this work is to investigate the effect that clock resolution has on
the performance of keystroke-dynamics detectors, in part to determine if a high-
resolution clock would boost performance. We collected data at a high resolution,
and derived data at lower resolutions. We implemented three detectors and eval-
uated their performances over a range of clock resolutions. We found that a
high-resolution clock does provide a slight performance boost, and conversely,
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clocks with a typical 15 ms resolution increase the equal-error rate by an average
of 4.2%. Based on results using very-low-resolution clocks, we found that detec-
tors are not particularly robust to timing noise. Finally, we discovered that none
of the detectors achieved a practically useful level of performance, and identified
significant opportunities for progress through controlled experimentation.
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