
International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

User Discrimination Through Structured Writing on PDAs

Rachel R. M. Roberts, Roy A. Maxion, Kevin S. Killourhy, and Fahd Arshad
{rroberts, maxion, ksk, fahd}@cs.cmu.edu

Dependable Systems Laboratory
Computer Science Department
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 / USA

Abstract

This paper explores whether features of structured
writing can serve to discriminate users of handheld de-
vices such as Palm PDAs. Biometric authentication
would obviate the need to remember a password or to
keep it secret, requiring only that a user’s manner of writ-
ing confirm his or her identity. Presumably, a user’s dy-
namic and invisible writing style would be difficult for an
imposter to imitate.

We show how handwritten, multi-character strings
can serve as personalized, non-secret passwords. A pro-
totype system employing support vector machine classi-
fiers was built to discriminate 52 users in a closed-world
scenario. On high-quality data, strings as short as four
letters achieved a false-match rate of 0.04%, at a corre-
sponding false non-match rate of 0.64%. Strings of at
least 8 to 16 letters in length delivered perfect results—a
0% equal-error rate. Very similar results were obtained
upon decreasing the data quality or upon increasing the
data quantity.

1. Introduction

Passwords are standard in computer access control,
but they can be forgotten, compromised without detec-
tion, and denied as having been used (repudiation) [14].
A proposed alternative is biometrics, or measurements of
the human body. Biological biometrics are physical traits
such as the iris, fingerprint, and face; behavioral biomet-
rics are activities such as handwriting, keystrokes, and
gait. Handwriting is an alterable biometric: it changes
in response to varying conditions, e.g., text. Alterable
biometrics are suitable for challenge-response protocols,
whose dynamic nature resists forgery and replay, thereby
providing stronger non-repudiation [14].

Personal digital assistants (PDAs) can potentially
provide effective and low-cost biometric authentication.

Some allow structured writing that may facilitate hand-
writing verification (because it enforces writing consis-
tency), while also enabling automatic letter recognition.
A PDA—or its input technology—could be integrated
into a kiosk to capture and relay biometric data cheaply,
while enjoying protection from theft and tampering.

To test whether structured handwriting on PDAs has
promise as a biometric, we devised an evaluation of mild
difficulty. Phillips et al. [16] recommend that evaluations
be not too hard nor too easy; there are three stages of eval-
uation protocols: technology, scenario, and operational.
We take a first step in examining the potential of PDAs to
convey biometric-based security, by conducting a prelim-
inary technology evaluation on a laboratory algorithm.

2. Problem and approach
We address whether it is possible to discriminate en-

rolled users on the basis of their handwriting characteris-
tics in Graffiti [15], the original structured language of
Palm handhelds. Specifically, we seek to build a sys-
tem that can confirm or deny a claimed identity within
a closed set of enrolled users; it is assumed that no out-
siders can access the biometric system. Our example ap-
plication is designed to catch insider attacks [21] and to
provide traceability of human actions.

Our approach is to devise a non-secret challenge
string, one per enrolled user, to distinguish that user from
all the others. Challenge strings are pre-computed, based
on errors and successes observed in preliminary testing
on enrollment templates. In a hypothetical transaction, a
user claims an identity and receives a personalized chal-
lenge string, which he or she writes on a Palm PDA. To
confirm or deny the identity claim, the biometric sys-
tem determines which enrolled user most likely wrote the
sample, and reports whether or not the predicted identity
matches the claimed one. We collect biometric data to
build a corpus; data from the corpus is used to simulate
user participation in the biometric system.

0-7695-2855-4/07 $25.00 c© 2007 IEEE 378 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

3. Background and related work
To our knowledge, no previous research has at-

tempted to differentiate users on the basis of their hand-
writing idiosyncrasies in a structured input language. Re-
search on a related problem, discriminating users on
the basis of their natural handwriting, is summarized in
[11, 12, 17, 18, 20, 23]. This prior work can be cat-
egorized into signature verification tasks (determining
whether a particular person wrote a signature) vs. writer
identification tasks (determining which one of N known
people wrote a document), and into off-line methods
(writing as a static image) vs. on-line methods (writing
as a dynamic process). The so-called off-line problems
are more difficult than on-line ones, because timing, di-
rection, pressure, and pen-orientation data are not avail-
able, and because recovering writing from a background
document may be hard. Writer identification is more
challenging than signature verification, due to difficulties
in automation, character segmentation, and letter recog-
nition. Off-line signature verification, the most typical
application, usually achieves false-match and false non-
match rates of a few percentage points each, although
these may be optimistic due to the small size of signature
databases [18]. The best team at the First International
Signature Verification Competition achieved equal-error
rates of 2.84% and 2.89%, respectively, on two tasks [25].

A wide variety of features is used to characterize nat-
ural handwriting. Features studied by manual examiners
include the form of the writing as well as spelling and the
type of pen used [3]. On-line signature verification may
utilize functions of time. In off-line writer identification,
features may be text-independent (using global statisti-
cal features) or text-dependent (using features computed
on characters resolved from the image). Because Graf-
fiti writing differs greatly from natural handwriting, the
study of Graffiti letters motivated our features.

The original input language of Palm handhelds,
Graffiti, is a stylized version of printed English (see Fig-
ure 1). The latest version, slightly modified, is called
Graffiti 2. Graffiti is more constrained than natural hand-
writing; this makes letter recognition easier. The Palm
PDA’s screen digitizes information about pen pressure
(a binary judgment, either up or down) and position (in
Cartesian coordinates), in order to recognize letters.

In the framework of research on handwriting biomet-
rics, our problem is a kind of writer verification task, us-
ing dynamic information, text-dependent features, and an
automated decision process. Aspects of signature veri-
fication and writer identification apply to our work, al-
though to a limited extent because of the differences be-
tween natural and constrained handwriting.

Most biometric systems perform either positive iden-
tification (verifying positive claims of enrollment), or
negative identification (verifying claims of no enroll-

Figure 1. Graffiti letters “A” to “G” [15]

ment) [24]. Our proposed system has characteristics of
both, and additionally focuses on differentiating enrollees
rather than distinguishing enrollees from outsiders. The
insider-detection task we pursue assumes that informa-
tion about all possible attackers is available.

4. Overview of the three experiments

The aim of this research is to test whether enrolled
users can be discriminated on the basis of their handwrit-
ing characteristics in a constrained input language. To
fulfill this goal, we recruited 52 subjects to write 1417
letters each, and we derived features from those letters
to constitute a corpus. Next, twenty-six classifiers, one
per alphabet letter, were trained using half of the data. A
separate portion of data was set aside to test the classi-
fiers; tests generated user- and letter-specific information
about classification errors. For each user, this informa-
tion was used to order and group letters into challenge
strings, which were employed in simulated authentication
transactions. A reserved portion of the data produced the
transactions (genuine and unpracticed impostor) to exam-
ine how challenge-string length affects system accuracy.

The biometric system was trained and tested anew in
three distinct experiments, each using a different version
of the feature data, to explore the effects of data quality
and quantity on results. (1) High-quality Data contains
features from letters judged to be highly representative
of user handwriting. The purpose of the High-quality
Data experiment is to learn whether users can be discrim-
inated on the basis of their handwriting alone (and not
on their handwriting plus data-capture artifacts). (2) Re-
duced Data is of the same size and proportions as High-
quality Data, but its features come from letters selected at
random, instead of on the basis of quality. The purpose of
the Reduced Data experiment is to gauge whether lower
data quality might decrease accuracy, in comparison to
the High-quality Data experiment. (3) All Data contains
features from all valid letters we asked subjects to write.
The purpose of the All Data experiment is to see whether
an additional quantity of data might improve accuracy, in
comparison to the Reduced Data experiment.

5. Data collection and preparation

Preparation of the three versions of the data (men-
tioned in Section 4) was identical, except where noted.

0-7695-2855-4/07 $25.00 c© 2007 IEEE 379 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

11:2:K:K:660.903022454:65:180�

Subject ID (assigned by experimenter)�

Status code of pen�

Letter written by subject�

Letter presented in stimuli�

Timestamp�
(seconds since last reboot)�

X-coord.�

Y-coord.�

1 = Pen down�
2 = Pen moving�
3 = Pen up�

21 = Pen down�
22 = Pen moving�
23 = Pen up�

50 = Letter not recognized by the Palm PDA�

Stimulus letter written� Non-stimulus letter written�

Figure 2. Example raw data for “K”

5.1. Instrumentation

Three Palm m105 handhelds, each running Palm OS
3.5 and having a maximum screen resolution of 160×160
pixels (with 2-bit color support, or 4 gray levels) were
used to collect data. For each letter stroke drawn on
the screen, a sequence of timestamped (x, y) coordinates,
corresponding to the sampled positions of the stylus, was
produced internally. For example, the first two consec-
utive points of a letter “I” might have <timestamp, x,
y> values of <93.993284, 54, 176> and <94.013007,
54, 182>. We captured the information using a program
installed directly on the Palm PDA and written in the C
language, with the help of the Palm Software Develop-
ment Kit (SDK 3.5). The program noted whether each
written letter matched the one expected according to the
stimuli order (see Figure 2). The median interval between
successive timestamps was 0.02 seconds; the median let-
ter stroke took 0.38 seconds to write.

Approximate granularity of spatial coordinates can
be gleaned from the following information. The dimen-
sions of the Palm PDA’s writing box are 1.60 cm (width)
by 1.85 cm (height), although the entire screen (about 5
cm by 6.75 cm) is sensitive to input. In internal coordi-
nate units, the range of horizontal coordinates in the data
was 143; that for vertical coordinates was 218. Assum-
ing the entire writing box received input at some point,
we estimate an internal coordinate unit to be about 0.1
mm. The average letter width (in internal units) was 21.4,
while the average letter height was 30.5.

5.2. Stimulus materials

Stimuli were chosen to ensure adequate instances of
each letter, while discouraging subject boredom or frus-
tration. Stimuli consisted of 5-letter nonsense strings and
pangram sentences. Nonsense strings contained a bigram
(two-letter combination) followed by a trigram (three-
letter combination). Bigram and trigram motifs were vi-
sually separated by a space on the screen, which the sub-
ject did not write. Motifs were repeated and recombined
to facilitate visual processing; two examples of nonsense

strings are “BC ZAT” and “YZ CKS”. A pangram in-
cludes every letter of the alphabet, e.g., “the five boxing
wizards jump quickly”. Ten nonsense strings were fol-
lowed by one pangram sentence to form one set; there
were 15 sets, resulting in 150 unique nonsense strings
(750 letters) and 15 unique pangrams (667 letters). In to-
tal, each subject wrote 1417 requested letters. The letter
type having the fewest instances in the stimuli had 44,
while the one having the most instances had 94; the me-
dian number of instances of a given letter type was 52.

Stimuli were presented on the screen of the Palm
PDA; subjects were asked to copy each sentence or string
that appeared. A separate chart of the 26 Graffiti let-
ters was displayed for reference, if needed. If a writ-
ten letter was not recognized by the PDA, or if a letter
did not match the one the user was expected to write,
a beep sounded to prod the user to write it over again.
The canonical Graffiti form for the letter “X” requires
two strokes, but to simplify analysis we asked subjects
to use an alternative single-stroke form (looking like a
backwards α); compliance was confirmed. Other alterna-
tive strokes (all single-stroke forms) exist for a handful of
other letters in Graffiti; these were allowed. For example,
the alternative stroke for “Y” looks like a γ.

5.3. Subjects and sessions
Fifty-two subjects participated; each subject wrote

in a single sitting lasting about 45 minutes. To increase
task manageability, we did not introduce a time lag be-
tween enrollment and testing sessions (template ageing),
although this is recommended [13]. Roughly half (25)
of the subjects reported that they could write Graffiti let-
ters without thinking about how to do it. Eleven others
reported that they had learned Graffiti once before; only
nine subjects claimed no prior exposure to Graffiti. Five
subjects were left-handed and 47 were right-handed.

5.4. Data conditioning and version generation
User errors were excluded before analysis, i.e., when

a subject drew a stroke not recognized as a letter, or wrote
a letter other than the expected one. This seldom hap-
pened, because auditory feedback (upon errors) alerted
subjects to pay closer attention. One might include such
instances in a failure-to-acquire rate, but we reserve that
distinction for letters excluded in the High-quality Data.
The three versions of the data, one for each of the exper-
iments described in Section 4, were prepared as follows.

High-quality Data. In the high-quality version of
the corpus, data judged to be unrepresentative of actual
user handwriting were excluded. Figure 3 shows four
“Y”s, the leftmost pair written by one subject, the right-
most by another. Within each pair, the left letter not only
looks unrealistic but also contains unrealistic timing in-
formation, due to an apparent instrumentation anomaly.

0-7695-2855-4/07 $25.00 c© 2007 IEEE 380 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

Data were passed through a filter to exclude letters whose
first few sampled points contained timestamp intervals
shorter than 0.01 seconds (half the typical time lag).
The filter’s results corresponded well with two human-
rater judgments of which letters looked unrealistic, out
of a sample of 1166 “Y”s. Although the filter removed
22.33% (16,455 out of 73,684) of the letters, sufficient
samples remained for analysis. Little data (as little as
0%) was excluded for many subjects, while much data
(as much as 72%) was excluded for some subjects; the
median percent data loss was 20%. From the perspective
of letters, the smallest percent data loss for a given let-
ter was 8% while the greatest was 32%; the median was
22%. The smallest number of instances of a given letter
in the High-quality Data, for any single user, was 13.

Figure 3. Unrealistic “Y”s (left within each
pair); realistic “Y”s (right within each pair)

The data-capture irregularities do not appear to
greatly harm letter recognition on the Palm PDA, since
gross letter shapes remain. Anecdotally, one subject re-
flected that a carefully-written letter was occasionally not
recognized. It may be that instrumentation errors occur
sporadically, with some causing letter-recognition to fail,
and others not. Newer or more sophisticated Palm hand-
helds might ameliorate this problem; future work should
keep data quality in mind.

Reduced Data. This version of the data corpus was
built to match exactly all proportions of the high-quality
version (on a per-letter and per-subject basis). The only
difference was that letter instances were included without
regard to quality; they were selected at random.

All Data. This version used the data corpus in its
entirety. The fewest instances of a given letter, for all
users, was 44.

5.5. Feature extraction

Thirteen quantitative features were extracted from
each letter stroke, which is represented natively in the
Palm PDA as a sequence of <timestamp, x, y> values.
Features appear in Table 1 and are elaborated below.

Each feature attempts to capture a salient character-
istic of Graffiti handwriting. Time to Write informs about
the writer’s speed. The four extreme coordinates (Hor-
izontal and Vertical Minimum and Maximum) describe
the location of the letter in the writing box, which varies

Table 1. Features of Graffiti letter strokes

Time to Write Elapsed time to write letter.
Horiz Minimum Min. coord. value along x-axis.
Horiz Maximum Max. coord. value along x-axis.
Vert Minimum Min. coord. value along y-axis.
Vert Maximum Max. coord. value along y-axis.
H.Start-End Dist (±) (xLast.coord. − xF irst.coord.).
V.Start-End Dist (±) (yLast.coord. − yF irst.coord.).
Horiz Dist Travelled Sum of horizontal distances be-

tween successive points.
Vert Dist Travelled Sum of vertical distances be-

tween successive points.
Letter Length Sum of line-segment lengths be-

tween successive points.
Direction Changes Count of changes between

left↔right or up↔down motion.
Mean Slope Avg. value of pairwise slopes.
Std Dev of the Slope Std. dev. of pairwise slopes.

among users by handedness or habit. Horizontal and Ver-
tical Start-to-End Distance (Signed) help inform whether
a canonical or alternative stroke is used, and describe an
aspect of letter shape. Horizontal and Vertical Distance
Travelled measure how much the stylus moves along a
particular axis, whereas Letter Length measures the to-
tal amount of writing in a letter; all encode how sim-
ple or intricate a letter is. Direction Changes indicates
how straight or shaky a stroke is. Mean Slope and Stan-
dard Deviation of the Slope represent a composite slant
quality, and its consistency. Only finite pairwise slopes
were included in the latter calculations. Nearly 2% of “I”
strokes were perfectly vertical, which resulted in all their
pairwise slopes being infinite. We imputed slope features
in those cases by assuming that each “I” was not purely
vertical, but rather perfectly slanted halfway between ver-
tical and the smallest detectable positive slope.

5.6. Feature transformation and scaling

Classifiers often perform better when data are nor-
mally distributed, or when a normalizing transform is ap-
plied to the data. We transformed the values of each indi-
vidual feature (across all subjects at once) using the ver-
satile Box-Cox power transformation [2], to effect greater
symmetry on each feature’s distribution. A program writ-
ten in the statistical language R [19] semi-automatically
searched for a good value of the Box-Cox parameter λ,
one for each feature. The 13 transformed feature distri-
butions were plotted to inspect their symmetry visually
and to verify that an appropriate transformation had been
found. After transformation, the feature data were scaled
(within each feature, across all subjects at once), such
that each feature mean became 0 and each feature stan-
dard deviation became 1. Data scaling is recommended
before SVM classification [9].

0-7695-2855-4/07 $25.00 c© 2007 IEEE 381 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

5.7. Training, testing, and evaluation data sets

To train and evaluate the biometric system described
in Section 6, three distinct sets of feature data were used:
(1) SVM-train, to train SVM letter classifiers; (2) SVM-
test, to test the classifiers and inform challenge-string cre-
ation; and (3) Evaluate-test, to evaluate the entire system.
We split the feature data into these three sets according to
a 50%/25%/25% rule, in the following way. Before split-
ting, we grouped the feature vectors by subject (making
52 groups), and then within each subject, by letter (mak-
ing 26 groups for each subject). Next, for each subject,
we randomized the order of feature vectors within each
of the 26 letter groups. This made the data more closely
resemble the writing of practiced users, thereby mitigat-
ing potential learning effects among novice subjects. Af-
ter splitting, out of each subject’s “A”s, SVM-train had
50%; SVM-test had 25%; and Evaluate-test had 25%; the
same percentages held for other letters. During system
evaluation (see Section 7), SVM-train and SVM-test are
combined to form Evaluate-train, which contains 75% of
each subject’s letter “A”s, et cetera. Evaluate-train holds
enrollment data and Evaluate-test holds evaluation data.

6. Biometric system construction

In our example application, an enrolled user ap-
proaches a biometric system and claims an identity. The
system issues a challenge string tailored to that identity,
and the user responds by writing the string in constrained
handwriting, using a stylus on a digitized screen. Next,
the biometric system decides which enrolled user most
likely wrote the sample. Our system prototype incorpo-
rates 26 SVM letter classifiers, each trained on enroll-
ment data for its respective letter. When a given letter is
present in a writing sample, the corresponding classifier
is invoked; decision logic is used to combine the outputs
of the classifiers involved, to predict the writer’s identity.

The following sections describe (1) how the SVM
letter classifiers were built; (2) how the classifiers were
tested to produce user- and letter-specific information
about errors; (3) how potential challenge strings were de-
vised using this error information; and (4) how decision
logic yields writer predictions by the biometric system.

6.1. Letter classifiers

The purpose of a letter classifier is to determine the
probability that each subject wrote a given letter, and
to choose the most likely writer. We employed support
vector machine (SVM) classifiers, because they achieve
state-of-the-art performance on handwritten character
recognition [6], a problem similar to the one we address.

About SVMs. Support vector machines [4, 22] use
supervised learning for classification and regression; they
are closely related to neural networks. SVM classifiers

transform data into n-dimensional space (Rn) such that
an n-dimensional hyperplane can be found to optimally
separate the data into classes. These classifiers maximize
the margin (the margin is the distance between classes
in n-dimensional space) as well as minimize empirical
classification errors. SVMs are kernel-based methods;
common options include linear, polynomial, radial basis
function (RBF), and sigmoid kernels. RBF kernels are
reasonable choices for studies in new domains, because
they have fewer parameters, and because they avoid nu-
merical difficulties that other kernels can encounter [9].

The two parameters in RBF kernels are called γ and
cost; γ determines the width of the RBF, while cost deter-
mines the trade-off between reducing errors and creating
a wider margin. Wider margins generalize better, so per-
mitting more errors on training data may prove advanta-
geous. RBF kernel parameters must be tuned before use,
to find their ideal values on the data at hand.

Using SVMs to build letter classifiers. Individ-
ual letter classifiers, as well as the biometric system
as a whole, were built with tools from the R statis-
tical computing project [19], the LIBSVM library of
tools for support vector machines [5], and the R package
e1071 [7] that provides an interface between the R pro-
gramming environment and LIBSVM. Under LIBSVM,
multi-class classification employs the one-against-one
approach [10]. Given k classes, one for each subject iden-
tity, k(k−1)/2 binary classifiers are constructed, one for
each pair of classes; the appropriate class label is found
through voting. We used unweighted SVMs, along with
the option in LIBSVM to report probability estimates.
The subject who is assigned the highest probability be-
comes the classifier’s predicted writer.

Twenty-six SVM classifiers, one for each Graffiti let-
ter, were trained using SVM-train data. Each classifier
employed an RBF kernel, whose parameters were tuned
as follows. Five-fold cross-validation [8] was used to se-
lect the best values of cost and γ for each letter classi-
fier. Fifteen cost values and 13 γ values were tried in
every pairwise combination (195 total). The search space
formed a two-dimensional grid of powers of 2; exponents
for cost ranged from -2 to 26 (in 15 steps of two), whereas
those for γ ranged from -22 to 2 (in 13 steps of two). For
each letter, average accuracy rates over the five folds were
recorded for the 195 trained classifiers. The highest score
determined the best parameter pair, which was then fixed
for the relevant letter classifier. We verified that a local
maximum occurred in the grid area, not on the boundary.

6.2. Confusion matrices and charts

To determine which letters are superior at distin-
guishing one subject from all the rest, classification errors
must be studied. Accordingly, each letter classifier was
re-trained on the entire SVM-train data set (using the best

0-7695-2855-4/07 $25.00 c© 2007 IEEE 382 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

Table 2. Letter-classifier accuracies, high-
quality data (50% training, 25% test data)

Y 76.09% V 60.79% U 57.51%
B 72.11% Q 59.88% O 57.02%
D 70.12% Z 59.70% C 55.74%
P 69.45% K 59.66% F 55.26%
E 68.34% S 59.43% J 53.90%
M 67.12% X 58.61% L 52.02%
W 65.36% A 58.13% T 51.02%
R 63.26% N 57.79% I 36.95%
G 62.96% H 57.53%

parameter values), and then tested using SVM-test data,
without cross-validation. The SVM-test data informs the
challenge strings, while the Evaluate-test data estimates
system accuracy; no data used in system creation was
reused in its evaluation. In the High-quality Data ex-
periment, accuracy rates for letter classifiers ranged from
37% to 76% (see Table 2). Performing worst was “I”,
simplest of all Graffiti letters, while “Y”, rich in detail
and having an alternative stroke, performed best.

Using the results of the tests, 26 confusion matrices
were built, one per letter classifier, each having dimen-
sions of 52 users by 52 users. A confusion matrix shows
how often one user was (mis)classified as each of the oth-
ers. Rows are associated with true writer identities, and
columns with predicted writer identities. All scores in a
row were normalized to sum to 1. For the “A” matrix,
the cell in row 1, column 2 contains the fraction of “A”s
written by User1, but erroneously predicted by the “A”
classifier as having been written by User2.

Next, the rows of the 26 confusion matrices were re-
arranged to make 52 confusion charts, one for each sub-
ject. We extract User1’s row from the “A” confusion ma-
trix, to become row 1 of User1’s chart; this operation is
repeated on letters “B”–“Z”, for successive rows. Charts
for other subjects were constructed similarly. User1’s
confusion chart is a 26 letters by 52 users matrix in
which the cell in row 1, column 2 shows the fraction of
User1’s “A”s incorrectly classified as belonging to User2.
Of special note is the genuine subject’s column, which
contains letter-accuracy scores. These scores show how
frequently the genuine writer was correctly identified as
him/herself on a given letter. The rows of each confu-
sion chart were sorted in decreasing order by the letter-
accuracy scores; ties were broken at random. Now, row 1
of User1’s chart shows the highest-scoring letter for that
user, in terms of correct classifications; it might be tied in
score with some other letter(s). Table 5 shows an abbre-
viated example confusion chart.

The higher a letter-accuracy score, the better this let-
ter should be (in isolation) at distinguishing the genuine
subject from all others in the group. Letters having a

score of 1 are perfect; all others are non-perfect. In Table
5, only “E” is perfect. Two letters are complementary if
they have no errors in common, with respect to the same
other subject. Three or more letters are complementary
if the group is pairwise complementary. In Table 5, “D”
and “N” both have errors with respect to User3, so they
are not complementary. In contrast, “D”, “B”, and “G”
each have errors with respect to a different user, so they
are all complementary with respect to each other.

6.3. Letter lists and challenge strings

A challenge string is a set of letters selected to dis-
criminate one user from every other member of the group.
Longer strings provide greater discrimination ability and
security, while shorter strings are more convenient to
write. A letter list is an ordered list of elements (called
units) that are either single letters or complementary let-
ter pairs. A letter list holds all possible lengths of chal-
lenge strings for a given user. A challenge string is real-
ized by including letters from the first u units on a letter
list. Increasing the number of units, u, should generally
maintain—and may enhance—accuracy (and security).

An abbreviated example of a letter list appears in the
bottom row of Table 3; it contains the letters “E DB G
NR”. Challenge strings are formed by including letters
from the leftmost cells, up to a desired stopping point.
“E” is the shortest possible challenge string; others are
“EDB”, “EDBG”, and “EDBGNR”.

Table 3. User1’s letter list (example)

Perfect Run 1 Run 2
Unit 1 Unit 2 Unit 3 Unit 4

E D B G N R

To form successive units on a letter list, an algorithm
selects a single letter or letter pair from the subject’s con-
fusion chart. Units are added without backtracking; let-
ters are selected according to the heuristics in Table 4.
The terms perfect, non-perfect, and complementary were
defined in Section 6.2; a run is a group of complementary
non-perfect letters. For convenience, we will call letters
that have not yet been added to the letter list unused. Ties
in letter-accuracy scores were decided randomly during
chart sorting, so the topmost letter in the chart is favored
during ties. We created one letter list per subject.

Example. A scenario involving four users and seven
letters will be used to illustrate the process of creating
a letter list. Table 5 shows a confusion chart for User1,
whose identity is underlined. The “User1” column con-
tains sorted letter-accuracy scores (shown in boldface).

The algorithm first looks for perfect letters, placing
each within its own unit. In Table 5, “E” is perfect; it
forms the first unit on User1’s letter list (see Table 3).

0-7695-2855-4/07 $25.00 c© 2007 IEEE 383 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

After exhausting perfect letters, the algorithm looks
for the highest-scoring non-perfect letter, which is “D”.
This letter has foreseeable deficiencies, namely its errors
with respect to User3. Before adding “D” to the letter
list, the algorithm seeks to pair it with a complementary
letter (whose errors do not involve User3). The highest-
scoring letter complementary to “D” is “B”, whose errors
involve User2. “D” and “B” are paired together into the
same unit, which starts the first run of the letter list.

Next, the algorithm seeks to complete the current
run, by successively adding single letters complementary
to all those currently in the run. “G” (whose errors in-
volve User4) is the only remaining unused letter comple-
mentary to both “D” and “B”. “G” is added alone to a
new unit in the current run, which is then terminated. No
memory of errors is retained from one run to the next.

Now a new non-perfect pair is sought, starting with
the highest-scoring unused letter, “N”. The only other
unused letter complementary to “N” is “R”, so those two
form a unit and start the second run on the list. The re-
maining unused letter, “H”, is not complementary to “N”
and “R”; thus, the second run is finished. “H” is left off
the letter list, since it cannot be paired. The completed
letter list appears in Table 3; possible challenge strings
are “E”, “EDB”, “EDBG”, and “EDBGNR”.

The reason that non-perfect letters are only added in
the context of a pair (or a run) is to prevent a succession
of letters being added whose errors all involve the same
user. Such an occurrence would raise the chances of the
biometric system erroneously predicting the writer of a
challenge string to be that user.

Procedure. A summary of the algorithm follows.

Table 4. Heuristics for creating letter lists

1. A given letter appears at most once on the letter list.

2. Perfect letters are considered equally useful, and supe-
rior to non-perfect letters. Perfect letters are added to the
letter list before non-perfect letters.

3. A non-perfect letter is considered superior to another
non-perfect letter, if its letter-accuracy score is higher.
All other things being equal, a superior non-perfect letter
is added before an inferior one.

4. A non-perfect letter can only be added to the letter list if
a complementary letter accompanies it.

5. After a non-perfect letter pair is added to the list, other
complementary letters are sought immediately to com-
plete a run. The purpose of this is to further remedy
deficiencies in the non-perfect letters.

6. Units are kept as short as possible, to provide granularity
in security levels.

Table 5. User1’s confusion chart (example)

Letter User1 User2 User3 User4
E 1 0 0 0
D 0.9 0 0.1 0
N 0.8 0 0.2 0
B 0.8 0.2 0 0
R 0.7 0.1 0 0.2
G 0.7 0 0 0.3
H 0.6 0.1 0.2 0.1

ALGORITHM TO CREATE A LETTER LIST:
(1) Add perfect letters one at a time, each within its own

unit, to the subject’s letter list.
(2) Add non-perfect letters that fit into runs, one run at a

time, until no more runs can be formed.

HOW TO MAKE A RUN:
(A) Find a complementary letter pair,1 if one exists. If

so, add both letters to a unit, the first unit of this run.
If not, then no more runs can be formed.

(B) Add single complementary letters to the run, one at
a time and each within its own unit, until none are
left; then, the run is finished, and its units are added
to the letter list. Each complementary letter must
be complementary to all letters already in that run.
If more than one letter choice exists in an iteration,
prefer the one with the highest letter-accuracy score.

6.4. Decision logic to combine classifier outputs
When an SVM classifier is tested on a letter instance,

it outputs a writer prediction. For a multi-letter challenge
string, multiple classifiers are involved, so decision logic
is required to combine the outputs into a single predic-
tion. When a writing sample is submitted to the biomet-
ric system, appropriate SVM letter classifiers are invoked
to process the relevant letters. A single classifier deter-
mines the probability that each of the 52 users wrote one
letter instance. If a challenge string has s unique letters,
then s classifiers are invoked, each producing 52 prob-
ability scores. Next, the s probability scores for User1
are multiplied together under the independence assump-
tion, to produce a joint probability that User1 wrote all
the letters. Joint probabilities are then found for User2,
and for all the other users. The single user having the
highest joint probability is deemed the most likely writer.
Because the probabilities are assumed independent, the
order of the letters does not affect the calculation; chal-
lenge strings could be permuted to thwart replay attacks.

1Choose a complementary pair in the following way. Take the
highest-scoring unused letter as the provisional first member of the pair.
For the second member, take the next-highest scoring letter complemen-
tary to the first. If none can be found, try a different provisional first
member of the pair (having the next-highest score). Start the search
again, and continue until a complementary pair is found, or until there
are no more candidates to be the first provisional member of the pair.

0-7695-2855-4/07 $25.00 c© 2007 IEEE 384 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

7. Evaluation method
The evaluation aims to discover whether users can be

discriminated on the basis of handwriting samples, and if
so, to find out how long the samples must be. We varied
the number of units appearing in challenge strings (re-
call Table 3), and observed system accuracy; extra units
should not decrease accuracy (unlike solitary letters).

Three experiments were conducted, each on a differ-
ent version of the data, to discover how data quality and
quantity affect accuracy: (1) High-quality Data, (2) Re-
duced Data, and (3) All Data (see Sections 4 and 5.4). We
performed an off-line evaluation, in which subject par-
ticipation was simulated by data in the corpus. Individ-
ual letters written by a subject were assembled into a se-
quence meant to imitate how that subject would respond
to a challenge string. The previously unseen Evaluate-
test data was used for system evaluation.

7.1. Transaction design and error definitions
At transaction time, a user (the claimant) claims an

identity; the system responds by displaying the challenge
string tailored to that identity. After the user writes the
string, the identity claim is accepted or rejected.

Genuine transactions. In genuine transactions, a
subject claims his or her true identity. To simulate these
events, we used the challenge string assigned to that sub-
ject, and called up instances of his or her letters from the
Evaluate-test data set. The biometric system predicted
the most likely writer. If the predicted writer identity
matched the genuine one, no error occurred; otherwise,
there was an error. Errors made on genuine transactions
contributed to the false non-match rate (the rate at which
genuine claimants are denied entry by the system).

Imposter transactions. In imposter transactions, a
subject claims an identity other than his or her own. To
simulate these events, we used the challenge string as-
signed to the victim, along with letter instances written
by the impostor (from the Evaluate-test data set). The
biometric system determined the most likely writer. If the
predicted writer identity matched the claimed one, there
was an error, because the imposter posed successfully as
another subject. Otherwise there was no error, because
the imposter failed. Errors made on imposter transactions
contributed to the false-match rate (the rate at which im-
poster claimants are allowed entry by the system).

7.2. Challenge-string evaluation
The 26 SVM classifiers were newly re-trained on all

previously seen data, namely SVM-train and SVM-test
(collectively called Evaluate-train). All best parameter
values from Section 6.1 were kept; 75% of the data was
used for re-training. The remaining 25% of the data held
in Evaluate-test, previously unseen, was used to eval-
uate challenge strings. Due to the numerous genuine

and imposter transactions, some reuse of data within in
Evaluate-test occurred, as specified below.

Within each of the three experiments (see Section
4), the number of units, u, was varied from one to the
largest possible number (equaling the number of units in
the shortest letter list). In a round, all challenge strings
have a particular value of u. Between rounds, data were
reused, without memory of prior usage.

Within a round, multiple repetitions of transactions
were performed, and the error rates were averaged to in-
crease the stability of results. We repeated each trans-
action as many times as unused data remained, but held
constant the number of repetitions for all subjects. In the
High-quality Data and Reduced Data experiments, the
limiting number of instances per letter was 13; it was
44 in the All Data experiment. Since Evaluate-test con-
tained 25% (or slightly less2) of each subject’s letter in-
stances, 3 instances of that letter appeared in Evaluate-
test for the High-quality Data and Reduced Data experi-
ments (�13/4�=3), whereas 11 appeared in Evaluate-test
for the All Data experiment (�44/4�=11). In the respec-
tive experiments, repetitions were limited to those num-
bers, for all subjects. Within a round, the same letter in-
stance was never re-used within genuine transactions, or
within imposter transactions involving the same victim
identity. Otherwise, instances were selected at random.

For the genuine transactions within a round, 52 chal-
lenge strings were evaluated using 3 (or 11) repetitions,
reusing no letter instances. Errors were counted, and av-
eraged over the repetitions to produce an average false
non-match rate (FNMR). In the High-quality Data and
Reduced Data experiments, 156 (or 52×3) genuine trans-
actions were carried out per round, while the All Data
experiment had 572 (or 52×11).

For the imposter transactions within a round, 52 sub-
jects each masqueraded as 51 other users. Given a fixed
victim, the letters from 51 different imposters were called
up to satisfy the victim’s challenge string; multiple rep-
etitions (3 or 11) of this arrangement did not reuse let-
ter instances. Errors were counted, and averaged over
the repetitions to produce an average false-match rate
(FMR). In the High-quality Data and Reduced Data ex-
periments, 7,956 (or 52×51×3) imposter transactions
were performed per round, while the All Data experiment
had 29,172 (or 52×51×11).

In biometric applications providing positive or neg-
ative identification [24], special evaluation procedures
should be followed for imposter transactions, whenever
dependent templates are present [13]. Templates are de-
pendent whenever the enrollment of a new user affects
other templates in the system; otherwise, they are in-

2Any extra letters padded SVM-train, such that 50% (or slightly
more) of the data were assigned to SVM-train, and 25% (or slightly
less) were assigned to SVM-test and to Evaluate-test, respectively.

0-7695-2855-4/07 $25.00 c© 2007 IEEE 385 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

Table 6. Average error rates (in %) for chal-
lenge strings, high-quality data

Letters FMR FNMR Letters FMR FNMR
1–2 0.35 11.54 7–14 0.01 0
2–4 0.04 0.64 8–16 0 0
3–6 0 0.64 9–18 0 0
4–8 0 0 10–20 0 0
5–10 0 0.64 11–22 0 0
6–12 0 0

dependent. Our SVM method employs pairwise binary
classifiers, and thus the templates are dependent. How-
ever, because our target task is insider detection and it as-
sumes no outsiders, our use of dependent templates with-
out special evaluation provisions is reasonable.

8. Results
Table 6 shows the results of the challenge-string

evaluation for High-quality Data; these data most closely
reflect actual user handwriting. The number of units, u,
was varied from 1 to 11, because the subject whose let-
ter list contained the fewest units had only 11. Each unit
contains one or two letters, so the number of letters used
in a round varies from u to 2u, depending on the subject.
Average false-match rates (FMR) and average false non-
match rates (FNMR) both decreased eventually to 0%,
as the number of units increased. With only 2–4 letters,
FMR=0.04% while FNMR=0.64%. When 8–16 letters
were used (or even more), FMR=FNMR=0%.

The results for the Reduced Data and All Data exper-
iments were very similar to the High-quality Data ones.
It appears that neither increasing the data quality (while
holding quantity constant), nor increasing the data quan-
tity (while holding quality constant), has a clear bene-
fit. Due to the long running time of the evaluations, we
were unable to repeat each experiment several times us-
ing different random samples, thus preventing estimates
of variance and tests of statistical significance. Neverthe-
less, to probe the stability of the results heuristically, we
replicated the High-quality Data experiment once; these
results very closely resembled those of the original ex-
periment, as well as those of the Reduced Data and All
Data experiments. Note that in the Reduced Data exper-
iment, the subject having the fewest units in his or her
letter list had 9; for the All Data experiment it was 8;
and for the replication of the High-quality Data experi-
ment, it was 10. The three experiments and the one repli-
cation all achieved consistently perfect results when at
least 8–16 letters were used. Excepting one chance event
(in the seventh round of the High-quality Data experi-
ment), this also happened with only 6–12 letters. The All
Data experiment used the most transaction repetitions,
and should have the most stable results; it achieved con-
sistently perfect results with only 5–10 letters.

9. Discussion

Although error rates in Table 6 do not decrease
monotonically as the number of units increases, devia-
tions from the trend are slight and short-lived. Possi-
ble explanations for these small deviations are (1) lim-
ited data quantities (or rare atypical instances) in SVM-
test and/or Evaluate-test, and (2) sub-optimal challenge
strings (because the algorithm for creating letter lists was
greedy and heuristic). It just so happened that the trends
of the other experiments were more consistent. In gen-
eral, it appears that adding units to a challenge string
should not be harmful. Also, since results under the three
different conditions of data quality and quantity did not
differ greatly, it seems that (a) data-capture anomalies
were not calamitous, and (b) similar performance might
be achieved using even less data.

One may ask how it was that such promising results
were achieved. Because data from potential attackers was
available, template ageing was absent, and ample training
data was used, our results may be slightly optimistic. De-
spite such factors, we feel that system success hailed from
the selective grouping of letters into challenge strings.
The SVM classifier results were unexceptional (recall Ta-
ble 2), but combining classifier outputs on letters tailored
to each user brought greater success. Some theory sup-
ports this rationale; our method is reminiscent of machine
learning techniques such as boosting [8] and co-training
[1] that conjoin several medium-quality classifiers to pro-
duce a very good one.

10. Summary

The aim of this work was to determine whether per-
sonalized challenge strings might discriminate enrolled
users writing on PDAs. A secondary aim was to deter-
mine what approximate length a challenge string must be.
Our work suggests that using approximately password-
length challenge strings (of at least 5-10 characters, de-
pending on the user) results in a very low equal-error rate,
approaching 0%. Employing even longer strings seems
to bring consistently perfect results, so asking for a few
more seconds of user time (a letter stroke takes less than
0.5 seconds to write, on average) could translate into a
very high level of security. These results are a first step
towards exploring the promise of structured writing on
PDAs to deliver biometric access control.

11. Future work

There are several ways to develop the technology
of this work. Using the same data corpus, one could
try new features, different splits of training and testing
data, other classifiers, new ways to combine classifier
outputs, and alternative algorithms to create challenge

0-7695-2855-4/07 $25.00 c© 2007 IEEE 386 DSN 2007: Roberts et al.

International Conference on Dependable Systems & Networks: Edinburgh, Scotland, 25-28 June 2007.

strings. Variant challenge strings could be generated non-
deterministically, to discourage replay attacks. Effects of
writing experience on accuracy could be studied. Other
biometric tasks could be attempted, such as positive or
negative identification [24], possibly using independent
templates [13]. Moreover, causes of system failure could
be elicited; multiple replications of experiments could be
conducted, to estimate the variance of the results. If new
data is collected, its quality should be tested to ensure
that it closely represents user handwriting. Higher data
granularity, accuracy, and reliability (in time, space, and
pressure if available) could be beneficial. Template age-
ing [13] could be introduced to make the task more diffi-
cult. Larger numbers of subjects could be recruited, and
the relationship between the size of the user pool and sys-
tem accuracy could be explored. Finally, one could study
and test hypotheses about which kinds of structured let-
ters discriminate writers most effectively.

12. Acknowledgements

The authors are grateful for helpful comments from
Patricia Loring and from anonymous reviewers. Mar-
cus Louie implemented the stimulus generator. Sebas-
tian Scherer implemented the data-capture program on
the Palm m105. This work was supported by National
Science Foundation grant number CNS-0430474 and by
the Pennsylvania Infrastructure Technology Alliance.

References

[1] A. Blum and T. Mitchell. Combining labeled and un-
labeled data with co-training. In Proceedings of the
Eleventh Annual Conference on Computational Learning
Theory, pages 92–100, New York, 1998. ACM Press.

[2] G. E. P. Box and D. R. Cox. An analysis of transforma-
tions. Journal of the Royal Statistical Society: Series B
(Methodological), 26(2):211–243, 1964.

[3] R. R. Bradford and R. B. Bradford. Introduction to Hand-
writing Examination and Identification. Nelson-Hall Pub-
lishers, Chicago, 1992.

[4] C. J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discov-
ery, 2(2):121–167, 1998.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A li-
brary for support vector machines, 2001. Soft-
ware available at <http://www.csie.ntu.edu.
tw/˜cjlin/libsvm>.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based Learn-
ing Methods. Cambridge Univ. Press, Cambridge, 2000.

[7] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and
A. Weingessel. The e1071 package, 2005. Software avail-
able at <http://cran.r-project.org/src/
contrib/Descriptions/e1071.html>.

[8] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion. Springer, New York, 2001.

[9] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide
to support vector classification. Technical report, Depart-
ment of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan, 2003.

[10] C.-W. Hsu and C.-J. Lin. A comparison of methods for
multiclass support vector machines. IEEE Transactions
on Neural Networks, 13(2):415–425, March 2002.

[11] IJPRAI. Special issue on automatic signature verification.
International Journal of Pattern Recognition and Ar-
tificial Intelligence, 8(3), June 1994.

[12] F. Leclerc and R. Plamondon. Automatic signature
verification: The state of the art, 1989–1993. Interna-
tional Journal of Pattern Recognition and Artificial Intel-
ligence, 8(3):643–660, June 1994.

[13] A. J. Mansfield and J. L. Wayman. Best practices in test-
ing and reporting performance of biometric devices (ver-
sion 2.01). Technical report, Centre for Mathematics and
Scientific Computing, National Physical Laboratory, Ted-
dington, Middlesex, UK, August 2002.

[14] L. O’Gorman. Comparing passwords, tokens, and bio-
metrics for user authentication. Proceedings of the IEEE,
91(12):2021–2040, December 2003.

[15] Palm Inc. Graffiti Alphabet, 2007. Available at <http:
//www.palm.com/us/products/input/>.

[16] P. J. Phillips, A. Martin, C. L. Wilson, and M. Przybocki.
An introduction to evaluating biometric systems. Com-
puter, 33(2):56–63, February 2000.

[17] R. Plamondon and G. Lorette. Automatic signature
verification and writer identification—the state of the art.
Pattern Recognition, 22(2):107–131, 1989.

[18] R. Plamondon and S. N. Srihari. On-line and off-line
handwriting recognition: A comprehensive survey. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 22(1):63–84, January 2000.

[19] R Development Core Team. R: A Language and Environ-
ment for Statistical Computing. R Foundation for Statisti-
cal Computing, Vienna, 2006.

[20] R. Sabourin, R. Plamondon, and G. Lorette. Off-line iden-
tification with handwritten signature images: Survey and
perspectives. In H. S. Baird, H. Bunke, and K. Yamamoto,
editors, Structured Document Image Analysis, pages 219–
234. Springer, Berlin, 1992.

[21] E. Shaw, K. G. Ruby, and J. M. Post. The insider threat
to information systems: The psychology of the danger-
ous insider. Security Awareness Bulletin, 2–98, Septem-
ber 1998. Department of Defense Security Institute, Rich-
mond, Virginia, USA.

[22] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 2nd edition, 2000.

[23] C. Vielhauer. Biometric User Authentication for IT Secu-
rity: From Fundamentals to Handwriting. Springer, New
York, 2006.

[24] J. Wayman, A. Jain, D. Maltoni, and D. Maio. An intro-
duction to biometric authentication systems. In J. Way-
man, A. Jain, D. Maltoni, and D. Maio, editors, Biometric
Systems: Technology, Design and Performance Evalua-
tion, chapter 1, pages 1–20. Springer, London, 2005.

[25] D.-Y. Yeung, H. Chang, Y. Xiong, S. George, R. Kashi,
T. Matsumoto, and G. Rigoll. SVC2004: First interna-
tional signature verification competition. In D. Zhang and
A. K. Jain, editors, Biometric Authentication: Proceed-
ings of the First International Conference, ICBA 2004
(LNCS 3072), pages 16–22, Berlin, 2004. Springer.

0-7695-2855-4/07 $25.00 c© 2007 IEEE 387 DSN 2007: Roberts et al.

