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Abstract

Information has intrinsic geometric and topological structure, arising from relative
relationships beyond absolute values or types. For instance, the fact that two people
did or did not share a meal describes a relationship independent of the meal’s ingredients.
Multiple such relationships give rise to relations and their lattices. Lattices have topology.
That topology informs the ways in which information may be observed, hidden, inferred,
and dissembled. Privacy preservation may be understood as finding isotropic topologies, in
which relations appear homogeneous. Moreover, the underlying lattice structure of those
topologies has a temporal aspect, which reveals how isotropy may contract over time,
thereby puncturing privacy.

Dowker’s Theorem establishes a homotopy equivalence between two simplicial
complexes derived from a relation. From a privacy perspective, one complex describes
individuals with common attributes, the other describes attributes shared by individuals.
The homotopy equivalence is an alignment of certain common cores of those complexes,
effectively interpreting sets of individuals as sets of attributes, and vice-versa. That
common core has a lattice structure. An element in the lattice consists of two components,
one being a set of individuals, the other being an equivalent set of attributes. The lattice
operations join and meet each amount to set intersection in one component and set union
followed by a potentially privacy-puncturing inference in the other component.

One objective of this research has been to understand the topology of the Dowker
complexes, from a privacy perspective. First, privacy loss appears as simplicial collapse of
free faces. Such collapse is local, but the property of fully preserving both attribute and
association privacy requires a global condition: a particular kind of spherical hole. Second,
by looking at the link of an identifiable individual in its encompassing Dowker complex,
one can characterize that individual’s attribute privacy via another sphere condition. This
characterization generalizes to certain groups’ attribute privacy. Third, even when long-
term attribute privacy is impossible, homology provides lower bounds on how an individual
may defer identification, when that individual has control over how to reveal attributes.
Intuitively, the idea is to first reveal information that could otherwise be inferred. This
last result highlights privacy as a dynamic process. Privacy loss may be cast as gradient
flow. Harmonic flow for privacy preservation may be fertile ground for future research.

*This report is based upon work supported in part by the Air Force Office of Scientific Research under award
number FA9550-14-1-0012 and in part by the National Science Foundation under award number IIS-1409003.
Any opinions, findings and conclusions or recommendations expressed in this report are those of the author and
do not necessarily reflect the views of the Government, the U.S. Department of Defense, or the National Science
Foundation.
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Introduction 1

1 Introduction

Privacy is the ability of an individual or entity to control how much that individual or entity
reveals about itself to others. Fundamental research into privacy seeks to understand the limits
of that ability.

A brief history of privacy should include the following:

e The right to privacy as a legal principle, appearing in an 1890 Harvard Law Review
article [24]. The article was a reaction to the then modern technology of photography
and the dissemination of gossip via print media.

e A demonstration linking supposedly anonymous public information with other more
specific public data, thereby revealing sensitive attributes [2I]. The demonstration
employed zip code, gender, and birth date to link anonymous public insurance summaries
with voter registration data. Doing so produced the health record of the governor of
Massachusetts. This privacy failure suggested a first form of homogenization, called k-
anonymity. Roughly, the idea was to structure databases in such a way that a database
could respond to any query with an answer consisting of no fewer than k individuals
matching the query parameters.

e The discovery that it is impossible to preserve the privacy of an individual for even
a single attribute in the face of repeated statistical queries over a population [2], unless
answers to those queries are purposefully perturbed with noise of magnitude on the order
of at least v/n. Here n is the size of the population. The significance of this discovery is
to underscore how difficult it is to preserve privacy while retaining information utility.

e Netflix Prize. In 2006, Netflix offered a $1M prize for an algorithm that would predict
viewer preferences better than Netflix’s internal algorithm. Netflix made available some
of its historical user preferences, in anonymized form, as a basis for the competition. Once
again, it turned out that one could link this anonymized data with other publicly available
databases, resulting in the potential (and in some cases actual) identification of Netflix
viewers, thereby de-anonymizing their viewing history [I7]. Whereas in the earlier health
example, a few specific observables made linking possible (global coordinates, one might
say, namely zip code, gender, birth date), in the Netflix example, the intrinsic geometric
structure of the database facilitated linking via a wide variety of observables (local
landmarks, one might say, namely movies that were characteristic for each individual).
Key was sparsity of information: 8 movie ratings and dates were generally enough to
uniquely characterize 99% of viewers in the Netflix Prize dataset, even with errors in the
ratings and dates.

e Differential Privacy [5] [4] seeks to avoid the previous privacy failures by focusing on
local rather than absolute privacy guarantees. The underlying approach in differential
privacy is for a database to answer statistical queries with a particular stochastic blurring.
Specifically, the probability that an interrogator of the database will make any particular
inference should depend only in a very small way on whether any one individual does or
does not have a particular attribute (such as even being in the database). We might call
this stochastic homogeneity.



2 Topology of Privacy: Lattice Structures and Information Bubbles

e Randomized Response. Differential privacy is further significant because it makes
explicit the dynamic nature of privacy; there may be no enduring privacy guarantees but
there are differential guarantees. A particular form is randomized response, a technique
used in the social sciences to elicit reliable aggregate answers to sensitive questions, asking
the question of many people, but perturbing individual answers stochastically so as not
to learn much about any one individual from any single response [23]. A version has
been employed by Google to find malware [§].

Privacy has both a combinatorial component and a statistical component. Prior research
has largely focused on statistical techniques, both to preserve privacy and to puncture privacy.
One of the goals of this research is to understand the combinatorial component of privacy,
leading naturally to methods from combinatorial topology.

A desire to understand the geometry and topology of the types of inferences revealed by
the Netflix Prize formed the specific motivation for our research initially. Subsequently, we
realized that the lattice structure found in that geometry had broader applicability, providing
an ability to model the dynamics of privacy more generally.
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2  Outline

The remaining sections and appendices present the following material:

Main Narrative:

3: Toy examples illustrating how a relation may lead to privacy loss in the presence of

background information. The section introduces the doubly-labeled poset associated with
a relation, to model such inferences. The elements of the poset are ordered pairs, each a
set of individuals and a set of attributes.

This section also states and discusses assumptions that hold throughout the report.

4: Formal description of the Galois connection associated with a relation. The section first

8

defines, for any relation, two simplicial complexes called Dowker complexes. One complex
represents sets of individuals with shared attributes, the other represents sets of attributes
shared by individuals. The Galois connection then establishes a homotopy equivalence
between the Dowker complexes, thereby generating the relation’s doubly-labeled poset.
The homotopy equivalence gives rise to closure operators, with “closure” in the poset
modeling inference of unobserved attributes from observed attributes (or unobserved
individuals from observed individuals).

This section also defines attribute privacy and association privacy.

characterization of privacy in terms of the absence of free faces in the relevant Dowker
complex. This section observes as well that the only connected relations able to preserve
both attribute and association privacy must look either like linear cycles or like boundary
complexes. In particular, the number of individuals and attributes must be the same.

: Conditional relations, as models for simplicial links. A conditional relation is much like

a conditional probability distribution. It might, for instance, represent the possible
arrangement of remaining attributes among individuals, after some attributes have
already been observed.

: A characterization of individual and group attribute privacy in terms of spherical and

boundary complexes for the relation that models the individual’s or group’s link in its
Dowker complex.

: A brief exploration of holes in relations, focusing on attribute spaces generated by bits.

9: A small example exploring the possibility of increasing privacy by change-of-coordinate

transformations.

10: A lengthy exploration of how someone can delay identification, by releasing attributes

selectively in a particular order. This idea leads to the notion of informative attribute
release sequences, how to find such sequences in the Galois lattice, and the use of homology
as a lower bound for the number and length of such sequences.
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: Computation of the homology and maximal informative attribute release sequences present
in two relations found on the world wide web. One relation describes Olympic athletes
and their medals, the other describes jazz musicians and their bands.

: A more general perspective of inference as motion in lattices, not necessarily directly
derived from a relation. This perspective suggests connections to randomized response
techniques.

: An examination of the ability to obfuscate strategies and/or goals in graphs where motions
may be nondeterministic or stochastic.

: A possible category for representing relations, along with an analysis of morphism
properties. The morphisms between relations in this category induce simplicial and
therefore continuous maps between the relations’ corresponding Dowker complexes.

This section further shows by example how a morphism of relations, when it is surjective
at the set level, generates the full lattice of the codomain’s relation, via closure under
lattice operations. (A general proof appears in Appendix )

: Some thoughts for the future, including an example that connects stochastic sensing to
the Galois lattice.

Appendices:

: A summary of the basic notation and definitions used in this report.

: A summary of the basic tools used in this report, establishing the homotopy equivalences

and closure operators mentioned previously.

: Construction of links and deletions, and examination of the privacy properties each inherits

from its encompassing relation. This appendix explores the significance of free faces in
the Dowker complexes. The appendix further proves that a relation with more attributes
than individuals cannot preserve attribute privacy for every individual.

: Proof that the problem of finding a minimal set of attributes from which another attribute

may be inferred is NP-complete. This stands in contrast to the observation that the
problem of finding some set of attributes from which another may be inferred (or
reporting that no such set exists) is computable in polynomial time.

: Detailed proofs of the results claimed in Section [7] Also a detailed proof of the assertion

from Section [p| regarding relations that preserve both attribute and association privacy.

: Detailed proofs of the connection between maximal chains in a relation’s Galois lattice and

informative attribute release sequences. When such sequences are order-independent
they correspond to spherical holes, leading to the concept of an isotropic sequence.
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G: Detailed proof that homology establishes a lower bound for the number and length of
maximal chains in a relation’s Galois lattice, and thus for the number and length of
informative attribute release sequences that may be used to delay identification.

H: An application of the previous results with the aim of obfuscating the identification of
strategies for attaining goals in graphs with uncertain transitions.

I: Detailed proofs of the assertions of Section [I4] regarding morphisms.
J: Some additional examples:

1. Dunce Hat: modeled as a relation for which the Dowker attribute complex is
contractible but has no free attribute faces, meaning the relation preserves attribute
privacy.

2. Disinformation: An example that glues together two copies of the Mobius strip,
thereby removing free faces and creating a form of homogeneity that preserves
attribute privacy yet retains the utility of identifiability.

3. Insufficient Representation: If there are insufficiently many individuals in a relation
generated by bits, attribute inference is possible.

4. A Matching Example: When many individuals are being observed, cardinality
constraints allow for inferences beyond those discussed in this report.
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3 Privacy: Relations and Partially Ordered Sets

Our investigation of privacy in this report will be in terms of relations. As we will see in this
section and the next, relations give rise to simplicial complexes, which give rise to partially
ordered sets, which expose an underlying lattice structure. That lattice structure makes explicit
how privacy may be preserved or lost through so-called background knowledge. As we will see
in Section the lattice structure also makes explicit how identification may be delayed by
careful release of information.

3.1 A Toy Example: Health Data and Attribute Privacy

Consider the following relation H, describing the results of a hypothetical health study for
four patients and three attributes. The patients have been anonymized and are represented
simply by the set of numbers {1,2,3,4}. The three attributes are drawn from the set
{SMOKES, HAS_CANCER, DRINKS_SODA }.

One can describe a relation equivalently either as a matrix or as a set of ordered pairs:

Relation H as a matrix: H ‘ SMOKES HAS_CANCER DRINKS_SODA

=W N
°

Relation H as a set of ordered pairs:

{(1,sMOKES), (1, HAS_CANCER), (2, HAS_CANCER), (2, DRINKS_SODA),

(3, DRINKS_SODA), (4, DRINKS_SODA) }.

Assumptions

Before discussing privacy further, we make some assumptions that hold throughout the report:

Assumption of Relational Completeness: We assume that any given relation is not
missing any observable elements, relative to some external (unspecified) ground truth.

For example, if we observe that someone drinks soda and has cancer in relation H, then
we would conclude that we are observing individual #2. We would be surprised to see that
individual smoke. If for some reason we ever do see the individual smoke, then we would
deem our observations to be inconsistent with relation H. — The meaning of inconsistency
depends on context. At top-level, an inconsistency may mean that the relation or observation
is errorful. When making conditional observations, an inconsistency may actually supply useful
information, as we will see in Lemma [12| on page

Comment: A relation may contain extra elements, as may be useful for disinformation.

A relation could even be missing elements that represent valid ordered pairs, so long as those
elements are deemed to be unobservable for that relation. For example, one may have a time
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series of relations in which some attributes only become observable at later times. In such a
setting, one may never know whether a particular individual had a particular attribute at an
earlier time.

In the example, it could be that individual #1 drinks soda, but that it is impossible to
observe this fact. In that case, relation H would still satisfy the assumption of relational
completeness, even though H contains no entrylﬂ indicating that individual #1 drinks soda.

Assumption of Observational Monotonicity: FEven though we assume relations are
complete, we do not assume that observations are complete. Instead, we assume: The
observation of a particular attribute for an individual is meaningful; lack of such an observation
does not necessarily imply that the individual fails to have the unobserved attribute. The
motivation for this assumption is that one may yet discover that the individual has the
attribute. For example, suppose we observe someone (whom we know to be part of relation
H) drinking soda. Even if that is all we observe, we do not conclude that the individual is
cancer free. It could be that we might yet observe the individual to have cancer.

If absence of an attribute is significant and that absence is observable, then both the
attribute and its negation could and perhaps should appear explicitly in the relation as distinct
mutually exclusive attributes. For instance, PRIME versus COMPOSITE might be such a pair
of attributes for integers greater than 1.

Assumption of Observational Accuracy: We assume that observations are accurate. For
instance, if we observe an integer to be either PRIME or COMPOSITE, then we do so correctly.

Comments: The three assumptions above are desiderata for how the mathematical
abstractions of this report fit into the real world. Some comments are in order:

e In and of itself, a relation defines a particular kind of world, a bipartite graph, and there
is no external ground truth.

e In such a world, the completeness, monotonicity, and accuracy assumptions describe a
sensor and the meaning of observations made by the sensor.

The purpose of the assumptions in the real world is largely to ensure consistency between
different relations and with possible observations.

e The monotonicity assumption is important because information generally aggregates
asynchronously. Together with the other assumptions, this assumption means that one
may view relations as monotone Boolean functions, and thus may leverage methods from
combinatorial topology.

e One may incorporate some errors into the relational and observational models, for
instance by blurring a relation. For very large integers, a relation might allow some
integers to have both PRIME and COMPOSITE as attributes. Although an integer is one

!Terminology: We often use the term 'entry' to mean an element of a relation, as in a matrix, or in one of
its rows or columns.
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or the other, the relation admits to uncertainty by allowing both attributes at once.
Indeed, some relations purposefully introduce such blurring to preserve privacy, as with
randomized response [23]. In robotics, natural relational blurring arising from noisy but
environment-compatible sensors can actually help establish the topology of a region, for
instance by dualizing sensors and landmarks [I1].

Privacy Implications

Making the health study H of page[7|publicly available has some privacy implications, including
the following:

e Suppose someone named Bob tells his friend Alice that he was part of the study. Alice
knows that Bob smokes everywhere he goes, so she can infer that he is Patient #1 and
has cancer. (This is an example of inference in a relation using background knowledge.)

e Suppose Cindy is Patient #2. She has full attribute privacy as far as relation H is
concerned. In particular, as we saw already, Cindy can tell her friends that she was part
of the health study while drinking soda and those friends will not be able to conclude
that she has cancer.

e Patients #3 and #4 are not only indistinguishable from each other but also from Cindy
(patient #2), as far as relation H is concerned. This is a very strong form of anonymity.
Even if one of them reveals that s/he drinks soda, s/he will remain indistinguishable
from the other two patients who drink soda.

Caveat: In the last case, if Cindy reveals that she has cancer and is seen to be different
from the other individuals, then one may be able to remove her from the relation, narrowing
the focus and creating a new relation that may allow additional inferences. Similar caveats
hold for the other bullets. Deletions are discussed further in Appendix [C|

Modifying a Relation to Increase Privacy We can make a small change in relation H
that enhances privacy. If we artificially give patient #3 the attribute SMOKES, then we obtain
the following modified relation H':

H' | SMOKES HAS_CANCER DRINKS_SODA

>~ W N =
[ ]

Now Bob may reveal to Alice that he was part of the health study without Alice being able
to infer that he has cancer, even though she knows that everyone knows that he smokes. In
fact, more generally, one can no longer infer cancer from smoking, within the relation.

Such an artificial entry in the relation is a form of disinformation. It certainly skews
statistics and utility. It also increases privacy.
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3.2 A Dual Perspective: Payroll Data and Association Privacy

The previous example examined a relation from the perspective of atiribute privacy: we were
interested in understanding how observation of some attribute(s) implied other attribute(s),
possibly identifying an individual. A dual perspective is association privacy, in which one seeks
to understand how some associations between individuals imply others.

The following hypothetical “salary” relation S has the same matrix structure as
relation H did earlier, but with different semantics. This relation represents employees
{Bob, Mary, Frank, Julie} working on secret projects {a,b,c}. Now the employee names are
visible so that a payroll clerk can disburse salaries correctly, but the actual projects are

anonymous.
S ‘ a b c
Bob |e e
Mary ° o
Frank °
Julie °

The salary relation S has some implications for association privacy, including the following:

e [f someone tells the payroll clerk that Julie is the lead of a very important project with
valuable information, then the payroll clerk can infer that Mary and Frank have also
been exposed to valuable information.

e In contrast, if someone tells the payroll clerk that Bob is running a very important
project, then the payroll clerk does not have enough information to conclude that Mary
is also working on an important project.

Regarding disinformation: Observe how adding the artificial entry (Julie,a) prevents the
payroll clerk from using the relation to infer that Mary and Frank have valuable information,
even if the payroll clerk learns via background information that Julie is the lead of a very
important project with such information:

S la b ¢
Bob |e e
Mary °

Frank °

Julie | e °
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3.3 Privacy Preservation and Loss: A Poset Model

IR
({12} (b)) (1234, fe})

({1}, {a,b}) ({2}, {b,c})

Figure 1: Relation R serves as a model for the two examples of Sections and The
doubly-labeled poset Pgr describes the inferences facilitated by R.

Figure[I]shows a relation R that serves as a model for both the health example of Section[3.1
and the payroll example of Section The relation is identical to those given earlier, but with
abstract labels in place of both individuals and attributes. The figure also depicts a partially
ordered set (poset) Pr, designed to model the inferences discussed previously. We refer to
that poset as the doubly-labeled poset associated with R. We next discuss the semantics of Pg.
Section [] discusses the construction of Pg. The underlying concepts are important throughout
the report.

Semantics of the poset Pg:

e Each element in the poset consists of an ordered pair (o,7), with ) # o C {1,2,3,4}
describing a set of individuals and () # v C {a,b, c} describing a set of attributes. We
say that the poset element is labeled with o and . The meaning of such a double-labeling
(with respect to the information described by relation R) is:

(a) All individuals in o have all attributes in .

(b) If (and only if) an individual has at least all the attributes in 7, then that individual
must be in o. For example, we see that individual #2, and only individual #2, has
both attributes b and ¢ in R.

(c) If (and only if) an attribute is shared by at least all individuals in o, then that
attribute must be in . For example, individual #1 has both attributes a and b, so
Pg cannot contain simply ({1}, {a}), but must contain ({1}, {a,b}).

e The partial order for Pg is described by the edges in the figure. There is an edge
between two elements (o1,71) and (02,72) of Pr whenever the corresponding sets are
subset comparable. In particular, (o1,7v1) < (02,72) in Pg precisely when o1 C o9 and
71 2 2. [Observe that the comparability (C versus D) is opposite for o versus 7.]

Using the poset Pgr for attribute inference:
Suppose v is any nonempty subset of attributes in {a,b, c}. Then one of (i) or (ii) holds:
(i) Perhaps no individual modeled by R has all the attributes . For example, no individual

has attributes v = {a, c}. We would not expect to see v and so vy does not appear in the
poset Pg.
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(ii) Alternatively, «y is a subset of at least one set of attributes that does appear in the poset.
In this case, one may be able to enlarge v nontrivially, resulting in privacy loss.

For example, imagine we discover that a friend with attribute a is modeled by the given
relation (e.g., Bob, who SMOKES, says he is part of the health study H).

Using v = {a}, the poset then allows us to infer that Bob must also have attribute b
(that is, HAS_.CANCER). Why? Because {a,b} is a minimal set in Pr containing {a}.

We can say yet more: The element labeled with {a,b} is also labeled with {1}. So now
we have de-anonymized individual #1 (identifying him to be Bob).

Regardless of whether Bob ever actually talks to us, the poset tells us that individual #1
could suffer privacy loss, and in fact, is uniquely identifiable in the context of relation R
without needing to reveal everything about himself.

Similar reasoning is possible for association inference, as we saw earlier.

E%’
({1.3}, {a}) ({1.2}, {b}) (12,3.4}, {c})

\
——

({1}, {a,b}) ({2}, be}) ({3}, {ac})

Figure 2: A relation R’, along with its doubly-labeled poset Pgr/. The relation preserves
attribute privacy but allows a small amount of association inference: If ones sees individual
#4 in some context c, then one can infer that individuals #2 and #3 are also present in that
same context, without needing to observe them directly.

Disinformation Revisited: Figure [2[ shows relation R’, constructed from R by adding an
entry of disinformation, much as we constructed H' from H earlier. The figure also shows the
corresponding doubly-labeled poset Pgr/. Observe that it is no longer possible to infer {a,b}
from {a}, because {a} now appears directly in the poset. The added entry (3,a) in R’ has
increased attribute privacy compared to R.

There is, however, still some opportunity for making association inferences. For instance,
knowing that individual #4 (Julie, earlier) works on an important secret project still allows the
inference that individuals #2 and #3 have valuable information. That is because the minimal
set containing {4} in the poset is {2, 3,4}. Notice that no such association inference is possible
if someone says that individual #3 works on an important secret project, though that would
have been possible in the original relation R.

Comment: Artificial entries can potentially also produce inferences of disinformation. For
instance, if, in our earlier relation H, the entry (1, HAS_.CANCER) is artificial, then inferring
that Bob has cancer from his smoking, when in fact Bob is healthy, would be disinformation.
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4 The Galois Connection for Modeling Privacy

Section |3|showed by example how a relation determines a partially ordered set (poset) useful for
modeling privacy. The elements in the poset are ordered pairs — a set of attributes and a set
of individuals — that are equivalent from the relation’s perspective. Privacy loss occurs when
an observer has data (for example, background knowledge) that is not directly in the poset but
is a proper subset of some set of attributes or individuals in the poset. The observer may then
infer some additional attributes or individuals. This section develops the connection between
relations and posets more precisely, continuing to use the earlier examples for illustration. See
also Appendices [A] and [B] for notation and additional material.

4.1 Dowker Complexes

Definition 1 (Dowker Complexes).  Let X and Y be finite discrete spaces and let R be a
relation on X x Y. This means R is a set of ordered pairs (x,y), with x € X and y € Y.
We frequently view/depict R as a matriz of Os and 1s, or as a matriz of blank and nonblank
entries, with X indexing rows and Y indexing columns.

(a) We often refer to elements of X as individuals and to elements of Y as attributes.

(b) For each x € X, let Y, = {ye€Y | (x,y) € R}. Then Y, consists of all attributes of
indwidual x. We may view Y, as a row of R. We say that the row is blank if Y, = (.

(c) For eachy €Y, let X, ={zx € X | (x,y) € R}. Then X, consists of all individuals who
have attribute y. We may view X, as a column of R. The column is blank if X, = 0.

(d) We next define two simplicial complexes ®r and Vg (with some special cases below):

&r = {yCY |there exists x € X such that (z,y) € R for all y € v},
Urp = {0 C X |there existsy €Y such that (z,y) € R for all x € 0}.

Special cases: If X =0 and/or Y = 0, then we say the relation is void. In this case,
with some exceptions discussed later (see Section@ Section and Appendix @, we let
®r and Vi each be an instance of the void complex, containing no simplices. Otherwise,
with X and Y both nonempty, each of ®r and Vg contains at least the empty simplex ().

We refer to ®r and Vi as Dowker complexes, after the author of upcoming Theorem @

We say that each compler is the Dowker dual of the other, with respect to relation R.

Interpretation: A nonempty set v of attributes is a simplex in ®r precisely when at least
one individual has at least all the attributes in v. We refer to any such individual as a
witness for .

Similarly, a nonempty set o of individuals is a simplex in Wi precisely when there is at
least one attribute that is shared by at least all the individuals in o. We refer to any such
attribute as a witness for o.
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Figure 3: Dowker simplicial complexes ®r and ¥y determined by relation R.

Figure [3] shows the Dowker complexes for the relation R of Section [3.3]

Dowker’s Theorem [3], [I] says that the two simplicial complexes ®r and ¥ have the same
homotopy type. As we will see, the maps establishing that homotopy equivalence define the
doubly-labeled poset Pr and describe how privacy may be lost.

Theorem 2 (Dowker Duality [3]). Suppose R is a relation on X X Y. Let ®r and Vg be as
in Definition [l Then ®r and Vi are homotopy equivalent.

Every nonvoid simplicial complex ¥ determines a partially ordered set §(X) called the face
poset of ¥. The elements of this poset are the nonempty simplices of X, partially ordered by
set inclusion. (Recall that 'poset' is short for 'partially ordered set'.)

For the finite setting, the homotopy equivalence of Dowker’s Theorem may be seen by
explicit formulas for maps between the face posets of the two Dowker complexes. These maps
describe what is known as a Galois connection. [This construction also appears as a core tool
within the field of Formal Concept Analysis [25, [10].] Here are the formulas:

¢r : F(¥Rr) — §(PR) Yr : F(Pr) = F(¥R)
o m Y. e m Xy
TEC Yyey

These two maps are inverse homotopy equivalences. One sees this by considering the maps
¢roYr and PR o pr. These compositions turn out to be what are called closure operators on
the face posets §(®r) and F(Vg), respectively, implying that each is homotopic to an identity
map, thereby establishing the desired homotopy equivalence. See Appendix [B| for detailed
computations; see the next subsection for interpretation.

4.2 Inference from Closure Operators

An order-preserving poset map f : P — P is said to be a closure operator whenever x < f(x)
and f(f(x)) = f(z) for all x € P. If f is a closure operator, then it induces a homotopy
equivalence between P and the image f(P). See [11 22} 19} 18] for more details.

One can think of a closure operator as “pushing elements up” in the poset. From a privacy
perspective, “pushing up” amounts to inference. Specifically, (¢pr o ¥gr)(y) \ v consists of all
additional attributes that may be inferred from observing attributes -, while (g o ¢r)(0) \ o
consists of all additional individuals that may be inferred from observing individuals o.
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Comment: The formulas for ¢ and ¥g in Section [4.1] extend to the empty simplex and
to the spaces X and Y, suggesting “inferences from nothing”: Observe that ¢¥z(0) = X, so
(¢r o ¥Rr)(D) consists of all attributes that every individual in X has. If (¢r o ¥g)(0) # 0,
then the attributes (¢r o ¥g)(0) are inferable “for free” from R, that is, without making any
observations. Similarly, (¢ o ¢r)() consists of all individuals who have every attribute in Y.

Any poset P defines a simplicial complex A(P) called the order complex of P. The simplices
of A(P) are given by the finite chains {pg < p1 < -+ < p,} in P. Suppose we start with a
nonvoid simplicial complex ¥, construct its face poset F(X), and then construct the order
complex A(F(X)). The result is isomorphic to the first barycentric subdivision of ¥ [20 22].
A convenient visualization of the face posets F(®r) and §F(Vg) therefore is to draw the first
barycentric subdivisions of ®r and Vg, respectively, as in Figure

{

iy {12} {25

o—o—0—0—90
{a} {abj {b} {b,cj {cj

A(S(Dp) AGS(PY)

Figure 4: Order complexes of the face posets of the complexes ®r and ¥ shown in Figure

Viewed in the order complexes, functions ¥ and ¢r are easy to visualize. They are fully
determined by their actions on vertices of the order complexes, as shown in Table (Bear
in mind that each element of F(Pr) represents a simplex in & but is a vertex in A(F(Pr)).
Similarly, each element of §F(V¥r) represents a simplex in Ug but is a vertex in A(F(¥gr)).)

o br(0) (YR o dr)(0)
{1} {a, b} {1}
gl Yr(7Y) (PR o YR)(7) {2} {b,c} {2}

{a} {1} {a,b} {3} {c} {2,3,4}
{v} {1,2} {v} {4} {c} {2,3,4}
{c} {2,3,4} {c} {1,2} {v} {1,2}
{a,b} {1} {a,b} {2,3} {c} {2,3,4}
{b,c} {2} {b,c} {34} {c} {2,3,4}

{2,4} {c} {2,3,4}

{2,3,4} {c} {2,3,4}

Table 1: The maps ¥ g and ¢r, and their compositions, for relation R of Figure
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Using Table [T, one can again see how privacy loss might occur via R.

For instance, the map ¢r o g gives rise to the closure (i.e., a “pushing up”)

{a} 5 {1} 25 {2},

telling us how to infer unobserved attribute b from observed attribute a (in the health study
example of Section Alice could infer that Bob HAS_CANCER from knowing that he SMOKES).
Similarly, for the map g o ¢g,

{4325 {c} 2 {2,3,4},

leading to association inference (in the payroll example from Section the payroll clerk
could infer Bob and Mary’s exposure to valuable information after learning of Julie’s work on
an important project).

Figure [5| indicates the homotopy deformations produced by the maps ¢r o ¥r and ¥g o ¢g,
while Figure [6] shows the resulting image of each face poset.

&

2.4
> 23,4

3.4}

{125 {25
o—>-0—0——0
a} {a,bj {b} {b,cj {cj

12,3}

A(S(Dp)) A(S(*Fp)

Figure 5: Closure operators ¢ o g and ¥g o ¢r produce homotopy deformations, indicated
by directed edges. In F(Pr), {a} closes up to {a,b}. In F(Vg), most of the subsets of {2,3,4}
close up to {2,3,4}. The exception is subset {2}, which does not move.

3}

img(¢,ovy,): @O—@—@—@
P Vi {ab} {b} {b.c} {c}

img(y,00,): @—@—0—@
1} {12} {2} {234}

Figure 6: Images of the closure operators of Figure

Observe that these two images are isomorphic. Matching up corresponding elements
produces the poset Pr of Figure
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Summary: A relation R produces two simplicial complexes, ®r and ¥pg, one modeling
attributes shared by individuals, the other modeling individuals with common attributes. The
complexes are related by two maps, ¢r and ¥ g, that are homotopy inverses. The compositions
of these maps describe the attribute and association inferences possible via R, leveraging
background information someone may have. These inferences are summarized by a poset Pgr
that pairs sets of individuals with sets of attributes. We may describe Pr as follows:

Definition 3 (Doubly-Labeled Poset). Let R be a relation with nonvoid Dowker complezes.
The doubly-labeled poset Pr associated with R consists of all ordered pairs of sets (o,7)
such that ) # o € Ug, 0 #~ € ®r, 0 =Yr(7y), and 