
International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

Masquerade Detection Using Enriched Command Lines

Roy A. Maxion
maxion@cs.cmu.edu

Dependable Systems Laboratory

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 / USA

Abstract

A masquerade attack, in which one user impersonates
another, is among the most serious forms of computer
abuse, largely because such attacks are often mounted by in-
siders, and can be very difficult to detect. Automatic discov-
ery of masqueraders is sometimes undertaken by detecting
significant departures from normal user behavior, as rep-
resented by user profiles based on users’ command histo-
ries. A series of experiments performed by Schonlau et al.
[12] achieved moderate success in masquerade detection
based on a data set comprised of truncated command lines,
i.e., single commands, stripped of any accompanying flags,
arguments or elements of shell grammar such as pipes or
semi-colons. Using the same data, Maxion and Townsend
[8] improved on the Schonlau et al. results by 56%, raising
the detection rate from 39.4% to 61.5% at false-alarm rates
near 1%. The present paper extends this work by testing
the hypothesis that a limitation of these approaches is the
use of truncated command-line data, as opposed to com-
mand lines enriched with flags, shell grammar, arguments
and information about aliases. Enriched command lines
were found to facilitate correct detection at the 82% level,
far exceeding previous results, with a corresponding 30%
reduction in the overall cost of errors, and only a small in-
crease in false alarms. Descriptions of pathological cases
illustrate strengths and limitations of both the data and the
detection algorithm.

1. Introduction
Colloquially, masquerading is the act of substituting one-

self for another. To masquerade is to disguise; to assume
the appearance of something one is not; to furnish with a
false appearance or an assumed identity; or to obscure the
existence or true state or character of something. The com-
puter masquerade problem is exemplified in the following

scenario. A legitimate user takes a coffee break, leaving
his/her terminal open and logged in. During the user’s brief
absence, an interloper assumes control of the keyboard, and
enters commands, taking advantage of the legitimate user’s
privileges and access to programs and data. The interloper’s
commands may comprise read or write access to private
data, acquisition of system privileges, installation of ma-
licious software, etc. Because the interloper is impersonat-
ing a legitimate user (or some other computer identity, such
as a program), s/he is commonly known as a masquerader.
There are many ways for a masquerader to gain access to le-
gitimate user accounts, e.g., through a purloined password
or a hacker’s break in. The term may also be extended to en-
compass abuse of legitimate privileges – the case in which
a user “masquerades” as himself; such a person is some-
times termed an “insider,” especially when the person is an
accepted member of the organization sponsoring the target
system.

Masquerading can be a serious threat to the security
of computer systems and computational infrastructures. A
well-known instance of masquerader activity is the case of
Robert P. Hanssen, the FBI mole who allegedly used agency
computers to ferret out information later sold to his co-
conspirators [4]. Hanssen was a legitimate user, but his
behavior was improper. In another example, in Novem-
ber of 2002, thirty thousand credit histories were reported
stolen in what a federal attorney called “the biggest case of
identity theft in U.S. history [2].” This was an insider un-
dertaking in which a help-desk employee sold misappropri-
ated passwords to someone who used them to masquerade
as a legitimate user downloading credit reports. Informa-
tion in the credit reports was used to withdraw funds from
bank accounts, make illegitimate charges to credit cards,
etc. Insider masquerading, in various forms, is an enor-
mously costly problem reported by more than 60% of com-
panies surveyed in 1996 [13]. Of even greater concern than
economic losses, of course, are attacks on national security.

0-7695-1952-0/03 $17.00 c� 2003 IEEE 5 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

Detecting masqueraders has long been a challenge, dat-
ing as far back as 1988 for practical detection systems [6].
The typical approach is based on the idea that masquerader
activity is unusual activity that will manifest as significant
excursions from normal user profiles. User profiles are con-
structed from monitored system-log or accounting-log data.
Examples of the kinds of information derived from these
(and other) logs are: time of login, physical location of lo-
gin, duration of user session, cumulative CPU time, partic-
ular programs executed, names of files accessed, user com-
mands issued, and so forth [5]. When a deviation from nor-
mal behavior is observed, a masquerade (or other misuse)
attempt is suspected.

2 Background and related work
There have been several attempts to tackle the problem

of detecting masqueraders, one of the earliest of which was
the IDES system [6]. About twelve years later, Schon-
lau and his colleagues [12] presented a nice collection of
masquerader research, in which a number of masquerade-
detection techniques were applied to the same data set. In
terms of detecting masqueraders, the best detection result
reported in the Schonlau et al. work was for a Bayes One-
Step Markov model, which achieved a hit rate of 69.3%
with a corresponding false-alarm rate of 6.7%. In terms of
minimizing false alarms (targeted at 1%), their best result
was obtained by using a uniqueness metric that achieved
a 39.4% hit rate with a corresponding false-alarm rate of
1.4%. Although these results may seem disappointing, they
are in fact quite good, considering the extreme difficulty of
the problem.

Taking the work of Schonlau et al. as a point of depar-
ture, Maxion and Townsend [8] used the Schonlau data to
demonstrate a new approach to masquerade detection. Their
technique was based on naive Bayes classification, which
has enjoyed considerable success in the field of text classi-
fication [10]. Compared to the Schonlau et al. results, they
achieved a 56% improvement in correct detection (61.5%)
at a false-alarm rate (1.3%) that is the lowest reported in the
literature so far. They also amplified their results with an
analysis of the errors made by the detector as applied to an
alternative configuration of the Schonlau et al. data set. The
error analysis exposed certain limitations of the Schonlau et
al. framework, and suggested various things that might im-
prove future results, including the use of better command-
line data.

Both Schonlau et al. [12] and Maxion and Townsend
[8] studied masquerade detection using truncated command
lines, with each command line comprising just a single
command, stripped of any accompanying flags, arguments
or elements of shell grammar (such as pipes or semi-
colons). In all of these experiments, 5000 lines of training
data were available for each user, plus 10,000 lines of test-

ing data. The unit of classification was a block of 100 con-
tiguous command lines, which means that in a practical set-
ting the detector would need to wait for 100 user commands
before deciding whether or not those commands were typed
by the legitimate user or by a masquerader. While this was
only an experimental scenario, the delay involved in waiting
one hundred command lines before classification is clearly
undesirable. However, Maxion and Townsend [9] report in
further work that reduction of the unit of classification to a
block of only 10 commands leads to a 20-point reduction in
the hit rate (to just 47.1%) and a corresponding false alarm
rate similar to that obtained with block size 100 (1.6%).
This result is based on using a factor of 10 fewer commands,
and yet it retains nearly the same false-alarm rate as earlier
work using blocks of 100 commands.

Correct detection near 99% with a corresponding false-
alarm rate under 1% would be considered worthy outcomes.
Given the comparatively poor results obtained with the vari-
ous algorithms tried by Schonlau et al., even using the larger
block size, as well as the substantially improved, yet not
spectacular results achieved by Maxion and Townsend, it
seems reasonable to conclude that acceptable masquerade-
detection capability is unlikely to be achieved with the
information-impoverished data used, i.e., command lines
stripped of any information beyond the basic command.
The obvious questions, then, are these: Would data contain-
ing more information about a user’s command-line behav-
ior improve profiling and thus detection? Compared to the
“truncated” data used so far, would data “enriched” with
command-line flags and arguments facilitate better mas-
querade detection? It is from these questions that the current
work arises.

3 Objective and approach
The objective of the present work is to determine the ex-

tent to which information-enriched command-line data can
improve masquerade detection over truncated command-
line data. Examples of truncated and enriched versions of
the same data are shown in Table 1.

Truncated Enriched
cd cd cpsc504
more more susan.lst
diff diff susan.lst julie.lst
lpr lpr -Pjp susan.lst
setenv setenv TERM amb amb
rwho rwho -a
set set prompt set prompt = “VAXC�!� [$cwd:t] �� �”
nroff nroff -me proposal � more
ls ls -F -l �candym/.em* l -l �candym/.em*
enscript enscript -2Gr -L66 -Palw -h *.c print66*.c

Table 1: Examples of truncated (left) and enriched (right)
command-line data.

0-7695-1952-0/03 $17.00 c� 2003 IEEE 6 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

Reaching this determination in a way that effects fair
comparisons with previous work requires acquisition of new
data, because the data used in earlier studies were already
truncated, so they cannot be fairly compared with enriched
data sets from alternative sources. Once the new, enriched
data (replete with full command-line information) are ob-
tained, a truncated data set will be constructed from the en-
riched data. Then both data sets will be divided into training
and testing data, masquerade “intrusions” will be injected
into the testing data, and a naive Bayes classifier will be
used to detect the intrusions. Results are expected to show
that enriched data, containing more information, better sup-
port masquerade detection than truncated data do.

The following sections describe the data, the experimen-
tal methodology and the results.

4 Data
The data used by Schonlau et al. did not allow for any

enrichment - no information about flags, aliases, arguments
or shell grammar was provided. This necessitated procuring
data from elsewhere. The data were obtained from an ear-
lier study whose original purposes included describing how
people use commands in Unix, and reporting on the statis-
tics of the complete command as entered by the user, as op-
posed to just the command itself. These data, collected by
Saul Greenberg, comprised full command-line entries from
168 unpaid, volunteer users of the Unix csh system, and
are documented in [3]. All data sets were rendered anony-
mous by replacing user-confidential information (e.g., user
names) with dummy information that retained the seman-
tics of the original data. The original data are split into four
groups comprising 55 novice users, 36 experienced users,
52 computer-scientist users, and 25 non-programmer users,
all of whom were affiliated with the University of Calgary
(Canada) as students, faculty, researchers or staff. Green-
berg defined these categories carefully, but they will not be
repeated here due to space limitations and the lack of a com-
pelling need to do so.

The Greenberg data provide much more complete infor-
mation about the user’s command line behavior than do the
Schonlau et al. data. Greenberg supplies the command line
as typed, including flags, grammar and arguments, along
with a note of whether the typed command was an alias for
anything, and if so, what. In addition, a record of history
use and errors is kept, and each set of commands executed
in the same terminal window is stamped with the time at
which that window was opened and closed.

An example of an original Greenberg data entry appears
in Table 2. S-lines give the day, date and time of opening of
the Xterm in which the command line was issued. E-lines
give the day, date and time of closing (or ending) of the
Xterm in which the command line was issued, or NIL if not
available. C-lines give the command line as typed by the

S Fri Feb 20 23:39:46 1987
E NIL
C purge
D /user/cpsc500/l01b91/xxxxxx/c500
A rm -i -i .ed_[0-9]* .emacs_[0-9]* .*.CKP
.*.BAK *.CKP *.BAK ; clear ; /bin/ls -al | more

H NIL
X NIL

Table 2: Example of Greenberg raw data.

user. D-lines give the path of the working directory. A-lines
give the command executed by the shell if different from
the one that the user typed, i.e., the aliased command line.
H-lines indicate whether history was used. X-lines indicate
whether an error was made, and if so, of what sort.

Because the current experiments focus on profiling user
behavior through command-line activity, the Xterm time,
history and error categories are ignored for the purpose of
constructing the enriched command-line data employed in
this work. After removal of directory and filename-type ar-
guments, and ignoring the current directory, history, and er-
ror categories, the Greenberg entry would be transformed as
follows:

C purge
A rm -i -i ; clear ; /bin/ls -al | more

Truncated command lines consist of only the first item
typed, with no information about aliases, flags or argu-
ments; hence the truncated command line version of the
data for this entry would become:

purge

An enriched command line is a concatenation of the
whole command line typed, including flags, arguments and
items of shell grammar (such as & or ��) together with
the expansion of any alias employed; hence the enriched
command-line version of this entry would be:

purge rm -i -i ; clear ; /bin/ls -al | more

Side-by-side examples of the two types of data are shown
in Table 1 of Section 3. Note that the enriched data must be
stripped of directory and filename arguments, because nor-
mal user data is used as a proxy for masquerader data, and it
is clearly unreasonable to inject John’s data with data from
Jack, whilst leaving in file and directory names specific to
Jack. Thus, the final version of the two types of data would
be as shown in Table 3.

0-7695-1952-0/03 $17.00 c� 2003 IEEE 7 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

Truncated Enriched
cd cd
more more
diff diff
lpr lpr -Pjp
setenv setenv
rwho rwho -a
set set
nroff nroff -me � more
ls ls -F -l -l
enscript enscript -2Gr -L66 -Palw -h

Table 3: Examples of truncated (left) and enriched (right)
command-line data, after removal of file/directory names.

5 Experimental method

Two experiments were conducted – one with truncated
command lines and one with enriched command lines.
Readers familiar with previous work will note differences
in experimental methodologies between earlier studies and
this one. These differences are due primarily to constraints
imposed by the data available. For example, the amount
of data used in training and testing sets differed here, com-
pared to those used in earlier work, primarily due to the
contents of the original data sets.

5.1 Selection of subjects

The Greenberg data contains 168 users, not all of which
were well suited for the present masquerade study. A subset
of users – fifty victims and 25 masqueraders – was selected
in consideration of various issues, detailed below.

In earlier studies using the Schonlau et al. data, each of
the 50 users had 15,000 commands; these were separated
into a set of training data (the first 5000 of the 15,000 com-
mands) and testing data (the remaining 10,000 commands).
It would be ideal to match the numbers of commands in
these earlier data sets, but unfortunately this could not be
done, because most of the Greenberg users did not have that
many commands.

Figure 1 shows the decision diagram for selecting exper-
imental users from the pool of 168. Of the 168 users in the
Greenberg data, 112 produced fewer than 2000 commands;
the remaining 56 users produced between 2024 and 12,056
commands, depending on the user. Of these 56 users, 6
had generated markedly more command lines than the oth-
ers, having in excess of 5000 command lines each. These
6, due to their being in essence, outliers, were removed
from consideration, leaving 50 subjects, a group coinciden-
tally the same size as was used in previous work. These
50 users were distributed across the user categories as fol-

lows: 13 novices, 15 experienced, 21 scientists and 1 non-
programmer. A further 25 users were selected at random
from the remaining pool of 118 users to serve as a source of
masquerader commands.

2000 commands
Fewer than

2000 commands

112
Users

Discarded

Victim Pool

Users
50

Users
6

Discarded

Users
168

Users
56

Fewer than
5000 commands 5000 commands

More than

More than

Figure 1: Decision diagram for selecting the 50 subjects
comprising the victim pool.

5.2 Training and testing data
The data for the subject users was truncated to 2000 com-

mand lines. The first 1000 lines for each user were kept
aside as training data upon which to base a profile of self.
The second 1000 command lines were kept as unlabelled
self data with which to test self-recognition capacity.

The last 100 command lines from each of the 25 mas-
querader users were concatenated to give a stream of 2500
command lines which constituted a pool from which to
draw “masquerade” data. These 2500 command lines were
processed into 250 nonoverlapping testing units of 10 com-
mand lines each. Thirty of these units were then selected at
random and injected at randomly selected positions, without
replacement, into the stream of 1000 self command lines,
resulting in 130 blocks of 10 command lines for testing
self and non-self recognition capacity. Note that although
the masquerade blocks and injection positions were ran-
domly selected, they were held constant over the 50 users,
i.e., the test data for each user contains the same masquer-
aders in the same positions. For example, each victim might
have been injected at position 2 with the same masquerader
block, thus ensuring consistency throughout the injected
data.

0-7695-1952-0/03 $17.00 c� 2003 IEEE 8 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

5.3 Detection/classification algorithm

The naive Bayes algorithm with simple updating (pass-
ing each approved block of self back to the self model for
X) was employed. Naive Bayes classifiers are simple prob-
abilistic classifiers known for inherent robustness to noise
and fast learning time (learning time is linear in the number
of training examples). These classifiers have a history of
successful use in text classification, where the task is to as-
sign a document to a particular class, typically using the so-
called “bag of words” approach, which profiles document
classes based simply on word frequencies [10]. Deciding
whether a newspaper article is about sports, health or poli-
tics, based on the counts of words in the article, is similar
to the task of deciding whether or not a stream of command
lines issued at a computer terminal belongs to a particular
authorized user or not.

In the present context, the classifier works as follows.
The model assumes that the user generates a sequence of
commands lines, one line at a time, each with a fixed proba-
bility that is independent of the command lines preceding it
(this independence assumption is the “naive” part of naive
Bayes). The probability for each command line � for a given
user � is based on the frequency with which that command
line was seen in the training data, and is given by:

���� �
Training Count��� � �

Training Data Length � �����

where � is a pseudocount and � is the number of distinct
command lines (i.e., the alphabet) in the data. The pseudo-
count can be any real number larger than zero (0.01 in this
study), and is added to ensure that there are no zero counts;
the lower the pseudocount, the more sensitive the detector is
to previously unseen commands. The pseudocount term in
the denominator compensates for the addition of a pseudo-
count in the numerator. The probability that a test sequence
of the five command lines “a a b b b” was generated by a
particular user, say User 1, denoted as ��, is:

����� � ����� � ����� � ����� � �����

or �������
� � �������

� where ����� is the probability that
User1 typed the command line �. For each User X, a model
of Not X can also be built using training data from all other
victims. The probability of the test sequence having been
generated by Not X can then be assessed in the same way
as the probability of its having been generated by User X.
The larger the ratio of the probability of originating with X
to the probability of originating with Not X, the greater the
evidence in favor of assigning the test sequence to X. The
exact cut-off for classification as X, that is the ratio of prob-
abilities below which the likelihood that the sequence was
generated by X is deemed too low, can be determined by a

cross-validation experiment during which probability ratios
for sequences which are known to have been generated by
self are calculated, and the range of values these legitimate
sequences cover is examined.

The success of naive Bayes has often struck researchers
as surprising, given the unrealistic assumption of attribute
independence which underlies the naive Bayes approach.
However, [1] demonstrates that naive Bayes can be optimal
even when this assumption is violated. Further general de-
tails regarding naive Bayes can be found in [7] and [11]. For
a more detailed description of the algorithm in the context
of masquerade detection, the reader is referred to [8].

5.3.1 Training procedure
The goal of the training procedure is to establish profiles of
self and nonself, and to determine a decision threshold for
discriminating between examples of self and nonself.

For each user, the detector builds a profile of self based
on the command line frequencies from the 1000 command
lines for that user; it builds a separate profile of nonself
based on the training data for the other 49 users, i.e., 49
x 1000 command lines.

Five-fold cross-validation, with sets of 200 and 800 com-
mand lines, was performed in order to determine the appro-
priate threshold for the detector. In each round, the larger
set was used to build a profile of self and the smaller set was
used to determine the range of values the detector would
assign to material generated by the authorized user. The
test data for each round consisted of 20 blocks of ten com-
mand lines; thus a total of 100 scores (five rounds of val-
idation times 20 blocks per round) for self were generated
during cross-validation. For each user the individual thresh-
old was taken to be the value associated with the block of
data deemed least likely to have come from that user. Prior
experience indicates that better performance with respect to
the false alarm problem is achieved with a single generic
threshold for all users, as opposed to an individual thresh-
old customized to each user. This generic threshold was
taken to be the mean of the 50 individual thresholds.

5.3.2 Testing procedure

The detector was presented with 130 blocks of mixed, un-
labelled self and non-self data; this is approximately 3/4
self (100 blocks) to 1/4 nonself (30 blocks), as described
earlier. For purposes of updating, any block deemed to be
consistent with the profile of self was passed back to the de-
tector to update the model of self for the user in question.
Thus, updating of the profile of self (but not of the thresh-
old, which was not updated at all) occurred after each block
accepted as self.

0-7695-1952-0/03 $17.00 c� 2003 IEEE 9 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

6 Results and analysis

The experimental results show clearly that including in-
formation about aliases, flags and items of shell grammar
brings about a dramatic improvement in masquerade detec-
tion. In the present study there was an improvement from
70.9% hits to 82.1% hits using truncated and enriched data,
respectively; this is an increase of 15.8%. The false alarm
rates of the two data types are comparable, at 4.7 and 5.7%
respectively, an increase of 21.3%. These figures can also
be interpreted in terms of the cost of errors, namely misses
and false alarms. If the costs of these errors are equal, then
the cost function (weighted combination of misses and false
alarms) goes from 33.8 to 23.6, an improvement of 30.2%.
In previous work, the costs of errors were not equal; misses
cost six times as much as false alarms [8]. Using this cost
measure, the improvement was 9.1%, from 57.3 to 52.1. Ta-
ble 4 summarizes the results.

Data Greenberg Greenberg
Type of data Truncated Enriched
Amount of training data 1000 1000
Block size 10 10
Hits % 70.9 82.1
Misses % 29.1 17.9
False Alarms % 4.7 5.7
Cost (equal weights) 33.8 23.6
Cost (FA=6*Miss) 57.3 52.1

Table 4: Results for naive Bayes on Greenberg data, aver-
aged across all users.

The average rates portrayed by the table do not tell the
whole story. It is important to note that not only is the av-
erage hit rate higher for enriched command lines, but that
this increase in the average reflects an improvement across
the board, rather than just for one or two outliers. With en-
riched command lines, there is only one user (User 36) for
whom the hit rate is less than 66%, compared with 20 such
users when truncated command lines are employed.

6.1 ROC curve

In assessing the results of a masquerade detector, one
is concerned with the trade-off between correct detections
(hits, or true positives) and false detections (false alarms,
or false positives). These are often depicted on a receiver
operating characteristic curve (called an ROC curve) where
the percentages of hits and false alarms are shown on the
y-axis and the x-axis, respectively.1 ROC curves for the
naive Bayes classifier (with updating) on the truncated and
the enriched versions of the Greenberg data (segmented into

1For a thorough exposition of ROC curves, see [14].

% False Alarms
10 20 30 40 50 60 70 80 90 100

%
 H

its

10

20

30

40

50

60

70

80

90

100

0

Enriched command lines: area is 93.03%
Truncated command lines: area is 92.70%

Figure 2: Receiver operating characteristic (ROC) curve for
the naive Bayes classifier (with updating) as applied to trun-
cated and enriched Greenberg data.

sequences of length 10) are presented in Figure 2. The ROC
curves were obtained by stepping the value of the threshold
through a range bounded at one end by the threshold for
which 100% hits were obtained, and on the other end by the
threshold for which no false alarms were observed, in in-
crements of 0.05. The dotted curve applies to the truncated
data; the bold curve applies to the enriched data. Lenient
decision criteria allow a higher hit rate, but also a higher
false-alarm rate; more stringent criteria tend to reduce both
rates. Each point on the curves indicates a particular trade-
off between hits and false alarms. Points nearer to the upper
left corner of the graph are the most desirable, as they indi-
cate higher hit rates and lower false-alarm rates.

Although the difference in area under the two curves is
very small (93.03% for enriched data, and 92.70% for trun-
cated data), it is still highly significant for performance. For
example, it is possible to obtain almost 60% hits at a false
alarm rate of around 1% with the enriched data, whilst less
than 50% hits can be obtained at that level of false alarms
with the truncated data. At the high hit-rate end of the con-
tinuum, enriched data allows 85% hits at 7% false alarms,
whereas a similar hit rate on truncated data results in nearly
doubling the false-alarm rate to almost 13% false alarms.
The curve for the enriched data hits 100% detection at a
false alarm rate of 22%, but the curve for the truncated data
hits 100% only at a false alarm rate of 58%, more than dou-

0-7695-1952-0/03 $17.00 c� 2003 IEEE 10 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

ble the false alarms. If the costs of misses and false alarms
are the same, then using the truncated data comes at an enor-
mous expense. The enriched data enable a higher hit rate at
a much lower false alarm rate.

Multiplier coefficient
1 2 3 4 5 6 7 8 9 10

Co
st

1000

2000

3000

4000

5000

0

Truncated data
Enriched data

Figure 3: The cost of error in which a miss is N times the
cost of a false alarm. The point of equal cost of using ei-
ther truncated or enriched data is .3155, where the two lines
cross.

Figure 3 shows the cost of error for cases in which a miss
is N times the cost of a false alarm, with N shown along the
x-axis. When N is 1, the cost of a miss is the same as the
cost of a false alarm. When N is .3155, the cost of using
either truncated or enriched data is the same. As the relative
cost of a miss to a false alarm goes up, the cost of using
truncated data becomes much higher than the cost of using
enriched data, as shown by the diverging lines in the graph.

For the masquerade detection problem, it seems reason-
able to estimate costs in this way, because a missed mas-
querader may cause damage worth far more than the mere
cost of investigating a false alarm. Of course this depends
on how many false alarms occur for every missed masquer-
ader, but given equal base rates we can see that once the cost
of a miss rises to being more than about one third (.3155)
the cost of a false alarm, then using enriched command-line
data entails an enormous advantage which escalates as the
cost differential grows.

6.2 Transition table

While ROC curves and cost functions can portray the
gross differences between using truncated and enriched
data, examining the transitions of events from one kind of
data to another can also be informative. The objective of
using enriched data was to facilitate as many transitions as
possible, from misses in the truncated data to hits in the en-
riched data. How many transitions of various types were
there, and what were the interesting cases? Table 5 summa-
rizes the total transitions from truncated to enriched data.
For example, of all the masquerade injections that were
missed in the truncated data, 67.43% of them transitioned to
hits in the enriched data. Of all the injections that were cor-
rectly detected in the truncated data, only 11.84% of them
transitioned to misses in the enriched data, for a net gain of
55.59%. Of the hits in the truncated data, 88.16% of them
remained hits in the enriched data.

Transition type Percent change
Miss to hit 67.43
Hit to miss 11.84
Hit to hit 88.16
Miss to miss 32.57

Table 5: Overall transitions from truncated to enriched data.

A complete presentation of the transitions between the
truncated and enriched conditions, resulting from all 30 in-
jections into each of 50 victims, is shown in Table 6. These
were run in two conditions, truncated and enriched, with
the anticipation that missed detections in the truncated con-
dition would transition to correct detections in the enriched
condition. For example, column 1 and row 1 of the table
shows the effect of masquerader 1 on victim (user) 1. The
symbol * indicates that this injection was correctly detected
in both the truncated and enriched conditions. Column 1
row 7 (+) shows a case in which a miss in the truncated con-
dition transitioned to a hit in the enriched condition, which
is exactly what was hoped for. Of course there were also a
few cases, such as for masquerader 7, victim 1, in which the
enriched data effected a reduction in correct detections, but
overall these were in the minority.

6.3 Pathologies showing effects of enriched data

Close examination of Table 6 shows the details of classi-
fications that improved from a miss to a hit or deteriorated
from a hit to a miss upon moving from truncated data to
enriched data. As seen in the table, the changes indicated
in the columns corresponding to masqueraders 2, 16 and 26
stand out, because they show the largest numbers of miss-
to-hit transitions. Detection of these injections improved
more than two-fold with the introduction of enriched data;

0-7695-1952-0/03 $17.00 c� 2003 IEEE 11 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

Victim Injection/Masquerader Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 * + * * + * - * * * * * * * * + * * * * * ! * - + + + * * *
2 * + * * * * ! + * * * + * * * * * * * * + + * ! * + * + * *
3 * * * * ! * - * * * * * * * * + * * + * * ! * - + ! + * ! *
4 * ! * * * * ! * * * * * * * * * * * * * + + * ! * + * * - *
5 * * ! * * - - * * * * * - * + ! - * + - * * ! ! + + * * * *
6 * ! * * * - ! + * * * * * * * + - * + * ! * * ! + + * + - -
7 + ! * + ! * ! + * * * * * * * + * * ! * ! ! * ! * + + + - *
8 + + * + - + ! * * * * * + * * + + * ! + + + * ! + + + + ! *
9 * + * * * - - * * * * * - * * + - * + - + + * ! * * * + * *
10 * + * + * ! - * * * * * ! * * + ! * + ! * + * - * + * * * *
11 * + * * - - ! + * * + * - * * + - * * - ! + * ! + + * + - +
12 * * * * + * - * * * * * * * * + * * + * * + * - + ! + * * *
13 * + * * * - - * * * ! * - * * + * * + - ! * * - * + * + * *
14 + + * * + * - + * * * * * * * + - + + * * + * ! + + + + * *
15 * + * + ! * - * * * * * * * * + * * ! * * ! * - + + + * ! *
16 + ! + + * ! - * * * * * + - * + ! + + + + ! * - + + + * * *
17 + ! * * + * ! + * * * * * - * ! * * + * + ! * ! + + + + * *
18 * + + + ! * ! * * + * * * * + + * * ! * * ! * ! + + ! + ! +
19 + ! * * + * - * * * * * * * * + * * * * ! ! * - * ! + + * *
20 + ! * + + * - * * * * * * - * ! * * * * + ! * - + + + * + +
21 * ! * * * * ! + * * * * * * * + - + + * ! - * ! * * * + * *
22 * + * * * * ! * * * * * * * * + * * * * * + * ! * + + + * *
23 * ! ! * * - ! * * * * * - * * + - * * - + * * ! * * * * * *
24 * + * * * * ! * * * * * * * * + * * * * + * * ! * * * * * *
25 * + * * - - ! + * * * * - * * + - * ! - + + * ! + + * * - *
26 + + * ! + * ! + * * * * * * * + * * + * + ! * ! * + + * + *
27 + ! * + + + ! + * * * * + - * ! ! * + + + ! * ! + + + * + *
28 * + * * * * - * * * + * * * * + * * * * + ! * - * + + + * +
29 * + + * * + - * * * * * * * * * * * * * * + + - * + + * * *
30 * ! + * - * - * * * * * * * * + - * ! * * * * - + + * * - *
31 * + * * * * - * * * * * * * * + - * + * + ! * - * + * + * *
32 + ! + * * * - * * * * * * * * + * * * * * ! * - + + + * * *
33 + + + * + * - * * * * * * - * ! * * + * * ! * - + + + * ! *
34 + + + * + - - * * * * * - * * ! - * + - + ! * - + + + + * *
35 * + + * - + - * * * * * + * * + + * ! + * * * - + * * * - *
36 * ! * * * - - * * * ! * - ! * ! - * + - ! + * - * * * * * !
37 * * + + * + - * * * * * + * * + + * * + * + * - * + * + * *
38 * + * * * * - * * * * * * * * + * * * * * + * - * + + + * *
39 * * + * * * - * ! - * ! * * * * * * * * * * * - * * * * * *
40 * ! * * * * - * + ! + ! * * + ! * * * * + * * - + * * * - +
41 * + * * * * - * ! ! * ! * * * * * * * * * * * - * * * * * *
42 * + * * * * - * + + * ! * * * * * * * * * * * - * * * * * *
43 * + * * * * - * + + * ! * * * * * * * * * * * - * * * * * *
44 * + ! * * * - * + ! * ! * * * * * * * * + * * - * * * * * *
45 * * ! * * * - * ! ! * ! * * * * * * * * * * * - * * * * * *
46 * + * * * * - * * * * ! * * * * * * * * + * * - * * * * * *
47 * * * * * * - * + ! * ! * * + + * * * * * * * - * + * * * *
48 * ! * * * ! - * * * * * ! * * + ! ! + ! * * * - + * * * * *
49 * * + * * * - * ! ! * ! * * * * * * * * * * * - * * * * * *
50 * * ! * * * - * * - * * * * * * * * * * * * * - * * * * * *

Table 6: Transition in classifications of nonself blocks between truncated and enriched command line data. For example, the
+ in column 2 of row 1 indicates that masquerader 2 was missed in victim 1’s truncated data, but correctly detected in the
enriched data. Key: (+) miss to hit; (-) hit to miss; (*) hit to hit; (!) miss to miss.

masquerader 2 was detected in 26 more instances, and mas-
queraders 16 and 26 were detected in 30 more instances. All
of the misses for these three masqueraders were missed in
both the truncated and enriched conditions. All of the tran-
sitions were from miss to hit, and none of the transitions
were from hit to miss. Masqueraders 7 and 24 experienced
the largest numbers of hit-to-miss transitions. The next few
subsections briefly discuss selected pathological cases to il-
lustrate their causal behaviors; unfortunately, not all of the
interesting cases can be discussed here, due to space limita-
tions.

6.4 Masquerader 02 revealed by unusual flags

Masquerader 2 experienced 26 miss-to-hit transitions
and no hit-to-miss transitions. Enriching the data caused
this masquerader to go from an 18% detection rate across 50
victims to a 70% detection rate due to the masquerader’s use
of an unusual command-line flag. Most victims regularly
use the commands ls (list files) and cat (view files). Through

enrichment, ls became ls -al (list detailed info about all files)
and cat became cat -n (view files and add line numbering).
These flags are unusual, and naive Bayes noticed this. En-
richment allows unusual behavior in the injection to be seen
by naive Bayes, which is precisely the intention of using en-
riched data. The truncated and enriched blocks of data that
revealed the masquerader are shown in Table 7.

6.5 Novel commands conceal Masquerader 07

Masquerader 7 experienced 35 miss-to-hit transitions
and no hit-to-miss transitions. Enrichment causes this mas-
querader to go from a 70% detection rate to a 0% detec-
tion rate. The truncated rlogin command (remote login) en-
riches to rlogin /usr/ucb/rlogin -8 (an alias of rlogin, the -8
means to enable the 8th bit (parity bit) in the network con-
nection). The enriched form of the command was not seen
in the training data. Naive Bayes treats never-before-seen-
commands as more likely to be self than non-self, because
of the higher command-frequency ratio in the nonself data

0-7695-1952-0/03 $17.00 c� 2003 IEEE 12 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

Truncated Enriched
ls ls -al
cat cat -n
sc sc -D -o
a5 a5
a5 a5
a5 a5
mail mail
ftp ftp
cat cat
mail mail

Table 7: Masquerader 2, revealed by unusual flags.

as opposed to the self data; that is, the probability of oc-
currence is lower in the nonself data. Because 80% of the
enriched block was never-before-seen, the block was classi-
fied as self. This kind of behavior, typical of naive Bayes, is
vulnerable to exploitation by a clever masquerader to elude
detection. Note that masquerader 24’s similar outcome can
be explained by the same mechanism. See Table 8.

Truncated Enriched
rlogin rlogin /usr/ucb/rlogin -8
rlogin rlogin /usr/ucb/rlogin -8
rlogin rlogin /usr/ucb/rlogin -8
rlogin rlogin /usr/ucb/rlogin -8
rlogin rlogin /usr/ucb/rlogin -8
mail mail
rlogin rlogin /usr/ucb/rlogin -8
rlogin rlogin /usr/ucb/rlogin -8
mail mail
rlogin rlogin /usr/ucb/rlogin -8

Table 8: Masquerader 7, concealed by novel commands.

6.6 Simplistic commands reveal Masquerader 16.

Masquerader 16 experienced 30 miss-to-hit transitions
and no hit-to-miss transitions. Enrichment moves the 24%
detection rate to 84%. Yet, enrichment did not reveal any-
thing new about the masquerader’s command line. This is
not an error, because the masquerader’s behavior is too sim-
ple for most victims. Most victims have ls (list files) aliased
to use some set of preferred flags. The lack of these flags re-
veals the masquerader to naive Bayes. Counter-intuitively,
enrichment can help even when it may not reveal anything
new about the injection. Because the truncated and enriched
data in this case are the same (the differences were in the

training data, not the test data), they are not shown.

6.7 Masquerader 26 revealed by printer choice

Masquerader 26 experienced 30 miss-to-hit transitions
and no hit-to-miss transitions. A 34% detection rate in the
truncated data turned into a 94% detection rate through en-
richment. The lpq command (used to check the print queue
length) became lpq -Palw2 through enrichment (check
queue on printer named alw2). Many victims check print
queues, so lpq is not suspicious. Different victims use
different printers, however, and the alw2 specification, re-
vealed through enrichment, is suspicious. In this example,
naive Bayes learns indicators of victim preferences (e.g.,
preferred printers). See Table 9.

Truncated Enriched
ptroff ptroff /userc/offstaff/group.bin/lwpp
lpq lpq -Palw2
lpq lpq -Palw2
ptroff ptroff /userc/offstaff/group.bin/lwpp
lpq lpq -Palw2
e e emacs
e e emacs
lpq lpq -Palw2
ptroff ptroff /userc/offstaff/group.bin/lwpp
lpq lpq -Palw2

Table 9: Masquerader 26, revealed through choice of
printer.

7 Discussion

The hypothesis that enriched command-line data can en-
hance detection of masqueraders has been confirmed. The
use of enriched data:

� Increased hits by 15.79%

� Reduced misses by 38.53%

� Increased false alarms from 4.7% to 5.7%

� Reduced equal-basis cost of error by 30.02%

The study improved hit rates to 82.1%, which is
a 32.2% increase over the previous best masquerade-
detection achievement [8], and more than 100% improve-
ment over the best of the results from [12]. This was ac-
complished using the same number of masquerade victims
(50) as in these two previous studies, but with 5 times less
training data, and 10 times less information at each decision
point (block size of only 10 commands).

0-7695-1952-0/03 $17.00 c� 2003 IEEE 13 DSN 2003: Maxion

International Conference on Dependable Systems & Networks: San Francisco, CA, 22-25 June 2003.

Some general observations can be made on the basis
of the selected examinations of conspicuous masqueraders.
The detector is able to learn subtle user idiosyncrasies that
exist in real data, and it can leverage that knowledge in de-
tecting masqueraders who don’t share those idiosyncrasies
(e.g., a victim uses “ls” less often than the attacker does).

Because of the mathematics of the naive Bayes detector,
it is easy to understand why the detector makes the deci-
sions it makes; and, unlike neural nets, its internals are ac-
cessible and can be brought out to ancillary processes such
as alarm mitigators, displaying evidence to operators. The
detector is amenable to fine-grained analysis; that is, one
can determine the exact elements of the attacker and victim
environments that influence hits, misses and false alarms,
hence providing a better comprehension of coverage. The
detector works reasonably well on small block sizes (10
commands).

A point worth noting is the vulnerability of the system
in respect of unique, previously unseen masquerader com-
mand lines. A block containing a high proportion of (or
nothing but) previously unseen commands will have an ex-
ceedingly low probability of having been generated by ei-
ther the model of self or the model of non-self. However,
due to the larger amount of data in the non-self model, the
probability of nonself will be even lower than that of self,
and since classification is done on the basis of the ratio of
self to nonself, an intruder issuing such a block of com-
mands may beat the detector (depending upon the thresh-
old). One solution to this would be a two-tiered threshold-
ing system, in which an absolute limit on the likelihood of
self is applied as a primary filter, before the ratio test. Toler-
ance of previously unseen commands is important, because
the data show a pronounced tendency for users to embark
on sudden spurts of new command usage.

8 Conclusion

This work represents an advance over previous
masquerade-detection research, both in terms of improved
detection statistics, as well as in achieving an understand-
ing of what works and what doesn’t work, and why. There
is now at least some comprehension of the conditions that
lead the detector to failure. Possibly through design diver-
sity (multiple diverse detectors), there will be ways to com-
pensate for these failures, now that at least some details of
these failure characteristics are now known in some detail.

9 Acknowledgements

The Defense Advanced Research Projects Agency
(DARPA) supported this work under contracts F30602-99-
2-0537 and F30602-00-2-0528; thanks to Cathy McCollum
for encouraging this research. Tahlia Townsend (now at
Yale University) performed the initial data analyses. Kevin

Killourhy helped with data management and analysis. Imre
Kondor (now at Columbia University) helped with a visu-
alization system for interpreting naive Bayes classification
results. This study would not have been possible without
Saul Greenberg’s gracious contribution of his data.

References

[1] P. Domingos and M. Pazzani. Beyond independence: condi-
tions for the optimality of the simple Bayesian classifier. In
L. Saitta, editor, 13th International Conference on Machine
Learning (ICML-96), pages 105–112, 03-06 July 1996, Bari,
Italy. Morgan Kaufmann, San Francisco, California, 1996.

[2] M. Fan. Massive identity theft alleged: Credit fraud affects
30,000, authorities say. San Jose Mercury News, San Jose,
California, 26 November 2002.

[3] S. Greenberg. Using Unix: Collected traces of 168 users.
Technical report 88/333/45, Department of Computer Sci-
ence, University of Calgary, Calgary, Canada. 1988.

[4] V. Loeb. Spy case prompts computer search. Washington
Post, 05 March 2001, page A01.

[5] T. F. Lunt. A survey of intrusion-detection techniques. Com-
puters & Security, 12(4):405–418, June 1993.

[6] T. F. Lunt and R. Jagannathan. A prototype real-time
intrusion-detection expert system. In IEEE Symposium on
Security and Privacy, pages 59–66, 18-21 April 1988, Oak-
land, California. IEEE Computer Society Press, Washing-
ton, DC, 1988.

[7] C. D. Manning and H. Schutze. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, Mas-
sachusetts, 1999. Fourth printing, 2001.

[8] R. A. Maxion and T. N. Townsend. Masquerade detection
using truncated command lines. In International Conference
on Dependable Systems & Networks, pages 219–228, 23-26
June 2002, Washington, DC, IEEE Computer Society, Los
Alamitos, California, 2002. .

[9] R. A. Maxion and T. N. Townsend. Masquerade detection
augmented with error analysis. IEEE Transactions on Reli-
ability, In press, 2003.

[10] A. McCallum and K. Nigam. A comparison of event mod-
els for naive bayes text classification. In Learning for Text
Categorization, papers from the 1998 AAAI Workshop, 27
July 1998, Madison, Wisconsin, pages 41–48. Published
as AAAI Technical Report WS-98-05, AAAI Press, Menlo
Park, California, 1998.

[11] T. M. Mitchell. Machine Learning. McGraw-Hill, Boston,
Massachusetts, 1997.

[12] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr,
M. Theus, and Y. Vardi. Computer intrusion: Detecting mas-
querades. Statistical Science, 16(1):58–74, February 2001.

[13] E. D. Shaw, K. G. Ruby and J. M. Post. The insider threat
to information systems: The psychology of the dangerous
insider. Security Awareness Bulletin, 2-98, Department of
Defense Security Institute, Richmond, Virginia. September
1998.

[14] J. Swets and R. Pickett. Evaluation of Diagnostic Systems:
Methods from Signal Detection Theory. Academic Press,
New York, 1992.

0-7695-1952-0/03 $17.00 c� 2003 IEEE 14 DSN 2003: Maxion

