
C O M P U T E R

S C I E N C E

AP® Marine
Biology
Simulation
Case Study

CS

�

Teacher’s Manual

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

The College Board is a national nonprofit membership association whose mission is to

prepare, inspire, and connect students to college and opportunity. Founded in 1900, the

association is composed of more than 4,300 schools, colleges, universities, and other

educational organizations. Each year, the College Board serves over three million students and

their parents, 23,000 high schools, and 3,500 colleges through major programs and services in

college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning.

Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced

Placement Program® (AP®). The College Board is committed to the principles of excellence

and equity, and that commitment is embodied in all of its programs, services, activities,

and concerns.

The College Board and the Advanced Placement Program encourage teachers, AP

Coordinators, and school administrators to make equitable access a guiding principle for their

AP programs. The College Board is committed to the principle that all students deserve an

opportunity to participate in rigorous and academically challenging courses and programs. All

students who are willing to accept the challenge of a rigorous academic curriculum should be

considered for admission to AP courses. The Board encourages the elimination of barriers that

restrict access to AP courses for students from ethnic, racial, and socioeconomic groups that

have been traditionally underrepresented in the AP Program. Schools should make every effort

to ensure that their AP classes reflect the diversity of their student population.

For more information about equity and access in principle and practice, contact the National

Office in New York.

The program code for this teacher’s manual is protected as provided by the GNU public

license. A more complete statement is available on AP Central (apcentral.collegeboard.com).

Copyright © 2003 by College Entrance Examination Board. All rights reserved. College

Board, Advanced Placement Program, AP, APCD, AP Vertical Teams, Pacesetter, Pre-AP,

SAT, Student Search Service, and the acorn logo are registered trademarks of the College

Entrance Examination Board. AP Central is a trademark owned by the College Entrance

Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College

Entrance Examination Board and the National Merit Scholarship Corporation. Educational

Testing Service and ETS are registered trademarks of Educational Testing Service. Other

products and services may be trademarks of their respective owners.

For further information, visit apcentral.collegeboard.com.

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Advanced Placement Program®

Computer Science

Marine Biology Simulation Case Study
Teacher’s Manual

The AP® Program wishes to acknowledge and to thank

Kathleen Larson of Kingston High School in Kingston, New York.

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Permission to Reprint Statement

The Advanced Placement Program® intends this publication for noncommercial

use by AP® teachers for course and exam preparation; permission for any other use

must be sought from the AP Program. Teachers may reproduce this publication, in

whole or in part, in limited print quantities for noncommercial, face-to-face

teaching purposes. This permission does not apply to any third-party copyrights

contained within this publication.

When educators reproduce this publication for noncommercial, face-to-face teaching

purposes, the following source line must be included:

AP Marine Biology Simulation Case Study Teacher’s Manual. Copyright ©

2003 by the College Entrance Examination Board. Reprinted with permission.

All rights reserved. www.collegeboard.com. This material may not be mass

distributed, electronically or otherwise. This publication and any copies

made from it may not be resold.

The AP Program defines “limited quantities for noncommercial, face-to-face teaching

purposes” as follows: Distribution of up to 50 print copies from a teacher to a class of

students, with each student receiving no more than one copy.

No party may share this copyrighted material electronically—by fax, Web site,

CD-ROM, disk, e-mail, electronic discussion group, or any other electronic

means not stated here. In some cases—such as online courses or online

workshops—the AP Program may grant permission for electronic dissemination

of its copyrighted materials. All intended uses not defined within noncommercial,

face-to-face teaching purposes (including distribution exceeding 50 copies)

must be reviewed and approved; in these cases, a license agreement must be

received and signed by the requestor and copyright owners prior to the use of

copyrighted material. Depending on the nature of the request, a licensing fee

may be applied. Please use the required form accessible online. The form may

be found at: http://www.collegeboard.com/inquiry/cbpermit.html. For more

information, please see AP’s Licensing Policy For AP® Questions and Materials.

 5

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Contents

Introduction to Case Studies . 6

Introduction to the Teacher’s Manual . 7

Chapter 1 . 9

Chapter 2 . 14

Chapter 3 . 36

Chapter 4 . 42

Chapter 5 . 68

Appendix A . A1

Appendix B. B1

Appendix C. C1

Appendix D . D1

 6

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Introduction to Case Studies

Case studies are a teaching tool used in many disciplines. They give students an

opportunity to learn from others with more experience and skill. Just as lawyers,

physicians, and therapists learn from the prior experience of others in their fields, so

can programmers learn from more experienced programmers. Case studies have been a

part of the AP Computer Science (APCS) curriculum since the 1994-95 academic year.

Some good reasons to use a case study in AP Computer Science include:

Working with a program of significant length

Thinking through issues of good program design

Learning from an expert programmer

A lot can be learned from reading programs written by another person. Difficult topics

such as program design and construction of algorithms are often best introduced

through studying existing programs, including their design, implementation, and

validation. For example, think about when you first studied sorting algorithms. You

could start from scratch and devise your own sorting algorithms, or you could learn

from the work of others who have devised a selection sort or quicksort. This is also

true when learning about object-oriented design, a topic recently introduced to the

AP Computer Science curriculum. Through the AP Marine Biology Simulation Case

Study, the strategies, vocabulary, and techniques of object-oriented design will be

emphasized. The case study document, code, and teacher’s manual are provided to

support learning through the application of these techniques.

 7

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Introduction to the Teacher’s Manual

The AP Marine Biology Simulation Case Study (MBS) provides a large body of

code to be studied by all students preparing for the AP Computer Science (APCS)

Examinations. This ensures that all students taking the exams will have access to a

common, testable body of code. One free-response question and five to ten multiple-

choice questions on each of the APCS Examinations will test fundamental computer

science concepts in the context of the case study.

You may integrate the case study materials into your course as you see fit. The case

study and the accompanying teacher’s manual were designed in such a way that you

can use these materials throughout the course. You may, in fact, wish to teach many

computer science concepts from the APCS curriculum through the case study itself. On

the other hand, you have the option of including the case study as a stand-alone unit at

some point during the school year. Exactly when to introduce the case study and how

much time to devote to it are matters for each teacher’s discretion. Keep in mind,

however, that your students do need to be prepared to answer the case study questions

they will encounter on the examinations.

Be sure to read carefully the “Note about the AP Computer Science Exams” found

on page 8 of the case study. Students taking the A exam will be tested on Chapters 1

through 4 only. Students taking the AB exam will need to be familiar with Chapters 1

through 4 and Chapter 5. However, you should feel free to cover Chapter 5 with your

A students if you want to do so.

You can begin using the case study very early in your course, even on the first day

of school. Students with minimal programming experience will be able to read

and understand Chapter 1. If you think your students already know the concepts in

Chapter 1, you may decide to begin with Chapter 2. Chapters 3 and 4 are independent

of each other and can be taught in either order.

Additional introductory and supplementary materials are available if you need more

help getting started. Resources can be found through a variety of sources, such as

AP Central™ (apcentral.collegeboard.com) and the AP Computer Science electronic

discussion group (EDG).

The code and class documentation provided in Case Study Appendices B, C, and D

and the Quick Reference information in Appendices E and F will be provided to

students at the time they take the examination. Appendices D and F refer to the AB

exam only.

Be sure to look at everything in the JavaMBS folder. A wealth of helpful information

has been provided for you.

 8

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

The index.html file serves as an annotated table of contents for the files and folders

that are part of the distribution, including the ExecutionInformation folder. This

file is particularly helpful for navigating around the case study and is a very good place

to begin.

Note that two versions of the Fish class are provided in the Code folder. The simpler

version is found in the outer Code folder along with the other classes and files used

by the AP Marine Biology Simulation Case Study. In this simpler version, fish

move but they don’t breed and die. The more complex Fish class, found in the

DynamicPopulation folder within the Code folder, includes breeding and dying.

You may toggle these files in and out of your project, depending upon whether or not

you want fish to breed and die, or you may want to maintain a separate project for each

of the two different Fish classes. For example, in Chapters 1 and 2 you will probably

want to use the simpler Fish class so your students can study fish movement without

having new fish pop up and current fish disappear. Chapter 3 is about a dynamic

fish population, so you will need to use breeding and dying Fish. When you teach

Chapter 4, with different species of fish, you may want to use the original Fish

class at first to study fish movement patterns again without the added complexity

of breeding and dying. Once the new movement patterns are understood, you can

then switch back to the dynamic population.

The Fish class provided in Appendix B is the dynamic version used in

Chapter 3. This is very important because it is the dynamic version that will be

tested on the AP Exam. However, prior to studying Chapter 3, you may want to

provide your students with printed copies of the simpler version of the Fish class

found in the Code folder. That way, they can work with the version of Fish that

contains everything they need for Chapter 2 without the additional Fish methods

introduced in later chapters.

Before starting, you will probably want to decide how you are going to distribute the

code to your students and what compiler or IDE you will be using in the classroom.

For example, you might instruct students to download and unzip the entire distribution

file from the Web, or you might have them copy the JavaMBS folder from a server

to their own work area. Alternatively you could keep the entire MBS installation

intact, in write-protected folders, but make a copy of the Code folder as a working

directory and put the appropriate project files, batch files, or makefiles in the working

directory with the code. The ExecutionInformation folder in the distribution file

contains important information on compiling and running the case study with several

different environments.

Chapter 1 9

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 1

Experimenting with the

Marine Biology Simulation Program

There are no educational prerequisites for beginning this chapter. Your students could

work their way through most of Chapter 1 without advance knowledge about loops,

conditions, arrays, or classes. All they need to do is follow your instructions for

running the case study and make observations about what they see happening. The

final section, however, “Sneaking a Peek at Some Code”, assumes the student is

familiar with constructing objects, invoking methods and for loops. You may

decide to treat this as an opportunity to teach these topics through the case study. For

example, if it’s early in the year and you haven’t yet taught loops, “Sneaking a Peek

at Some Code” could provide the motivation for introducing looping to the class.

Teaching tip: Allow students time to enjoy running the program and to discuss their

findings with classmates.

Teaching tip: If you are using the default graphical user interface (GUI)

distributed with the case study (i.e., if you haven’t replaced it with an interface

from another source), you may wish to go through the help file that documents

the graphical user interface. You can find the help file (MBSHelp.html) in the

JavaMBS/Documentation folder or from the Help menu in the simulation program.

This document may help you answer student questions that come up. You do not need

to read or understand all the GUI before starting to teach the case study, though. For

example, only the topics in the first two bullets are used in Chapter 1. The next three

topics are useful for Chapter 2 (although creating a new environment using the GUI is

optional). The last two topics are useful mostly for Chapters 4 and 5. Students do not

need to read the help file before Chapter 1. The aspects of the user interface that they

need for this chapter should be relatively self-explanatory. They will, however, need

instructions for compiling and running the case study in your particular lab setting.

Exercise Set 1 (page 10)

1. Refer to the ExecutionInformation folder included with the case study. It

contains basic information on how to compile and run the simulation using several

different IDEs. This exercise shows students how to get the simulation up and

running. They do not need to understand how the simulation or the graphical

display work. Encourage your students to experiment with the various GUI

menu options.

Chapter 1 10

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

2. Yes, the behavior of each fish is the same both times, although the positions the

fish move into will change. This may be hard for students to see because there are

many fish moving about. Your students may observe that the fish begin in the same

positions each time the simulation is run. They may also remark that they don’t see

fish going backward. Some students may notice that the fish don’t move diagonally

either. The main point is that their behavior appears to be consistent although they

do not necessarily move to the same positions as they did in a previous run.

Teaching tip: The perspective of the display is that of an overhead camera looking

down on the fish in the water. When a fish moves up on the screen, it is moving north.

When it moves down, it is moving south, and so on. Students sometimes incorrectly

think they are seeing a slice of the body of water.

Analysis Question Set 1 (page 10)

1. The program appears to model the body of water as a two-dimensional grid,

something like a graph in coordinate geometry. The grid lines represent boundaries

between locations. Students do not need to know any specific syntax from

mathematics or Java to answer this question. They can describe the grid as rows

and columns or in some other format. If you are using the graphical user interface

that comes with the MBS distribution, your students may notice the “tool tips” that

pop up in the environment when the mouse pauses for a couple of seconds over a

cell in the grid. The tool tips show the cell locations in a row, column format where

rows and columns start at 0 and location (0, 0) is in the upper-left corner.

Teaching tip: You might want to investigate whether the body of water is truly

bounded. If a fish reaches an edge, can it go off the screen and return or does the

boundary act like the edge of a body of water and limit the fish so it can’t go beyond

the shoreline?

2. Fish can only move within the boundaries of the model and there can never be

more than one fish in a location at a given time.

3. The fish may face any of the four major compass directions. The fish’s direction

does not appear to matter in terms of its initial location, but its direction seems

to limit the locations to which the fish may move. This is somewhat difficult

to determine when the students are looking at many fish and it provides the

motivation to continue the investigation process in the next question.

Chapter 1 11

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

4. A single fish does not necessarily move in every timestep. Sometimes the fish is

prevented from moving because there are no unoccupied locations adjacent to its

current location. When it moves, a fish moves exactly one space on the grid. Fish

do not always move in the same direction, but the fish don’t appear to move

backward. Other than not moving backward, there doesn’t seem to be a preference

for moving straight ahead or turning left or right.

Teaching tip: Some students may argue that the fish do indeed go in the opposite

direction but if they look carefully they will see that turning around requires two ninety

degree turns, moving to an adjacent location on each turn.

Exercise Set 2 (page 11)

1. You will find a master for the table shown in this problem in Appendix C. You

might want to make copies and distribute them to your students before they run the

program. They can fill in the table and compare their findings with each other or

they can turn them in for a grade. They should fill in the location columns with

coordinates in (row, column) order. Direction columns should indicate north, south,

east, or west (or an abbreviation). Let students reach their own conclusions and

then compare them to the list that follows Exercise Set 2. Answers will vary.

Teaching tip: For some students, identifying rows versus columns and remembering

which is which is a stumbling block. The problem is that they are familiar with x and y

coordinates, or horizontal locations followed by vertical. Row, column order is vertical

first, followed by horizontal. Reinforce verbalizing and writing the correct order from

the very beginning of your teaching of the case study.

2. Students may think they have enough data after filling in the chart. Remind them

that five timesteps provide very little evidence and are certainly not conclusive.

Analysis Question Set 2 (page 12)

1. Answers will vary but should generally support the conclusions listed on page 11.

This should generate classroom discussion.

2. You will find a master for this chart in Appendix C. Repeat filling in the

chart and discuss the results. There is stronger evidence now, but it still may

not be conclusive.

Chapter 1 12

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Analysis Question Set 3 (page 13)

1. The first number represents the row and the second represents the column.

Teaching tip: There are several issues that students may have to grapple with here.

Row and column values start at 0, not 1.

The origin is (0, 0) and is located in the upper left hand corner of the grid.

As you move South in the grid, row values increase.

As you move East in the grid, column values increase.

Exercise Set 3 (page 13)

1. Yes, everything is as expected.

2. An easy way to do this is to work from an existing file. Open a file, make changes

and save the data file under a new name with the .dat extension. You could also

use an existing file as a model and have students create a new file from scratch.

Note to teachers: Up to this point, there isn’t anything that requires any programming

knowledge — just the ability to compile and run a program and look at data files in

some editor. These exercises can be done as early in the year as you choose.

Sneaking a Peek at Some Code (pages 14–17)

Teaching tip: If students are not already familiar with constructing objects or invoking

methods, stop here (or prior to beginning Chapter 2). You could cover these topics by

exploring support materials available through AP Central or by using your textbook or

other reference materials.

When a fish is constructed, it is passed environment and location parameters. In

SimpleMBSDemo1, the environment is passed using a variable, env. A location,

however, is passed by constructing an anonymous Location object within the

parameter list. Giving a location a variable name isn’t necessary because a reference to

the location becomes part of the fish’s private data.

The image on page 17 is called an “object diagram”. It shows interactions among

several different objects, which may be instances of the same class or of different

classes. This object diagram illustrates the behavior of the driver in SimpleMBSDemo2.

Public methods are represented with rectangles that extend across the border of the

class. When private data and methods are shown, they are entirely within the rectangle

representing the class object. Four fish are shown in the diagram but the simulation

could be run on a smaller or a larger number of fish.

Chapter 1 13

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Object diagrams show which methods are defined for each object and how several

objects interact, but they do not show the details of any given method. Don’t let your

students be concerned about the details at this time. They will learn more about how

the methods are implemented in Chapter 2.

Teaching Tip: Make overhead transparencies of this and all other object diagrams

(found in Appendix C of this manual) and provide a set of paper copies for your

students. They can follow along as you trace the simulation flow. These diagrams can

also be very helpful when trying to modify the case study or add methods. They help

students keep track of the instance variables, methods, and dependencies.

If students want to experiment with adding more fish, they can do so by directly

adding Fish f4, Fish f5, and so forth to the code in SimpleMBSDemo1 or

SimpleMBSDemo2. No other change is necessary.

Note to teachers: If you are familiar with interfaces and have looked ahead to

Chapter 2, you may wonder why the two simple demo programs declare the

environment to be of type BoundedEnv rather than Environment. The reason

is to avoid having to use and explain the following line of code.

 Environment env = new BoundedEnv(NUM_ROWS, NUM_COLS);

The problem is that students may not be familiar with seeing a variable declared to

be of one type (Environment) and then constructed as an instance of another type
(BoundedEnv). If you (or your students) have looked ahead to Chapter 2, you may

have noticed that the Simulation constructor takes an Environment as a parameter.

This means that it can take a BoundedEnv object, or an object of any other class that

implements the Environment interface.

Teaching tip: Steve Andrianoff and David Levine of St. Bonaventure University

have written a series of role-playing exercises to help students understand class

responsibilities and the interactions between objects. One of these is a Marine Biology

Simulation role-playing exercise. You can find links to this and other role-playing

examples at AP Central. Role-playing exercises take some practice and the one for the

AP Marine Biology Simulation Case Study is complex. Starting your students with the

exercise labeled “first”, will help them understand the role-playing process before they

attempt the more involved MBS exercise. Prior to introducing Chapter 2, it would be

helpful to have your students participate in these role-playing exercises.

Chapter 2 14

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 2

Guided Tour of the

Marine Biology Simulation Implementation

Before you introduce this chapter, your students should be familiar with the basics of

how to read classes (including constructing and using objects), basic flow control, and

one-dimensional arrays. The case study could, however, be used as an instrument for

learning ArrayList and inheritance (Chapters 2 through 4) and two-dimensional

arrays and interfaces (Chapter 5).

The Big Picture (page 19)

Ask your students to think of other examples of two-dimensional grids with which they

are familiar, such as tables, game boards, and geographic maps.

After you have talked about “The Big Picture” and before you go on to “What classes

are necessary?” you might want to have students pre-read and discuss the section on

black-box test cases, found on pages 42 and 43. This will start your students thinking

about the many fish configurations that need to be considered as code is developed.

What do the core classes look like? (page 20)

If you are using an applet, main method, or graphical user interface from another

source, you may want to talk about it at this point. If the code is simple enough, you

may even want to have your students look at the code. If you are using the graphical

user interface that comes with the case study, you can simply point out that the

graphical user interface is calling the Simulation step method every time the user

presses the Step button.

The Simulation Class (pages 21–23)

The code for the Simulation constructor on page 21 may seem unusual since it

calls a method to display the environment. If students question this design decision,

point out the last sentence in the second paragraph on page 22 telling us that when

a Simulation object is constructed, the initial environment configuration will be

displayed. This is how we see the fish in their initial positions.

The first paragraph on page 22 introduces the EnvDisplay interface. Use of the terms

“specifies” and “implements” here is analogous to the use of the terms “declares” and

“defines” in C and C++.

Chapter 2 15

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

The word “interface” has two different (but related) meanings in Java.

the specification and documentation of the signatures of public constructors and

methods in a class (similar to a header file in C or C++)

the specification of an abstract type (a list of method signatures with no

implementations) defined with the interface keyword

To reduce confusion, the MBS case study uses the term as described in the second

bullet to mean an abstract type defined with the interface keyword. It uses phrases

like “class documentation” and “list of methods” to refer to public information about a

class, such as its method signatures, that would be useful to client code.

The step method shown on page 21 may require more explanation than is found on

page 22. Conceptually, the method is quite simple. It asks for a list of all the objects

in the environment and then loops through the list asking each one to perform its

task. The complexity is mostly in the use of types. What is the type of things in the

environment? While the environment was written to be quite generic, it does have

one basic requirement for all objects that can be stored in it — they must keep track

of their location and be able to report the information using a location() method.

How does one specify “any class that supports a location() method”? This is

exactly what the Locatable interface introduced on page 22 does. It specifies a single

method, location. Objects of any class that implements this interface may be stored

in an environment. That is how the environment keeps track of them. This explains

why the allObjects method returns an array of Locatable objects.

The step method could treat the objects referenced by theFishes as Locatable

objects if it only needed to ask each object for its location, but this is not the case.

It wants to ask them to act, and Locatable objects do not necessarily have

an act method. The step method, though, knows more about the objects than the

environment does. It knows that this is a marine biology simulation, that the objects

are all fish, and that the Fish class has an act method. Therefore, it casts the

Locatable references in the array as Fish references. When you cast a value to

another type (by putting the type in parentheses before the value), you are asking the

system to create another reference to the object that is of the specified type. In this

case, the code is telling the compiler that the elements in theFishes array actually

refer to Fish objects. In order to ask these objects to perform Fish behaviors (like

act), they must be accessed using a Fish reference. This cast will only succeed if the

object actually is a Fish (or a subclass of Fish). If the object is not a Fish, the code

will still compile, but at runtime the program will throw an exception (print an error

message and stop).

Chapter 2 16

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Teaching tip: Although students have seen exactly three fish in SimpleMBSDemo1 and

SimpleMBSDemo2, the diagram depicts four Fish objects. Be sure your students do

not think in terms of a given example, but rather generalize to any number of Fish

objects being told to step.

Analysis Question Set 1 (page 24)

1. step uses an array of Locatable objects (fish) that it gets from calling

theEnv.allObjects(). The Simulation constructor is passed the environment

as one of its parameters.

2. The Simulation class encapsulates the process of moving fish. This means

SimpleMBSDemo2 can construct a Simulation object and call its step method

and expect the program to run correctly without knowing the implementation

of the Simulation class. So while Pat wondered what was going on when

SimpleMBSDemo2 was run, the fact was that the program did its job by constructing

the Simulation object and calling method step. In particular, SimpleMBSDemo2

does not need to display the initial configuration of the environment because the

Simulation constructor does that. Nor does SimpleMBSDemo2 ask the fish to act

or display the environment at the end of the timestep, because the step method

does both of those things.

Teaching tip: If you have covered interfaces in your class, you can be more specific

with your students. Environment is, in fact, an interface, not a class. It can

be implemented in a number of different ways. The BoundedEnv class is an

implementation of the Environment interface that models a bounded rectangular grid.

The Environment Interface (pages 24–25)

Note to teachers: You may notice that the allObjects method, described on

page 22, returns an array of Locatable objects, the neighborsOf method returns

an ArrayList. Your students may ask why not use an array for both, or an ArrayList

for both? This is a good time to discuss the advantages and disadvantages of both

data structures.

Array

An array is typed. You must declare the type of element the array will hold.

Arrays can hold primitive types or object references.

You may be able to avoid casting when you use an array. In the case of the

allObjects method, which returns an array of Locatable references, you do

not have to cast if only the location method needs to be invoked. The step

method of the Simulation class calls the allObjects method and does cast

each element of the array to a Fish reference in order to tell each fish to act.

Chapter 2 17

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

An array’s size is fixed when it is instantiated. You cannot grow or shrink the

physical size of an array. If the array’s size needs to be increased or decreased,

a new array must be constructed and all the values to keep must be copied over

to the new array. Once this is done, the reference to the old array must be

assigned to the new array. The old array will then be garbage collected.

Insertions and deletions in an array require the programmer to code shifting the

elements of the array.

ArrayList

An ArrayList holds only Object references. You must cast each element

of an ArrayList to the specific type of reference needed in order to invoke

methods of the object’s specific class. Using an ArrayList element’s

reference will allow the programmer to invoke Object methods. (Note:

Versions of Java that include the use of generics will allow the programmer

to type an ArrayList. This was not available when the case study and

teacher’s manual were written.)

Currently, primitive type variables must be “wrapped” in a corresponding

wrapper class object to be added to an ArrayList. (Note: Future versions of

Java may include automatic boxing and unboxing of primitives. This was not

available when the case study and teacher’s manual were written.)

An ArrayList can shrink and grow as needed. Invoking the add and

delete methods will change the size of an ArrayList. The add and

delete methods take care of shifting the elements of the ArrayList.

In general, if the size of the data set is known and isn’t going to change, an array might

be the right choice. When the size of the data set is not known or is volatile (many

insertions and deletions), an ArrayList may be the right choice.

In the context of this case study, the reasons for choosing an array in one case and an

ArrayList in the other case is as follows:

The number of objects in the environment is known. The environment contains

Locatable objects. Returning a fixed size array of Locatable object

references is a reasonable design decision.

The neighborsOf method could return as few as two neighboring locations to

as many as four or eight neighboring locations with the original environment

implementations. Since the size is not known, returning an ArrayList is also

a reasonable design decision.

Chapter 2 18

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

If you have not covered constants, you may want to teach the syntax for using

constants in client and class code. For example, the code within the Direction

class can use the NORTH constant by just referring to it directly, but code

outside the Direction class must specify the class in which NORTH is

defined, i.e., Direction.NORTH.

Analysis Question Set 2 (page 26)

Teaching tip: Have students do the analysis questions as a paper-and-pencil exercise

first. Discuss their answers before doing the implementations in the exercise set

that follows.

Note to teachers: As an option, if you have covered the difference between the equals

method and == operator, you may also wish to have students answer the questions in

Analysis Question Set 5 at this point.

These exercises focus on the Location and Direction classes and their methods.

Students will be responsible for understanding how to use any of the testable methods

in these classes. This includes the compareTo method. Depending on when you cover

this material, your students may or may not be ready for compareTo. If they are not,

remember to revisit this topic when you discuss interfaces or searching and sorting.

1. (6, 3), (7, 4), (8, 3), (7, 2)

2. EAST

3. SOUTH, NORTH

4. (6, 3)

5. (5, 3)

6. Note: Direction and Location are immutable classes, meaning that the state of

one of their objects never changes once it is constructed.

 The Location class has

a single constructor with row and column parameters.

Chapter 2 19

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 Besides row, col, and equals, Location has compareTo, hashCode, and

toString.

compareTo compares two locations for ordering. (For instance, you could use

the compareTo method if you wanted to sort fish by their locations. The

compareTo method uses row-major ordering for its comparisons; two locations

in different rows are ordered based on their row number, while two locations in

the same row are ordered based on their column number.) This actually isn’t

discussed until page 87 in Chapter 5, but it may come up in your class at this

point. Remember, Chapter 5 material is tested on the AB exam only.

hashCode generates a hash code for this location (necessary because

Location redefines the equals method, but students are not expected to

know this technical detail and hashCode will not be tested).

toString represents this location as a string and is used to output a location in

a readable format. The toString method can be used to print a fish’s location

for testing and debugging.

 The Direction class has three constructors.

a default (no arguments) constructor that sets a direction to North

a constructor with a single parameter degrees

a constructor with a single parameter direction in String form (i.e.,

“NORTH”, “North”, or “north”)

 Direction contains the following public methods

inDegrees returns the direction value in degrees (where 0 degrees is North)

equals(Object other) returns true if other represents the same direction

as this direction and false otherwise

toLeft returns a direction that is 90 degrees to the left of this Direction

toRight returns a direction that is 90 degrees to the right of this Direction

toLeft(int degrees) returns a direction degrees to the left of this

Direction

toRight(int degrees) returns a direction degrees to the right of this

Direction

reverse returns the direction that is the reverse of this Direction object

toString that represents this direction as a string

randomDirection returns a random direction in the range of [0,360) degrees

Chapter 2 20

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

roundedDir rounds this direction to the nearest “cardinal” direction and

returns that direction (will not be tested)

hashCode generates a hash code for this Direction object (will not

be tested)

The toString method can be used to report a direction and for testing and

debugging purposes.

Exercise Set 1 (page 26)

1. Use SimpleMBSDemo1 as a template. Make changes as shown below and save the

code using a different name. Be sure to change the comments to reflect the exercise.

The sample solution is only one possible driver program.

/** Chapter 2, Exercise Set 1, Question 1

 * Write a simple driver program that constructs a BoundedEnv

 * environment and then tests answers to Analysis Question Set 2.

 **/

public class ExSet1Q1

{

 // Specify number of rows and columns in environment.

 private static final int ENV_ROWS = 20; // rows in environment

 private static final int ENV_COLS = 20; // columns in environment

 /** Start the Marine Biology Simulation program.

 * The String arguments (args) are not used in this application.

 **/

 public static void main(String[] args)

 {

 // Construct an empty environment and several fish in the context

 // of that environment.

 BoundedEnv env = new BoundedEnv(ENV_ROWS, ENV_COLS);

 Location loc1 = new Location(7, 3);

 Location loc2 = new Location(7, 4);

 Direction dir1 = env.getDirection(loc1, loc2);

 Direction dir2 = dir1.toRight(90);

 Direction dir3 = dir2.reverse();

 Location loc3 = env.getNeighbor(loc1, dir3);

 Location loc4 = env.getNeighbor(new Location(5, 2), dir1);

 System.out.println("loc1 neighbors: " + env.neighborsOf(loc1));

 System.out.println("dir1 = " + dir1);

 System.out.println("dir2 = " + dir2 + " dir3 = " + dir3);

 System.out.println("loc3 = " + loc3);

 System.out.println("loc4 = " + loc4);

 }

}

Chapter 2 21

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

2. One way to do this is to add the following lines of code.

System.out.println("In degrees, North = " + Direction.NORTH.inDegrees());

System.out.println("In degrees, South = " + Direction.SOUTH.inDegrees());

System.out.println("In degrees, East = " + Direction.EAST.inDegrees());

System.out.println("In degrees, West = " + Direction.WEST.inDegrees());

System.out.println("dir3 in degrees = " + dir3.inDegrees());

When the students run this program they will discover that North is 0, East is 90, South

is 180, West is 270, and dir3 is 0.

The Fish Class (pages 27–39)

The case study can be used to introduce ArrayList. The sections of this chapter

that deal with the nextLocation and emptyNeighbors methods of the Fish

class introduce some of the ArrayList methods. Students are expected to know

these methods.

Why do fish have a private environment? Actually they don’t. They have a reference

to theEnv. In SimpleMBSDemo1 and SimpleMBSDemo2, students can see that each

fish, when constructed, is passed a reference to the single environment in which

they all exist. A fish has to know the particular environment in which it is swimming.

Think of all of the fish in a given environment pointing to the same place. There

may, in a variation of the case study, be more than one environment (two or more

lakes or streams, for example) or more than one simulation running, each with its

own fish population.

The first paragraph on page 29 discusses the initialize method. If your students are

not familiar with the terms “instance” and “instantiate”, you may need to explain why

“instance variables” are referred to that way. Remember, they are variables that store

the state of a given instance of a class object.

The same paragraph states that some textbooks use the term “field”. It is important to

note that class documentation generated using Sun’s standard javadoc tool also uses

the term “field”. The three categories in class documentation are fields, constructors,

and methods.

When you teach the randomColor method on page 30, discuss with your students the

need for the import statements for java.util.Random and java.awt.Color. This

is also a good time to talk about the differences between instance variables, local

variables and parameters.

Chapter 2 22

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Analysis Question Set 3 (page 31)

1. two

2. 2(2, 6)North, 1(7, 3)South (directions may vary)

3. false

4. true

5. 2(2, 6)North

6. null

7. No. A Fish constructor adds the fish to the Environment, so there is no reason

to add it again. It is critical that the fish and the environment agree on the fish’s

location at all times. This is why a fish adds itself in its constructor, thus ensuring

that the fish and the environment agree on the location as soon as the fish is

constructed. (There is more discussion of this and what it means for a fish to be

in a consistent state on page 33 of the case study narrative.)

8. You wouldn’t want client code to be able to modify a fish’s state (e.g., change its

location, direction, or color) during program execution by calling the initialize

method directly. For example, if initialize were a public method, client code

could move a fish to an arbitrary location at any time.

9. While it is certainly possible to code theEnv as a class variable, it would

be inadvisable to do so. There is no guarantee that all fish live in the same

environment. Creating theEnv as a class variable would force all fish to live

in the same environment and would not allow the two simulations with two

different environments to be displayed at the same time.

Note to teachers: Although class variables are not in the subset, the decision was made

to create nextAvailableID variable as a class variable. Since nextAvailableID

needs to be shared by all of the Fish objects, it cannot be an instance variable. An

alternate design decision could be to pass the ID number as a parameter and not have

the nextAvailableID class variable in the Fish class. You may want to discuss this

design decision with your class. It is better to have the Fish class determine the ID

number for each Fish object, or is it better to have some other class, like an

environment class, determine the ID number of each Locatable object?

Chapter 2 23

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Exercise Set 2 (page 32)

1. One possible solution is given below.

/** Chapter 2, Exercise Set 2, Question 1

 * Write a simple driver program that constructs a BoundedEnv

 * environment and then tests answers to Analysis Question Set 3.

 **/

public class Ch2ExSet2Q1

{

 // Specify number of rows and columns in environment.

 private static final int ENV_ROWS = 20; // rows in environment

 private static final int ENV_COLS = 20; // columns in environment

 /** Start the Marine Biology Simulation program.

 * The String arguments (args) are not used in this application.

 **/

 public static void main(String[] args)

 {

 // Construct an empty environment and several fish in the context

 // of that environment.

 BoundedEnv env = new BoundedEnv(ENV_ROWS, ENV_COLS);

 // Set up the information given in Analysis Question Set 3

 Location loc1 = new Location(7, 3);

 Location loc2 = new Location(2, 6);

 Location loc3 = new Location(4, 8);

 Fish f1 = new Fish(env, loc1);

 Fish f2 = new Fish(env, loc2);

 // Question 1

 System.out.println("number of objects: " + env.numObjects());

 // Question 2

 System.out.println("Objects in the environment are: ");

 Locatable[] fishList = env.allObjects();

 for (int index = 0; index < fishList.length; index++)

 {

 System.out.println((Fish)fishList[index]);

 }

 // Question 3

 System.out.println("Is loc1 empty? " + env.isEmpty(loc1));

 // Question 4

 System.out.println("Is loc3 empty " + env.isEmpty(loc3));

Chapter 2 24

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Question 5

 System.out.println("The object at loc2 is " +

 (Fish)env.objectAt(loc2));

 // Question 6 (documentation says should return null)

 System.out.println("The object at loc3 is " +

 (Fish)env.objectAt(loc3));

 }

}

2. Answers will vary. One possible solution is to modify the code from Question 1.

/** Chapter 2, Exercise Set 2, Question 2

 * Write a simple driver program that constructs a BoundedEnv

 * environment and then tests answers to Analysis Question Set 3.

 **/

public class Ch2ExSet2Q2

{

 // Specify number of rows and columns in environment.

 private static final int ENV_ROWS = 20; // rows in environment

 private static final int ENV_COLS = 20; // columns in environment

 /** Start the Marine Biology Simulation program.

 * The String arguments (args) are not used in this application.

 **/

 public static void main(String[] args)

 {

 // Construct an empty environment and several fish in the context

 // of that environment.

 BoundedEnv env = new BoundedEnv(ENV_ROWS, ENV_COLS);

 // Set up the information given in Analysis Question Set 3

 Location loc1 = new Location(7, 3);

 Location loc2 = new Location(2, 6);

 Location loc3 = new Location(4, 8);

 Fish f1 = new Fish(env, loc1);

 Fish f2 = new Fish(env, loc2);

 // Add more fish

 Fish f3 = new Fish(env, new Location(0, 0));

 Fish f4 = new Fish(env, new Location(2, 7));

 Fish f5 = new Fish(env, new Location(7, 7));

 // Question 1

 System.out.println("number of objects: " + env.numObjects());

Chapter 2 25

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Question 2

 System.out.println("Objects in the environment are: ");

 Locatable[] fishList = env.allObjects();

 for (int index = 0; index < fishList.length; index++)

 {

 System.out.println((Fish)fishList[index]);

 }

 // Now remove some fish and print all objects again

 env.remove(f2);

 env.remove(f4);

 System.out.println("After removing f2 and f4, " +

 "objects in the environment are: ") ;

 fishList = env.allObjects();

 for (int index = 0; index < fishList.length; index++)

 {

 System.out.println((Fish)fishList[index]);

 }

 System.out.println("Is the location of f1 empty? " +

 env.isEmpty(f1.location()));

 System.out.println("Is the location of f2 empty? " +

 env.isEmpty(f2.location()));

 }

}

3. Adding the following statement to the above code

 env.add(new Fish(env, new Location(8, 8)));

 results in an Illegal Argument Exception that says the location is not a valid empty

location. When the call to env.add is actually executed, the Fish constructor has

already added the fish to the environment at location (8, 8), so that location is no

longer empty. This behavior is subtle but important to understand. This question

exists as an exercise as well as an analysis question (Question 7 on page 31) to help

students understand that calling a Fish constructor adds a fish to the environment;

therefore, there is no need for a method that creates a fish to also make a call to

the environment to add that fish. Students may be more likely to remember this

behavior if they have run the program and seen it generate an exception.

Simple accessor methods in Fish (pages 32–33)

After reading this section, students should look at the actual Fish.java file to find

the "implements Locatable" phrase.

Chapter 2 26

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Analysis Question Set 4 (page 33)

1. Look at the Fish initialize method. The last step is to add this fish to theEnv.

The environment receives this fish, which includes its location, and adds the fish to

that location if it is not already occupied by a fish. So the fish and the environment

agree upon the fish’s location and therefore the fish starts out in a consistent state.

2. If a fish (or any object that keeps track of its own location) is removed from the

environment (e.g., it dies or is eaten by a shark), then it will still “think” it’s at a

particular location when it is not. This will put the fish in an inconsistent state.

Furthermore, if the Environment method recordMove does not work as

intended, the fish could change to an inconsistent state.

Fish movement methods — act and its helper methods (pages 33–34)

Your students may wonder why act just checks to see if the fish is still in the

environment and then calls move. Why not get rid of the act method and just have

a move method? The answer is because fish may eventually do more than just move.

They could breed, die, eat, blow bubbles, and so on. Creating a “controller” method,

like act, is a good design decision. It allows the different behaviors of a fish to be

factored out into separate methods that can be called by the act method. This is

especially advantageous when your students begin to create subclasses of the Fish

class. With each of the different Fish behaviors in a separate method, it will be easy

to override only the behaviors that need to be redefined.

Analysis Question Set 5 (page 35)

1. true, true

2. false, false

3. false, true

Analysis Question Set 6 (page 36)

1. The neighborsOf method returns all valid neighboring locations, not just

those that are empty. The emptyNeighbors code that obtains a fish’s empty

neighbors from the environment could have been included in nextLocation

but we want each method to perform one well-defined task. Including the code

from emptyNeighbors in nextLocation would have over-complicated

nextLocation and made it less readable.

Chapter 2 27

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

The emptyNeighbors method (page 36)

After reading the code for emptyNeighbors on page 36, remind your students that

we do not know how many empty neighbors there will be. This motivates using an

ArrayList rather than an array. Note that we need an import statement when we

use ArrayList.

Exercise Set 3 (page 37)

1. (0, 0) has two neighbors; (0, 1) has three neighbors; (1, 1) has four neighbors. One

possible code solution is the following.

/** Chapter 2, Exercise Set 3, Questions 1 and 2

 * Write a simple driver program that constructs a BoundedEnv

 * enviromnment and then tests answers to Analysis Question Set 3.

 **/

import java.util.ArrayList;

public class Ch2ExSet3Q1and2

{

 // Specify number of rows and columns in environment.

 private static final int ENV_ROWS = 20; // rows in environment

 private static final int ENV_COLS = 20; // columns in environment

 /** Start the Marine Biology Simulation program.

 * The String arguments (args) are not used in this application.

 **/

 public static void main(String[] args)

 {

 // Construct an empty environment and several fish in the context

 // of that environment.

 BoundedEnv env = new BoundedEnv(ENV_ROWS, ENV_COLS);

 // Set up the information given in the problem

 Location loc1 = new Location(0, 0);

 Location loc2 = new Location(0, 1);

 Location loc3 = new Location(1, 1);

 // Answer Exercise Set 3 Question 1

 ArrayList nbrs1 = env.neighborsOf(loc1);

 ArrayList nbrs2 = env.neighborsOf(loc2);

 ArrayList nbrs3 = env.neighborsOf(loc3);

Chapter 2 28

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 System.out.println("Location " + loc1 + " has " +

 nbrs1.size() + " neighbors");

 System.out.println("Location " + loc2 + " has " +

 nbrs2.size() + " neighbors");

 System.out.println("Location " + loc3 + " has " +

 nbrs3.size() + " neighbors");

 // Answer Exercise Set 3 Question 2

 System.out.print("The neighbors of location " + loc1 + " are: ");

 for (int index = 0; index < nbrs1.size(); index++)

 {

 System.out.print(nbrs1.get(index) + " ");

 }

 System.out.println();

 System.out.print("The neighbors of location " + loc2 + " are: ");

 for (int index = 0; index < nbrs2.size(); index++)

 {

 System.out.print(nbrs2.get(index) + " ");

 }

 System.out.println();

 System.out.print("The neighbors of location " + loc3 + " are: ");

 for (int index = 0; index < nbrs3.size(); index++)

 {

 System.out.print(nbrs3.get(index) + " ");

 }

 System.out.println();

 }

}

2. The neighbors in (row, column) format are:

 for (0, 0): (0, 1) and (1, 0)

 for (0, 1): (0, 2), (1, 1), and (0, 0)

 for (1, 1): (0, 1), (1, 2), (2, 1), and (1, 0)

3. Specific locations will vary, depending upon the size of the bounded environment.

However, the four corners will all have two neighbors, all other boundary locations

will have three neighbors and all interior locations will have four neighbors.

Chapter 2 29

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Analysis Question Set 7 (page 38)

You might suggest that your students label the diagrams a, b, c, d. The answers below

follow from thinking about the diagrams as if they were labeled in this way.

1. In each diagram the fish at location (1, 0) has three neighbors.

2. a. 1 b. 1 c. 2 d. 3

3. a. none b. (1, 1) c. (1, 1), (2, 0) d. (0, 0), (1, 1), (2, 0)

The changeLocation and changeDirection methods (page 39)

Technical detail for interested teachers: Consider the code for changeLocation

and changeDirection on page 39. Since myLoc is private, not protected,
subclasses cannot change myLoc directly. Even if they redefine changeLocation,
which they can do since it is not private, they must use super.changeLocation

(i.e., the version of changeLocation in the Fish superclass) to actually modify

the location. This ensures that myLoc is never changed without also updating

the environment.

Analysis Question Set 8 (page 40)

1. For the fish in location (2, 2)

move will call nextLocation

nextLocation will call emptyNeighbors

emptyNeighbors will first get a list of the four neighbors around location

(2, 2), nbrs, and then determine and return a list of empty neighbors, (1, 2),

(2, 1), and (2, 3)

oppositeDir will then be set to the location behind the fish, (2, 1), and that

location will be removed from the list of empty neighbors

if there are no empty neighbors from which to select a new location, the

fish’s current location is returned, but in this case there are still two empty

neighbors left.

otherwise, an index is randomly selected and the location of the empty

neighbor at that index is returned

the fish in location (2, 2) might move to (1, 2) or (2, 3), depending on the

randomly chosen index.

Chapter 2 30

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

2. A new instance variable, myAge, would have to be initialized in the initialize

method and incremented (probably in the act method) according to some rule,

such as “upon each timestep the fish age is incremented by 1”. In order to access

the age, you will need an accessor method age. You might also want to modify the

toString method to show the age.

Exercise Set 4 (page 40)

Remember, you can check the Documentation folder for help with constructors and

methods available in each class.

1. The code for changing the color is a simple method as shown below.

 /** Changes fish's color to the parameter newColor

 **/

 public void changeColor(Color newColor)

 {

 myColor = newColor;

 }

2. The code below shows one way to construct fish using the third Fish constructor.

 // Chapter 2, Exercise Set 4, Question 2

 // Demonstrates initializing direction and color

 // If you want to initialize all fish to the same

 // direction and color, use variables as shown with f1,

 // or individualize the fish as with f2 and f3

 Direction dir = new Direction("east");

 Color col = new Color(200, 50, 50);

 Fish f1 = new Fish(env, new Location(2, 2), dir, col);

 Fish f2 = new Fish(env, new Location(2, 3),

 new Direction("west"), new Color(100, 150, 50));

 Fish f3 = new Fish(env, new Location(5, 8),

 new Direction("south"), new Color(50, 50, 100));

The modification shown below implements the suggested changes made in this

question. Your students may be much more creative with this exercise.

 for (int i = 0; i < NUM_STEPS; i++)

 {

 if (i % 2 == 0) //even numbered step

 {

 f1.changeColor(Color.red);

 }

Chapter 2 31

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 else

 {

 f1.changeColor(Color.yellow);

 }

 sim.step();

 }

The Color class is not part of the AP Java Subset so you may not want to spend much

time on it, but a fun follow-up exercise is to use the changeColor method to make

fish become lighter (or darker or change color) with age. To do this, have students

research the Color class to find methods that lighten or darken a color. Then call the

changeColor method from the act method, passing it a lightened or darkened color

(color().lighter(), myColor.lighter(), or color().darker()).

Test Plan (pages 41–43)

Consider the bulleted list of test cases on page 42. Some of your students may

comment that the fifth test case, “A file with a fish in every location …”, covers the

sixth test case, “A fish with no empty locations around it …”. Your students would

have a good point but the “fish in every location” is a special case, a boundary case.

The “fish with no empty neighbors” is a common, more general case that fits in the

sequence of cases that follow it. Just because another case subsumes a given case is not

necessarily a reason to leave it out. You might not develop a separate test run for “fish

with no empty neighbors”. (Here we are distinguishing between test cases and test

runs.) One frequently comes up with test runs that test several cases simultaneously.

The “fish in every location” test case describes one test run. But, as you can see from

the paragraph and diagram at the top of page 43, a single test run may be used to

describe several test cases. The “fish with no empty neighbors” case could be part of

the “fish in every location” test run or you could create a separate file to test “fish with

no empty neighbors”. Be careful though, because if one of the fish in the neighboring

locations is able to move before the “fish with no empty neighbors”, that fish may then

have an open place to which it can move.

Using the fish.dat file as the basis of a test run covers several of the test cases. Not

only does it test for a fish with one valid empty neighboring location (the fish in the

lower right corner) but also the fish at (0, 3) and (2, 2) will have two valid empty

neighboring locations and the fish at (3, 2) will have three after the fish at (2, 2) moves.

Note to teachers: Although your students may not discover this yet, fish move in

row-major (top-down, left-to-right) order. If it comes up, you might want to have

students do Questions 3 and 5 on page 45 at this point.

Chapter 2 32

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Analysis Question Set 9 (page 43)

1. There might be a fish whose location is outside the bounded environment or the

environment dimensions might be invalid. The test cases involving invalid input

and multiple fish in the same location can be tested with appropriate initial

configuration files.

2. Students should list one test case for each of the three conditions. Answers

will vary. Several of the black-box test cases cover one or more of the

named conditions:

a file with a single fish in an environment bigger than 1 x 2 covers the cases of

multiple neighbors and an empty neighbor

a file with a fish in every location (multiple neighbors, a non-empty neighbor)

a file with a fish with no empty locations around it (multiple neighbors, a non-

empty neighbor)

a fish with a single adjacent empty location in front or to the side (multiple

neighbors, an empty neighbor, and a non-empty neighbor)

a fish with a single adjacent empty location behind it (multiple neighbors, an

empty neighbor, and a non-empty neighbor)

a fish with two adjacent empty locations in front or to the side (multiple

neighbors, an empty neighbor, and a non-empty neighbor)

a fish with three adjacent empty locations in front and to the side (multiple

neighbors, an empty neighbor)

3. The environment could have exactly one row and two columns or one column and

two rows. In each case there are exactly two locations, one occupied by the fish

and the other empty.

Chapter 2 33

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Exercise Set 5 (page 45)

It is a good idea to copy the data files you plan to use into the same folder as the class

files. If you copy the data into the Code folder or keep them in the DataFiles folder,

when you click on File/Open environment file, you will need to click on the

drop down menu to navigate to the folder where the data files are found.

1. Remind students that they are always starting with the same data file, say

fish.dat, so the fish will always begin in the same configuration. If they use

the same seed number, the color and movement will be the same each time

the program is run. If they change seed numbers, the color and movement

will be different from one run to another.

2. The text output tells you the ID, location, and direction of each fish at each step.

3. Below is a table showing a sample run using the fish.dat file. (You will find a

blank master for this table in Appendix C.) This run tested the cases in which a fish

faces a boundary and the more general cases of a fish selecting between one, two,

or three available locations.

Your students should observe each step carefully, noticing the test cases for each fish

at each step. They should make up a table like the one below and chart each fish’s

location and direction. They might also note the locations on each step that represent

special test cases. They need to look closely as each step is executed because it’s hard

to reconstruct the way the grid looked from the text output after the five steps have

been completed, except by rerunning with the same initial configuration and the

same seed.

Step 0 represents the fish in their initial positions from the fish.dat file.

Step Fish 1 Fish 2 Fish 3 Fish 4 Fish 5 Fish 6

0 (5, 5) North (3, 3) South (10, 10) East (6, 8) West (2, 10) North (1, 1) South

1 (5, 6) East (4, 3) South (9, 10) North (5, 8) North (2, 9) West (2, 1) South

2 (4, 6) North (4, 4) East (9, 11) East (4, 8) North (3, 9) South (3, 1) South

3 (4, 7) East (5, 4) South (8, 11) North (4, 9) East (3, 8) West (3, 2) East

4 (5, 7) South (5, 5) East (7, 11) North (5, 9) South (2, 8) North (3, 3) East

5 (5, 8) East (6, 5) South (7, 10) West (5, 10) East (2, 9) East (3, 4) East

4. The point is to save the configuration of the environment to a file, so that you can

start up again at that point or so that you could run regression tests later with the

same input file and same initial seed, and verify that the state after 5 (or 10) steps

is the same as before. This can be done from the file menu in the GUI that is

distributed with the case study.

Chapter 2 34

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

5. The order is top-down, left-to-right (row major) order. As each fish moves, it can

change the available locations for a fish that has not yet had its turn to move. Note,

however, that the class documentation for the Fish class does not specify this

particular ordering. Consider possible fish movement if the order was column

major instead.

6. Answers will vary. Here are some examples based on fish.dat. Each represents

a separate data file to be saved with an appropriate name.

invalidenv.dat:

 bounded 12

emptyenv.dat:

 bounded 12 12

An example of a file with a single fish is onefish.dat, provided in the

data files.

twofishsameloc.dat:

 bounded 12 12

 Fish 5 5 North

 Fish 3 3 South

 Fish 5 5 East

An example of a file with a fish in every location is fullenv.dat, also

provided in the data files.

You can use fullenv.dat for a fish with no empty locations around it. You

could also add a fish that is surrounded by other fish to fish.dat, but be careful.

Remember that one of the surrounding fish might move before the fish in the middle

(top-down, left-to-right), leaving the fish that was surrounded with a place to move

into. You might challenge your students to come up with a situation in fish.dat that

meets this criterion.

7. Test cases required for move:

A fish with no available locations where it can move should remain in its

current location.

A fish with at least one available location where it can move should move to

that location.

Chapter 2 35

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Test cases required for nextLocation:

A fish for which there are no empty neighbors or where the only empty

neighbor is the one behind it should return its current location.

A fish for which there is at least one valid available location, in front, to the

left, or to the right, should return one of those locations.

Test cases required for emptyNeighbors:

A fish with no valid adjacent neighbors should return an empty ArrayList.

A fish with four or fewer adjacent locations, all containing valid fish, should

return an empty ArrayList.

A fish with at least one empty adjacent location, should return a list of empty

neighbors (possibly including the location behind the fish).

A fish with four empty adjacent locations should return a list of all four

locations (including the location behind the fish).

Analysis Question Set 10 (page 47)

These questions are open-ended and should lead to good classroom discussion.

1. The last scenario corresponds to the design chosen by the original programmer.

2. Answers will vary. This question provides a rich opportunity to discuss design

decisions and changes in the implementation and parameter lists of various

methods as they are shifted from one class to another.

3. Answers will vary. Students should describe (and justify) their reasoning. It is

often surprising how alternative designs can sound perfectly reasonable with the

right justification. You could have students try to represent the design with CRC

(Class-Responsibilities-Collaborators) cards to help decide which alternatives

represent reasonable design choices. Another way to discuss designs is to look at

the cohesion of the various modules (Do they make sense? Do they hold together

conceptually?) and the data coupling (Are you passing lots of values all around, or

is the encapsulation good enough that you don’t have to pass lots of data to many

different objects?). You might develop (or have your students develop) a role-play

script for each scenario to demonstrate its feasibility.

4. Answers will vary. Students should describe (and justify) their reasoning.

5. Answers will vary. Students should describe (and justify) their reasoning.

Encourage discussion.

Chapter 3 36

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 3

Creating a Dynamic Population

Design and Implementation (pages 52–53)

Teaching tip: If you covered Chapter 4 before covering Chapter 3, you may wish

to have students discuss the reasons for making the breed and die methods

protected rather than private at this point. As you cover the breed method, your

students should notice the similarity between the first few lines of breed and the first

few lines of the move method in the SlowFish class.

Note to teachers: If you are covering the chapters in order, you may want to read ahead

in Chapter 4 for an explanation of protected versus private, even though you do

not need to go into it with your students at this time.

Note to teachers: The Fish modifications necessary for Chapter 3 are described and

contained in the FishModsForChap2.txt file found in the Code folder. The Fish

class (recall that this is the version of the Fish class that will be tested on the APCS

Exam), complete with modifications, is found in the DynamicPopulation folder

inside the Code folder.

Analysis Question Set 1 (page 56)

1. No, the Simulation object asks the environment for a list of all its objects
(allObjects), so it has a reference to each fish also. That reference still exists

after the environment has removed the fish. This is why the act method in Fish

calls isInEnv. See the Analysis Question Set 4 in Chapter 2 for related questions.

(A class that implements EnvDisplay may also ask the environment for a list of

all the objects in order to display them, but it doesn’t need to keep track of its list

while other classes are manipulating the environment. It can ask for a new list and

immediately display the objects each time the showEnv method is called.)

2. The change would be advantageous if behavior were added to the act method

that depended on whether or not the fish had moved. There are no disadvantages

other than, in the current context, the act method would end up ignoring the

return value of a method call (pedagogical disadvantage rather than a design

disadvantage).

Chapter 3 37

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Testing (pages 58–60)

Teaching tip: The test results documented in the case study were generated using the

fish.dat configuration file and a seed of 17.

Analysis Question Set 2 (page 60)

1. Answers will vary. Students may say they would create separate methods because

each has its own task. Some may say they would not create separate methods

because it’s easier to think of these tasks as part of act or move. You can expect

a variety of responses.

2. You might easily put the test for empty neighbors in the act method. If the test

was false, your code could bypass both attempting to breed and attempting to

move. However, the code is more readable and true to the simulation as it is

written. That is, a fish first attempts to breed. If the fish does not breed, then it

attempts to move. Students may argue that the test for a fish dying should have

been placed in the die method for consistency. There are arguments on either

side of this design decision.

3. The main advantage is readability. Sometimes adding a boolean variable makes

reading more straightforward. On the other hand, unnecessary variables may

increase complexity and actually cause code to be less readable. Again, this is a

design decision that reflects the programmer’s (or design team’s) bias. Point out

that in-line commenting such as the comment following if (! breed()) in act

(see page 57) often greatly improves readability.

Teaching tip: Teachers who have covered Chapter 4 before Chapter 3 may wish to ask

students to discuss the relative merits of modifying the original Fish class to add

breeding and dying behavior versus creating a subclass with this behavior.

Exercise Set 1 (page 61)

Teaching tip: Since two versions of the Fish.java file are used in the case study

(and you may add more variations, as in the change color exercise), you need to be

careful that you are using the correct version and do not accidentally overwrite a

version that you want to keep. One way to do this is to save a copy of each file

using a descriptive name such as FishOrig.java for the Chapter 2 version and

FishBreed.java for the Chapter 3 version. These files cannot be compiled because

the names do not match the class. Be sure to save the appropriate version as

Fish.java and compile.

Chapter 3 38

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

1. Following the instructions and using fish.dat, step through the simulation.

Watch to see which fish breed, which die, and which “family” of descendants

gradually populates the environment.

2. The results from Chapter 2 should be quite different from the saved results in

Chapter 3. Fish did not breed and die in Chapter 2. The Chapter 3 files will

probably show that the Fish population is changing. The changing population and

the fact that random numbers are also being generated for breeding and dying

should not only change the sequence of random numbers generated for fish

movement, but also the possibilities of where a fish can move.

 Note to teachers: The MBSGUI allows the user to save an experiment configuration

and restart the simulation from the saved configuration at a later time using the

same seed.

3. Rather than make a permanent change, just comment out the color parameter as

shown below. The code becomes a call to the three-parameter fish constructor.

Fish child = new Fish(environment(), loc,

 environment().randomDirection()/*, color()*/);

It is now very difficult to keep track of the original fish and their offspring. In fact, it’s

hard to tell which fish have bred. You can still identify when a fish dies, except in the

event that another fish breeds into the same location and the new fish is the same color

as the fish that died. You would have to look at the debug output to see if the ID of the

fish in that location changed.

Teaching tip: The Color class is not part of the AP subset so you may not want to

spend any more time on it, but if you do, there are several interesting variations on this

exercise. One variation is to override/redefine the randomColor method to generate

shades of red or blue or green. Pick a random number for one of the three colors and

set the other two colors to 0. Another variation is to construct children that are lighter

or darker than their parents, or lighter half the time and darker half the time. See the

comment about Question 2 in Chapter 2, Exercise Set 4, for more information about

lighter and darker colors.

Chapter 3 39

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

4. Be careful about where you place the new parameters in initialize. They have

to be consistent with each constructor.

/** Constructs a fish at the specified location in a given environment.

 * The Fish is assigned a random direction, random color, a constant

 * probability of breeding, and a constant probability of dying.

 * (Precondition: parameters are non-null; <code>loc</code> is valid

 * for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 **/

public Fish(Environment env, Location loc)

{

 initialize(env, loc, env.randomDirection(),

 randomColor(), 1.0/7.0, 1.0/5.0);

}

5. Try experimenting with the probabilities of breeding and dying to create relatively

stable populations. You may want to specify a color for each fish so that it’s easier

to see the populations.

 public Fish(Environment env, Location loc, Direction dir, Color col,

 double probBreed, double probDie)

 {

 initialize(env, loc, dir, col, probBreed, probDie);

 }

When the probabilities of breeding and dying are both 0.0, the behavior should be the

same as before breeding and dying were added.

Teaching tip: Teachers who have covered Chapter 4 before covering Chapter 3 may

wish to ask students whether Pat should have implemented public or protected

accessor and modifier methods for the probOfBreeding and probOfDying instance

variables. (See the related analysis question in Chapter 4.) Another topic for discussion

is whether a subclass might want to change these probabilities during a fish’s lifetime

or whether it is enough to be able to set the probabilities using the constructor created

here. For example, if students wanted to create a subclass where a fish’s probability

of dying increases as it ages (or when it enters certain “polluted” locations in the

environment), it would be important to have a modifier method to change the

probability. On the other hand, one might not want to create a public modifier

method that indicates that it is okay for client code to change a fish’s probability

of dying.

Chapter 3 40

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

6. One possible solution is shown below.

 Add the following instance variables to the class.

 private int myTimesBred;

 // the number of times a fish bred in its lifetime

 Add the following statement to the initialize method.

 myTimesBred = 0;

 Modify the breed method to increment myTimesBred each time the fish breeds.

 myTimesBred++:

 Modify the die method.

 protected void die()

 {

 Debug.turnOn(); // if debug is not already turned on

 Debug.println(toString() + " about to die. ");

 Debug.println(toString() + " bred " + myTimesBred + " times. ");

 Debug.restoreState();

 environment().remove(this);

 }

 Answers to the questions about the maximum and minimum times a fish bred will

vary. Have your students observe these values from the Debug output.

7. Add a private instance variable myAge. In the initialize method, initialize

myAge to 0, so each fish will start out at age 0. At the beginning of the act

method increment myAge, add myAge to the debugging output in the die method

and be sure that debugging is turned on. In one sample run, the oldest age at which

a fish died was 17, and the youngest was 1. In general, the ages at which fish died

were as expected, averaging around age 5 for the sample.

Teaching tip: If you use the “create an environment” option in the GUI, and begin with

only a few fish (say three), it’s easy to watch the fish movements and to follow the

debugging output.

Chapter 3 41

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

8. Here is one way to solve the problem. Your students may find others. Initialize

probOfBreeding to 1.0/3.0 and probOfDying to 1.0/10.0. At the end of act,

add the following code.

 probOfDying += 0.1;

 At the beginning of breed, add the following code.

 if (myAge < 3)

 return false;

Note to teachers: As an added challenge problem, you may ask your students to

determine the overall maximum and minimum times any fish bred. Since a single

run may produce many fish (a single run can produce hundreds, with fish frequently

breeding and dying), it is difficult to keep track of visually. This would involve

changes to both the Simulation and Fish classes. One solution is to use class

variables in Fish (recall that nextAvailableID is an example of a class variable)

for the extreme values with the minimum initialized to Integer.MAX_VALUE and the

maximum initialized to 0. Have each fish update the max or min, if necessary, when it

dies. Simulation would have to ask the Fish class for the extreme values at the end

of the simulation.

Chapter 4 42

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 4

Specialized Fish

This chapter introduces inheritance and dynamic binding to the case study.

DarterFish introduces the necessity for defining new constructor(s), the use of

super in subclass constructors, and the redefinition of “inherited” methods. SlowFish

introduces an additional instance variable and the use of super.method in a redefined

method. Although the chapter introduces the use of super in constructors and

redefined methods, it does not cover these topics thoroughly. FastFish (an activity

added in Appendix D of this teacher’s manual) introduces an additional method and

the use of a protected accessor method to allow a subclass to modify private

inherited data.

Design Issues (pages 63–65)

Note to teachers: The concepts of inheritance, polymorphism, and dynamic binding

sometimes cause confusion. This note will try to explain them.

In Java, one inherits from another class by using the keyword extends. We note

that DarterFish extends Fish. Because a DarterFish “is-a” Fish, a

DarterFish object can be used anywhere that a Fish object can be used. In

particular, if we declare:

 Fish fsh;

then both

 fsh = new Fish(env, loc);

and

 fsh = new DarterFish(env, loc);

are valid. This idea of being able to store different types in the same variable is one

example of polymorphism. In general, polymorphism refers to being able to deal

with multiple types. The "+" operator in Java (and most programming languages)

is polymorphic — it can be used on integers, doubles, and strings.

Chapter 4 43

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

A primary goal of inheritance is to allow code reuse. By extending a class, one is able

to create a derived class whose objects can use all of the public or protected

methods defined in the base class. One need only write the code that makes the

behavior of the derived class different than the behavior of the base class. One way

to do this is to write new methods that are not in the base class. Another way is to

redefine a method that is already in the base class. An example of this is the move

method defined in Fish and then redefined in DarterFish.

This gives rise to an interesting question. If fsh is defined as above, which move

method should be used when you call the method fsh.move() ? In Java, the

answer depends on what is actually referenced by fsh. If fsh references a Fish

object, then the Fish move should be used. If fsh references a DarterFish object,

then the DarterFish move should be used. Because the value in fsh might be

passed as a parameter or might differ depending on input to the program, it is often

not possible to decide whether fsh will refer to a Fish or a DarterFish when

the program is compiled. Thus it is often not possible to decide which move method

to use at compile time. The decision is therefore made at run time.

The case study narrative uses the term “dynamic binding” for this process of deciding

which method to use at run time, based on the contents of fsh. Unfortunately, there is

no single standard terminology for the process of dynamic binding. Various textbooks

use the terms “late binding”, “polymorphic dispatch”, and “dynamic dispatch on type”

to describe this process. The various terms are mentioned here only to make it easier to

make the connection to whichever term your textbook uses.

The dynamic binding of redefined methods to an object can be difficult to describe

and difficult to illustrate. Students may understand what is happening better if they

act it out. Refer to the role-playing activities designed by David Levine and Steve

Andrianoff, mentioned earlier in this teacher’s manual.

Additional information on inheritance, dynamic binding, polymorphism and the

protected keyword can be found in a variety of resources such as textbooks, Web

sites, and the AP Computer Science electronic discussion group (EDG).

Darter Fish (pages 65–67)

If you teach Chapter 4 before Chapter 3, you will need to explain that generateChild

is a method introduced in Chapter 3 to create new fish when fish breed. Your

students will probably understand this easily when they think about different species

of fish breeding.

Chapter 4 44

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Note to teachers: There is an alternative to the Fish class and its subclasses each

having their own generateChild method — this alternative is called reflection.

Using this technique, the code in Fish breed would essentially say, “Whatever type

of fish I am, create another just the same.” The subclasses would not need to redefine

anything. This technique is, however, outside the scope of the AP Java subset.

Analysis Question Set 1 (page 68)

1. Pat’s first draft doesn’t account for jumping over a fish to move two locations

forward. The new code in nextLocation gets the neighboring location in front

of the fish and then the location in front of that, but returns the location two places

in front, if it is empty, without checking to see if the location directly in front is

also empty.

2. Answers will vary. You could introduce a probability of turning 90 degrees left or

right. You could also have the fish turn left or right on each nth timestep (e.g., each

tenth timestep). If the fish is a breeding fish, it might rotate 90 degrees each time,

or every nth time, it breeds. Or the fish might change orientation when it reaches a

certain age. There are many possibilities.

Testing the DarterFish Class (pages 68–70)

You may want to use the Fish class from Chapter 2 for testing so that you are

working with a fixed population of fish and do not have breeding and dying. You could

maintain two separate projects, one using the original Fish class and the other using

the breeding and dying Fish class, and test the darter fish with the appropriate

project. A third alternative, if you think your students are up for it, is to add a

new menu item to the graphical user interface to turn breeding/dying fish on

and off. See the Help menu in the simulation program (or MBSHelp.html in the

Documentation folder) for details.

The test results shown were generated using the darter.dat configuration file and

a seed of 17. You could have students run similar tests using different data files,

such as darterAndNormalFish.dat, or with a different seed. If you are using only

DarterFish, you may want to use random colors for this test so that it is easier to

distinguish individual fish.

Chapter 4 45

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Exercise Set 1 (page 71)

1. Here are some sample illustrations. The label under each picture sequence

describes the validity of the darter fish move.

Chapter 4 46

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

2. If you want to distinguish more easily between DarterFish and Fish, open the

MBSGUI.java file and read the comments carefully (or the section on customizing

the graphical user interface in MBSHelp.html in the Documentation folder).

Follow the directions for uncommenting the code for Chapter 4, darter fish and

slow fish. It’s much easier to see how the behavior differs.

3. As in previous questions of this type, students should save the configuration file

and analyze and discuss the results. Fish should move in the same way, although

the results are likely to be different due to randomization. DarterFish will not

move in the same way as Fish because their rules for moving are different.

4. If you cover Chapter 4 before Chapter 3, you probably will not have added any

new constructors, but if you taught Chapter 3 first, your students may have a

constructor that includes parameters for the probability of breeding and probability

of dying for each individual fish. DarterFish could also include such a

constructor. If you do not want your students to add the complexity of breeding

and dying at this time, but you do want them to add the constructor, set the

probabilities to 0.0 for the time being.

5. Students are being asked to redefine the toString method in the DarterFish

class. One simple example is given below. Encourage your students to find other

ways to make the darter fish information stand out, especially when there is more

than one species in the environment.

 /** Returns a string representing key information about this fish.

 * @return a string indicating the fish's ID and location

 **/

 public String toString()

 {

 return "DarterFish " + super.toString();

 // you could use "Darter" or even "D"

 }

Note to teachers: An alternate way to get the name DarterFish printed in output

would be to add it to every print or debug statement that calls toString. In that

case the call to toString would use the inherited toString from the superclass.

However, finding and modifying all these statements is more tedious and error-prone

than redefining toString.

Chapter 4 47

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Note to teachers: If your students have studied the Object getClass and

Class getName methods, you could have them modify Fish toString

to include the class name, together with the fish’s ID and location instead of

redefining toString in DarterFish. (These methods are not in the AP Java

Subset.) If you do this, there is no need to redefine the toString method in

any of the Fish subclasses (see Exercise 3 in Exercise Set 2 and Exercise 2 in

Exercise Set 3 below).

6. The simulation will behave in the same way, but results will be different when you

start with different seed numbers.

7. The code below is one example of a TurningDarter subclass. The use of the

super keyword in the constructors can be seen in the DarterFish class and was

explained on page 67 of the narrative.

You may want your students to include a toString method for this class as they did

with the DarterFish class. They will need to create a data file for turning darters. An

easy way to do this is copy the darter.dat file into a new text file, change all the

DarterFish to TurningDarter and save the file as turningDarter.dat. Add your

new turningDarter.java (or whatever you named the class) file, which is the new

subclass file, to your project and run the MBSGUI specifying turningDarter.dat.

// Chapter 4, Exercise Set 1, Question 7 TurningDarter Class

// The turningDarter has all the characteristics of a darter fish except

// that it has a 0.1 chance of turning right or left before it tries to

// move forward.

import java.awt.Color;

import java.util.Random;

public class TurningDarter extends DarterFish

{

 // Instance Variables: Encapsulated data for EACH TurningDarter fish

 private double probOfTurning;

 // defines likelihood of turning in each timestep

 private double probOfRight;

 //defines likelihood of turning right

Chapter 4 48

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // constructors

 /** Constructs a turning darter fish at the specified location in a

 * given environment. This turning darter is colored magenta.

 * (Precondition: parameters are non-null)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 **/

 public TurningDarter(Environment env, Location loc)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, env.randomDirection(), Color.magenta);

 probOfTurning = 0.1;

 probOfRight = 0.5;

 }

 /** Constructs a turning darter fish at the specified location with

 * the direction in a given environment.

 * This turning darter is colored magenta.

 * (Precondition: parameters are non-null)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 **/

 public TurningDarter(Environment env, Location loc, Direction dir)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir, Color.magenta);

 probOfTurning = 0.1;

 probOfRight = 0.5;

 }

 /** Constructs a turning darter fish of the specified color at the

 * specified location and direction.

 * (Precondition: parameters are non-null)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 * @param col color of the new fish

 **/

 public TurningDarter(Environment env, Location loc, Direction dir,

 Color col)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir, col);

 probOfTurning = 0.1;

 probOfRight = 0.5;

 }

Chapter 4 49

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Note to teachers: Note that probOfTurning and probOfRight are set to the same

values in three different constructors. Separating out these two assignments into an

initialize method called by each constructor makes it less likely that an error would

be introduced if one of these values were modified. This would be a better solution, but

the solution on the previous pages is more typical of what students will produce. This

comment applies to other solutions in this section as well.

 /** Returns a string representing key information about this fish.

 * @return a string indicating the fish's ID and location

 **/

 public String toString()

 {

 return "TurningDarter " + super.toString();

 }

 /** Moves this fish in its environment.

 * A turning darter fish first sees if it should turn left or right

 * and then darts forward (as specified in nextLocation) if possible,

 * or reverses direction (without moving) if it cannot move forward.

 **/

 protected void move()

 {

 // If this is the 0.1 chance of turning, turn left or right

 Random randNumGen = RandNumGenerator.getInstance();

 if (randNumGen.nextDouble() < probOfTurning)

 {

 turnRightOrLeft(direction());

 Debug.println(toString() + " Turned and now facing " +

 direction());

 }

 super.move();

 }

Note to teachers: Calling super.move() is much better than reproducing all of the

code for moving as a DarterFish. Furthermore, it has the advantage that if the

DarterFish move method is later modified the TurningDarter will automatically

continue to move like a DarterFish after (perhaps) turning.

Chapter 4 50

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 /** Turns this fish right or left

 **/

 protected void turnRightOrLeft(Direction dir)

 {

 Random randNumGen = RandNumGenerator.getInstance();

 if (randNumGen.nextDouble() < probOfRight)

 {

 changeDirection(dir.toRight());

 }

 else

 {

 changeDirection(dir.toLeft());

 }

 }

}

Slow Fish (page 72)

Implementation of the SlowFish Class (page 72)

Teachers who have covered Chapter 3: Your students should notice the similarity

between the first few lines of SlowFish nextLocation and the first few lines of

Fish breed.

Analysis Question Set 2 (page 74)

1. Advantages

The move method deals with changing both location and direction. Redefining

nextLocation rather than move clarifies that the only difference in behavior

is how (or, actually, how often) a slow fish changes location.

nextLocation already has the responsibility to return the old location if the

fish cannot move, so the test for whether a slow fish should move or not easily

fits into this design.

There is no need to reproduce and modify the code in move.

Chapter 4 51

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 Disadvantages

nextLocation is always called. If the test had been in move, the code would

bypass the call to nextLocation whenever a slow fish did not move.

If slow fish were asked to randomly change direction when they do not move

beyond their own cell this design would not work well, because in that case the

way slow fish choose their next location and the way they choose their next

direction would both be different. Thus, either nextLocation would have to

do something that is an inappropriate side effect of its main purpose (changing

a direction has nothing to do with computing a next location) or the design

would have to be changed.

2. The subclass would not have a way to access the value of probOfMoving.

Students can test this for themselves using TurningDarter (or

TurningSlowFish if you assign Question 6 on page 77). The lack of accessor

methods for the probOfBreeding and probOfDying instance variables will

be a problem if you want any of the new species of fish to be able to breed or

die in a different way that requires using these values.

3. protected. These accessor methods should be used only by subclasses of

the superclass.

Testing the SlowFish Class (pages 74–75)

These test results were generated using the slowFish.dat configuration file and a

seed of 17.

Analysis Question Set 3 (page 75)

1. Advantages

If BreedingAndDyingFish is a subclass of Fish, when you add other

classes, you could have them extend either Fish or BreedingAndDyingFish.

It would be easy to change the class being extended so you could test your new

class as having either a static or a dynamic population.

 Disadvantages

You would need to decide whether DarterFish is a subclass of Fish or of

BreedingAndDyingFish or else create two subclasses, one for each. There is

this difficulty when two quite different types of behavior are added or modified

using inheritance.

2. DarterFish are deterministic while Fish and SlowFish are probabilistic.

Chapter 4 52

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Exercise Set 2 (pages 76–77)

Note to teachers: You may wish to have students go through the optional FastFish

section in Appendix D (or implement FastFish as an assignment) before doing the

last three exercises in this Exercise Set. If you want to assign FastFish, just give

your students the Problem Specification section.

1. Constructors with probabilities of breeding and dying should be added to slow fish.

Your students may have other suggestions if they have added other constructors.

2. Each species’ behavior is consistent with the movement rules we expect.

3. One possible solution is given below.

/** Returns a string representing key information about this slow fish.

 * @return a string indicating the fish's ID and location

 **/

public String toString()

{

 return "SlowFish " + super.toString();

}

4. The initial configuration is the same. Runs are consistent when the same seed is

used and differ when different seeds are used.

5. This exercise was done using the data from the narrative. In the 20 timesteps,

14.5 percent of the time the slow fish attempted to breed (not always successfully),

while 18.4 percent of the time the slow fish died. Expected results were 14.3

percent and 20 percent respectively. Twelve fish did not breed because there were

no empty neighboring locations, resulting in 459 calls to the move method when

fish did not breed. Every call to move resulted in a call to the nextLocation

method in SlowFish. Of these, only 20.5 percent attempted to move beyond their

own cell; 79.5 percent moved too slowly. Expected results were 20 percent and

80 percent. These were much closer to the expected performance than the figures

after 10 moves. Your students’ results may vary.

6. The question is not completely specified. It does not tell you how, in the case that

a slow fish doesn’t move outside its cell, you should determine the probability that

it will turn in place and, if it turns, the probability that it will turn to the left or to

the right.

Chapter 4 53

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

One example of a solution is given below. This move method should be added

to SlowFish.

 You will need to add two instance variables, for example, probOfTurning and

probOfTurningRight to the constructor. The changes will be similar to those

made in the instance variables and constructors for turning darter fish.

 protected void move()

 {

 Location current = location();

 super.move();

 if (current.equals(location())) // Have we moved?

 {

 Random randNumGen = RandNumGenerator.getInstance();

 // If this is the 0.1 chance of turning, turn left or right

 if (randNumGen.nextDouble() < probOfTurning)

 {

 turnRightOrLeft(direction());

 Debug.println(" Turned and now facing " + direction());

 return location();

 }

 }

 }

 /** Turns this fish right or left

 **/

 protected void turnRightOrLeft(Direction dir)

 {

 Random randNumGen = RandNumGenerator.getInstance();

 if (randNumGen.nextDouble() < probOfRight)

 {

 changeDirection(dir.toRight());

 }

 else

 {

 changeDirection(dir.toLeft());

 }

 }

You might also have your students create a TurningSlowFish class and a data file for

normal, slow, and turning slow fish. In having your students build another subclass,

you preserve the original class and provide practice for your students in determining

what should be included in the subclass and what should be left out. The move method

given above can be added to the new class and will work just as if it were added to

SlowFish. Code for the entire class is given on pages 52-55.

Chapter 4 54

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

It is tempting to do the turning in nextLocation rather than in move. This is not a

good design, because it makes nextLocation have a side effect (turning the fish) that

is not related to its primary purpose (choosing and returning a next location). Deciding

what is good and bad design is a matter of taste and experience, but most computer

scientists would consider it bad design to have the nextLocation method perform

the turn.

// Chapter 4, Exercise Set 2, Question 6

// A turning slow fish may turn right or left even if it doesn't move

// outside its own cell.

import java.awt.Color;

import java.util.ArrayList;

import java.util.Random;

/**

 * Marine Biology Simulation:

 * The TurningSlowFish class represents a fish in the MBS that moves

 * very slowly. It moves so slowly that it only has a 1 in 5 chance

 * of moving out of its current cell into an adjacent cell in any

 * given timestep in the simulation. When it does move beyond its

 * own cell,its behavior is the same as for objects of the Fish

 * class. If it doesn't move beyond its cell, the fish may still

 * turn left or right.

 *

 * TurningSlowFish objects inherit instance variables and much of

 * their behavior from the SlowFish class.

 *

 **/

public class TurningSlowFish extends SlowFish

{

 // Instance Variables: Encapsulated data for EACH slow fish

 private double probOfMoving;

 // defines likelihood in each timestep

 private double probOfTurning;

 // defines likelihood of turning in place

 private double probOfRight;

 // defines likelihood of turning right

 // constructors

 /** Constructs a turning slow fish at the specified location in a

 * given environment. This slow fish is colored green.

 * (Precondition: parameters are non-null; <code>loc</code> is

 * valid for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 **/

Chapter 4 55

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public TurningSlowFish(Environment env, Location loc)

 {

 // Construct and initialize the attributes inherited from SlowFish.

 super(env, loc, env.randomDirection(), Color.green);

 // Define the likelihood that a turning slow fish will move in any

 // given timestep. This is the same value for all slow fish.

 probOfMoving = 1.0/5.0; // 1 in 5 chance in each timestep

 probOfTurning = 0.1; // 1 in 10 chance of turning in place

 probOfRight = 0.5; // chance of turning right is one-half

 }

 /** Constructs a turning slow fish at the specified location and

 * direction in a given environment.

 * This slow fish is colored green.

 * (Precondition: parameters are non-null; <code>loc</code> and

 * <code>dir</code> are valid for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 **/

 public TurningSlowFish(Environment env, Location loc, Direction dir)

 {

 // Construct and initialize the attributes inherited from SlowFish.

 super(env, loc, dir, Color.green);

 // Define the likelihood that a turning slow fish will move in any

 // given timestep. This is the same value for all slow fish.

 probOfMoving = 1.0/5.0; // 1 in 5 chance in each timestep

 probOfTurning = 0.1; // 1 in 10 chance of turning in place

 probOfRight = 0.5; // chance of turning right is one-half

 }

 /** Constructs a turning slow fish of the specified color at the

 * specified location and direction.

 * (Precondition: parameters are non-null; <code>loc</code> and

 * <code>dir</code> are valid for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 * @param col color of the new fish

 **/

 public TurningSlowFish(Environment env, Location loc, Direction dir,

 Color col)

 {

 // Construct and initialize the attributes inherited from SlowFish.

 super(env, loc, dir, col);

Chapter 4 56

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Define the likelihood that a turning slow fish will move in any

 // given timestep. This is the same value for all slow fish.

 probOfMoving = 1.0/5.0; // 1 in 5 chance in each timestep

 probOfTurning = 0.1; // 1 in 10 chance of turning in place

 probOfRight = 0.5; // chance of turning right is one-half

 }

 // redefined methods

 /** Returns a string representing key information about this

 * turning slow fish.

 * @return a string indicating the fish's ID and location

 **/

 public String toString()

 {

 return "TurningSlowFish " + super.toString();

 }

 /** Creates a new turning slow fish.

 * @param loc location of the new fish

 **/

 protected void generateChild(Location loc)

 {

 // Create a new fish, which adds itself to the environment.

 TurningSlowFish child = new TurningSlowFish(environment(), loc,

 environment().randomDirection(), color());

 Debug.println(" Newly created: " + child.toString());

 }

 protected void move()

 {

 Location currentLoc = location();

 super.move();

 if (currentLoc.equals(location())) // Have we not moved?

 {

 Random randNumGen = RandNumGenerator.getInstance();

 // If this is the probOfTurning chance of turning,

 // turn left or right.

 if (randNumGen.nextDouble() < probOfTurning)

 {

 turnRightOrLeft(direction());

 Debug.println(" Turned and now facing " + direction());

 return location();

 }

 }

 }

Chapter 4 57

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 /** Turns this fish right or left

 **/

 protected void turnRightOrLeft(Direction dir)

 {

 Random randNumGen = RandNumGenerator.getInstance();

 if (randNumGen.nextDouble() < probOfRight)

 {

 changeDirection(dir.toRight());

 }

 else

 {

 changeDirection(dir.toLeft());

 }

 }

}

7. Copy the code from the dynamic Fish class that includes breeding and dying into

a new file and save it using a name for the breeding and dying subclass, such as

BDFish.java. Be sure to include extends Fish in the class declaration and be

careful to change references to Fish to read BDFish. Compare this code to the

original Fish class. Change the constructors in BDFish in the same way the

constructors were changed for SlowFish or DarterFish. Use as much of the

code from the superclass Fish as possible. Remove from your new BDFish

class all code that duplicates code that is already in Fish. Keep all code that was

modified or added for Chapter 3 (instance variables, modified act and move,

breed, die, generateChild, and toString). Make sure generateChild

constructs a new BDFish.

 Very important: Remember to run this using the Fish class from Chapter 2, not

the dynamic version of Fish.

 The following code is an example of the BDFish subclass. You will also need to

create a data file that contains BDFish. One way to do this is to copy fish.dat

to a new text file and then add "BD" in front of each "Fish" in the file. Save the

file as BDFish.dat or some other appropriate name.

import java.awt.Color;

import java.util.ArrayList;

import java.util.Random;

Chapter 4 58

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

/**

 * Marine Biology Simulation:

 * The BDFish class represents a breeding and dying fish subclass in

 * the Marine Biology Simulation.

 * Each BDfish has a unique ID, which remains constant throughout its

 * life. A BDfish also maintains information about its location and

 * direction in the environment.

 **/

public class BDFish extends Fish

{

 private double probOfBreeding; // defines likelihood in each timestep

 private double probOfDying; // defines likelihood in each timestep

 // constructors and related helper methods

 /** Constructs a BDFish at specified location in a given environment.

 * The BDFish is assigned a random direction and random color.

 * (Precondition: parameters are non-null.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 **/

 public BDFish(Environment env, Location loc)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, env.randomDirection());

 // Define the likelihood that a BDFish will breed or die

 // myAge initialization provided, to be used if desired

 probOfBreeding = 1.0/7.0;

 probOfDying = 1.0/5.0;

 }

 /** Constructs a BDFish at the specified location and direction in a

 * given environment. The BDFish is assigned a random color.

 * (Precondition: parameters are non-null.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 **/

 public BDFish(Environment env, Location loc, Direction dir)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir);

 // Define the likelihood that a BDFish will breed or die

 // myAge initialization provided, to be used if desired

 probOfBreeding = 1.0/7.0;

 probOfDying = 1.0/5.0;

 }

Chapter 4 59

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 /** Constructs a BDFish of the specified color at the specified

 * location and direction.

 * (Precondition: parameters are non-null.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 * @param col color of the new fish

 **/

 public BDFish(Environment env, Location loc, Direction dir, Color col)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir, col);

 // Define the likelihood that a BDFish will breed or die

 // myAge initialization provided, to be used if desired

 probOfBreeding = 1.0/7.0;

 probOfDying = 1.0/5.0;

 }

 /** Returns a string representing key information about this BDfish.

 * @return a string indicating the fish's ID and location

 **/

 public String toString()

 {

 return "BDFish " + super.toString();

 }

 // modifier method

 // (was originally a check for aliveness and a simple call to move)

 /** Acts for one step in the simulation.

 **/

 public void act()

 {

 // Make sure fish is alive and well in the environment -- fish

 // that have been removed from the environment shouldn't act.

 if (! isInEnv())

 return;

 // Try to breed.

 if (! breed())

 // Did not breed, so try to move.

 move();

 // Determine whether this fish will die in this timestep.

 Random randNumGen = RandNumGenerator.getInstance();

 if (randNumGen.nextDouble() < probOfDying)

 die();

 // uncomment the following line of code to increase probability

 // of dying as fish ages

 //probOfDying += 0.1;

 }

Chapter 4 60

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // helper methods

 /** Attempts to breed into neighboring locations.

 * @return <code>true</code> if fish successfully breeds;

 * <code>false</code> otherwise

 **/

 protected boolean breed()

 {

 // Determine whether this fish will try to breed in this

 // timestep. If not, return immediately.

 Random randNumGen = RandNumGenerator.getInstance();

 if (randNumGen.nextDouble() >= probOfBreeding)

 return false;

 // Get list of neighboring empty locations.

 ArrayList emptyNbrs = emptyNeighbors();

 Debug.print(toString() + " attempting to breed. ");

 Debug.println("Has neighboring locations: " + emptyNbrs.toString());

 // If there is nowhere to breed, then we're done.

 if (emptyNbrs.size() == 0)

 {

 Debug.println(" Did not breed.");

 return false;

 }

 // Breed to all of the empty neighboring locations.

 for (int index = 0; index < emptyNbrs.size(); index++)

 {

 Location loc = (Location) emptyNbrs.get(index);

 generateChild(loc);

 }

 return true;

 }

 /** Creates a new fish with the color of its parent.

 * @param loc location of the new fish

 **/

 protected void generateChild(Location loc)

 {

 // Create new fish, which adds itself to the environment.

 BDFish child = new BDFish(environment(), loc,

 environment().randomDirection(), color());

 Debug.println(" Newly created: " + child.toString());

 }

Chapter 4 61

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 /** Removes this fish from the environment.

 **/

 protected void die()

 {

 Debug.println(toString() + " about to die ");

 environment().remove(this);

 }

}

8. The following code is an example of a CircleFish class.

Note to teachers: This exercise is interesting but it isn’t completely specified. It isn’t

clear whether a circle fish moves forward and then to the right (and therefore both

locations must be empty in order for the circle fish to make the diagonal move) or

if only the location on the diagonal, forward and to the right, must be empty. The

author’s intention was the second interpretation. A fish can move diagonally, provided

the location on the diagonal is empty, even if the location directly in front of the fish

is not empty. Your students may miss this assumption because it is not stated in the

question, so they may write an additional (unnecessary) check for an empty location in

front and as well as on the diagonal when only the diagonal needs to be checked. You

may decide to allow your students to interpret the question either way and, if they ask

you to clarify the problem, initiate a discussion about problem specifications. The code

that follows presents one way to solve the problem as the author intended.

/** Chapter 4, Exercise Set 2, Question 8

 * Create a CircleFish class of fish that, within each step,

 * continually attempts to move forward and right so that it makes

 * a diagonal move and goes in a circular direction.

 * If the fish cannot make the diagonal move, it stays in its current

 * location but still turns 90 degrees to the right.

 **/

import java.awt.Color;

public class CircleFish extends Fish

{

 // constructors

 /** Constructs a CircleFish at the specified location in a

 * given environment.

 * (Precondition: parameters are non-null; <code>loc</code> is valid

 * for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 **/

 public CircleFish(Environment env, Location loc)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, env.randomDirection(), Color.orange);

 }

Chapter 4 62

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 /** Constructs a CircleFish at the specified location and direction

 * in a given environment.

 * (Precondition: parameters are non-null; <code>loc</code> and

 * <code>dir</code> are valid for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 **/

 public CircleFish(Environment env, Location loc, Direction dir)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir, Color.orange);

 }

 /** Constructs a CircleFish of the specified color at the specified

 * location and direction.

 * (Precondition: parameters are non-null; <code>loc</code> and

 * <code>dir</code> are valid for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 * @param col color of the new fish

 **/

 public CircleFish(Environment env, Location loc, Direction dir,

 Color col)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir, col);

 }

 // redefined methods

 /** Returns a string representing information about this Circlefish.

 * @return a string indicating the fish's ID and location

 **/

 public String toString()

 {

 return "CircleFish " + super.toString();

 }

Chapter 4 63

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 /** Creates a new CircleFish.

 * included in case the CircleFish breeds

 * @param loc location of the new fish

 **/

 protected void generateChild(Location loc)

 {

 // Create a new fish, which adds itself to the environment.

 CircleFish child = new CircleFish(environment(), loc,

 environment().randomDirection(), color());

 Debug.println(" Newly created: " + child.toString());

 }

 /** Moves this fish in its environment.

 * A CircleFish moves in a circular pattern (as specified

 * in nextLocation) if possible,

 * or remains in its current location and turns right.

 **/

 protected void move()

 {

 Location oldLoc = location();

 super.move();

 if (oldLoc.equals(location()))

 {

 // Otherwise, turn right.

 ChangeDirection(direction().toRight());

 }

 }

 /** Finds this fish's next location.

 * A CircleFish moves to the right diagonally if it can, otherwise

 * it remains in its current location and turns right.

 * A CircleFish can only move to empty locations diagonally forward

 * and to the right.

 * If the CircleFish cannot move diagonally forward,

 * <code>nextLocation</code>returns the fish's current location.

 * @return the next location for this fish

 **/

 protected Location nextLocation()

 {

 Environment env = environment();

 Location oneInFront = env.getNeighbor(location(), direction());

 Location inFrontAndRight = env.getNeighbor(oneInFront,

 direction().toRight());

Chapter 4 64

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Test for empty location diagonally up and right

 if (env.isEmpty(inFrontAndRight))

 {

 Debug.println(" Location diagonally up and right is empty? " +

 env.isEmpty(inFrontAndRight));

 return inFrontAndRight;

 }

 // Only get here if there isn't a valid location to move to

 Debug.println(" Circle is blocked.");

 return location();

 }

}

9. One way to solve this problem is shown on the next few pages. A private

boolean instance variable, justTurned, is added to CircleFish and used

to toggle between moving forward or diagonally. Students can note that a

subclass may contain additional instance variables. Modifications are shown

in boldface.

Note that we use the variable justTurned in nextLocation to decide what sort

of move to make, but that we update its value in move. It is possible to update

justTurned in nextLocation instead, but this is not as good a design decision. The

way that we have implemented this, nextLocation is a pure function, with no side

effects. It is responsible for computing the next location and returning it, nothing more.

If one were to call it twice in a row without calling move in between, one would get

the same answer both times. However, if justTurned is updated in nextLocation

instead of in move, then this would no longer be true.

The move method is responsible for updating the location and the direction of the

CircleFish. It is therefore the natural place to update the justTurned variable,

which records whether the CircleFish has moved forward or turned most recently.

Chapter 4 65

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

// CircleFish.java

import java.awt.Color;

/**

 * CircleFish objects inherit instance variables and much of their

 * behavior from the Fish class.

 *

 * @author Chris Nevison

 * @author Alyce Brady

 * @version 25 March 2003

 **/

public class CircleFish extends Fish

{

 private boolean justTurned;

 public CircleFish(Environment env, Location loc)

 {

 // Construct and initialize the aspects inherited from Fish.

 super(env, loc);

 justTurned = true;

 }

 /** Constructs a CircleFish of that is orange at the specified

 * location and direction.

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 **/

 public CircleFish(Environment env, Location loc, Direction dir)

 {

 // Construct and initialize the aspects inherited from Fish.

 super(env, loc, dir, Color.orange);

 justTurned = true;

 }

 /** Constructs a CircleFish of the specified color at the specified

 * location and direction.

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 * @param col color of the new fish

 **/

 public CircleFish(Environment env, Location loc, Direction dir,

 Color col)

 {

Chapter 4 66

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Construct and initialize the aspects inherited from Fish.

 super(env, loc, dir, col);

 justTurned = true;

 }

 // redefined methods

 /** Returns a string representing information about this Circlefish.

 * @return a string indicating the fish's ID and location

 **/

 public String toString()

 {

 return "CircleFish " + super.toString();

 }

 /** Creates a new CircleFish, with the same color as this CircleFish

 * @param loc location of the new fish

 * @return the new fish

 **/

 protected void generateChild(Location loc)

 {

 new CircleFish(environment(), loc,

 environment().randomDirection(), color());

 }

 /** Moves this fish in its environment.

 * A CircleFish alternates moves one location forward, and one

 * location on the diagonal to its right, turning to the right

 * in the latter case.

 * If it does change location, the CircleFish turn right,

 * thereby avoiding being trapped at a side or corner.

 **/

 protected void move()

 {

 // Find a location to move to.

 Debug.print(toString() + " attempting to move. ");

 Location oldLoc = location();

 Location nextLoc = nextLocation();

 if (nextLoc.equals(oldLoc))

 {

 changeDirection(direction().toRight());

 justTurned = true;

 Debug.println(" Now facing " + direction());

 }

 else

 {

 // Move.

 changeLocation(nextLoc);

Chapter 4 67

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 if (!justTurned)

 {

 changeDirection(direction().toRight());

 justTurned = true;

 Debug.println(" Now facing " + direction());

 }

 else

 {

 justTurned = false;

 }

 }

 }

 /** Finds this fish's next location.

 * A CircleFish alternates moves one location forward, and one

 * location on the diagonal to its right.

 * If the CircleFish cannot move forward, then

 * <code>nextLocation</code> returns the fish's current location.

 * If the fish moves forward, the boolean justTurned is set to false,

 * otherwise, it is set to true.

 * @return the next location for this fish

 **/

 protected Location nextLocation()

 {

 Environment env = environment();

 Location forward = env.getNeighbor(location(), direction());

 Location rightDiag =

 env.getNeighbor(forward, direction().toRight());

 if (justTurned && env.isEmpty(forward))

 {

 return forward;

 }

 else if (!justTurned && env.isEmpty(rightDiag))

 {

 return rightDiag;

 }

 else

 {

 return location();

 }

 }

}

Chapter 5 68

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 5

Environment Implementations

This chapter covers interfaces, two-dimensional arrays and the ArrayList class

very thoroughly. Some ArrayList methods were already mentioned at least

briefly in Chapter 2: get, size, add(Object) and remove(Object). The last,

remove(Object), is not in the AP Java subset but is used in the case study. This

chapter covers these methods and the remove(int) and set methods.

Analysis Question Set 1 (page 80)

1. Answers will vary. Invite students to contribute their ideas and encourage the class

to discuss the merits offered. It is important to note the following:

A large and sparsely populated two-dimensional array is wasteful of memory.

An environment with irregular boundaries is difficult to represent as a two-

dimensional array.

If data is stored in an unordered list, less memory may be used. Inserting a

new object is trivial, but checking for neighboring objects and displaying the

environment will be more complex.

If the list is sorted, insertions will be more complex but the display will

probably be more straightforward.

 In general, think of the merits in terms of memory used and time required to insert

an object, remove an object, search for an object, and display the environment.

2. The list representation would allow you to keep track of more than one object in a

location in the environment. You could use a two-dimensional array where each

element contains a set of Locatable objects found at that location.

Analysis Question Set 2 (page 83)

1. Each class must implement the location method from the Locatable interface

because the parameter to the add method is a Locatable object. The classes

must also explicitly state "implements Locatable" in the class declaration or be

a subclass of a class that does.

Chapter 5 69

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

2. The Comparable interface contains only one method, compareTo. We want to

compare two locations when we are checking for consistency between a fish’s

location and the environment location. In general, it is useful to implement the

Comparable interface for items that can be ordered, so you can make less-than or

greater-than comparisons.

3. It would make it easy to change the display from GUI to text or to a different form

of GUI or text, or even to a class that stores information in a file.

4. Answers may vary. The current implementation of Simulation casts the objects

in the allObjects array to Fish. If you wanted to use the Simulation class

for a marching band, you would either need to edit this cast or have BandMember

inherit from Fish. If Simulation were to cast the objects in the allObjects

array to Actable, it could be used with different classes as long as they

implement the Actable interface. A disadvantage is the added complexity of

managing another interface.

5. Adding act to the Locatable interface would mean that act could be

implemented in different ways for each class that implements Locatable. This

adds flexibility to Locatable objects. On the other hand, every Locatable

object would be required to implement an act method, whether act is

appropriate for that object or not. In terms of design, act is not necessarily related

to something that is Locatable.

Analysis Question Set 3 (page 87)

1. The checking is different. The objectAt method would return null if the

location is not valid, so then isEmpty would return true. But the specification

for isEmpty says that it should return false if the location is not valid.

 Analysis Question Set 4 (page 88)

1. An array would not be a good representation because it might not be memory

efficient. An array cannot be easily resized. Even when it is sparsely populated, it

must be allocated with enough capacity to hold the maximum number of objects for

the case when the environment is completely full. A better choice is an ArrayList

because it resizes as needed.

2. The methods do not guarantee the order in which they return the environment

objects. In fact, toString specifically says “(not necessarily in any particular

order)”. For example, by switching the outer and inner loops in allObjects, you

could change the order in which objects are returned to column-major order.

Chapter 5 70

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Analysis Question Set 5 (page 90)

1. In the first line of add, the call to obj.location() would cause a

NullPointerException exception to be thrown. Program execution would

terminate immediately.

2. Method isEmpty only reports whether there is any object at the location. For

remove, though, we need to verify that there is an object at the location and that

it is the one we are trying to remove.

Note to teachers: Consider assigning Question 3 as a paper-and-pencil exercise. This

could provide a good practice exercise for the free-response part of the AP Exam.

Alternatively, you could have students actually code and test this exercise.

3. AB students should be able to express the efficiencies using Big-Oh notation. Both

methods look at only a single cell in the internal two-dimensional array, so both

are O(1).

public void removeFrom(Location loc)

{

 if (!isEmpty(loc))

 theGrid[loc.row()][loc.col()] = null;

}

Note to teachers: Another suggested topic for discussion with your class is using null

references, as BoundedEnv does, versus using objects of an EmptyCell class to

represent empty cells in the environment.

Analysis Question Set 6 (page 95)

1. No, it would not be appropriate. Conceptually, it is not true to say that an

unbounded environment “is-a” bounded environment.

2. In a very large environment, it is possible, although highly unlikely, that there

might actually be Integer.MAX_VALUE rows or columns. Using a negative value

will not cause this ambiguity.

Chapter 5 71

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Searching through the environment (pages 95–97)

If you have covered the ArrayList toArray method, you could have students

re-implement allObjects as shown below. The ArrayList toArray method

is not required by the AP Java subset.

public Locatable[] allObjects()

{

 Locatable[] theList = new Locatable[objectList.size()];

 return (Locatable[]) objectList.toArray(theList);

}

The local variable is necessary so that we can pass an array of the right type to the

toArray method.

Analysis Question Set 7 (page 97)

1. Any location with the same row and column should be considered a match,

regardless of whether it is exactly the same Location object. See the description

of the move method in Chapter 2.

2. The simulation asks the fish to act in the order that they were returned in the

allObjects array. A differing processing order means that fish will use different

random numbers to decide where to breed, move, and die. Also, the neighbors of a

fish depend on the processing order, since a fish may become a neighbor (or leave

the neighborhood) of another fish that hasn’t yet acted.

Analysis Question Set 8 (page 101)

1. The indexOf method is not intended for use by clients of the class. It is a helper

method for objectAt. The use of protected allows indexOf to be used in

subclasses of UnboundedEnv as well as in UnboundedEnv itself.

2. Pat’s first draft of remove calls objectAt, which loops through the ArrayList

to check the precondition that the object is in the environment. Then it calls

objectList.remove(obj), so the list has to be traversed a second time to find

the object again and remove it.

3. The first draft does 3*n comparisons (two calls to objectAt and one to

isEmpty), whereas the final version does 2*n comparisons (two comparisons in

each iteration of the single loop). They are, however, both O(n) in the long run.

Chapter 5 72

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

4. 1st draft of remove: O(n)

 2nd draft of remove: O(n)

 1st draft of recordMove: O(n)

 2nd draft of recordMove: O(n)

If your class has covered the indexOf method in ArrayList, you may wish to ask

students to consider possible alternative method implementations. For example, would

it make sense to implement the objectAt method using ArrayList indexOf ?

(No, because ArrayList indexOf needs the entire object to match against, whereas

objectAt knows only the location.) Would it make sense to implement the remove

method using ArrayList indexOf ? (Yes, see the code sample below.) Would it

make sense to implement the recordMove method using ArrayList indexOf ?

(No, it would have the same problems as Pat’s first draft.)

public void remove(Locatable obj)

{

 // Find the index of the object to remove.

 int index = objectList.indexOf(obj);

 if (index == -1)

 throw new IllegalArgumentException("cannot remove "

 + obj + "; not there ");

 // Remove the object.

 objectList.remove(index);

}

The code above shows what the remove method would look like.

Analysis Question Set 9 (page 103)

1. When a fish moves out of the display, its direction is changed to the direction it just

moved, which is away from the display. Fish do not move backward, so on the

second timestep a fish could not move back into the display area.

2. The fish will probably be processed in a different order because of the behavior of

the two different allObjects methods. Refer back to Analysis Question Set 7,

Number 2. Since fish on the boundaries of the viewable area can move outside of

this area, fish in the middle will have more room to move.

3. This is a very open-ended question. A simple approach is to create a driver that

puts some kind of Locatable objects into the environment and tests the methods

of the UnboundedEnv class.

Chapter 5 73

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

4. This question foreshadows Exercise Set 1, Question 3, on page 104. The two-

dimensional array could have many empty locations, so it’s not a very efficient

representation. An ArrayList would only store actual Fish objects. (Recall that

the location is included as part of each fish.) You would want to preserve code that

keeps track of boundaries (isValid and calls to isValid) and otherwise use

code from the ArrayList implementation.

5. For the bounded environment, objectAt is O(1), because no searching is

required. For the unbounded environment, using an ArrayList, the performance is

O(n), where n is the number of fish.

Note to teachers: If you are covering this chapter with A-level students, they do not

need to describe performance in Big-Oh terms but should be able to describe the

difference between checking for an object at a specific location in a two-dimensional

array and searching for an object in an unordered list.

6. In the bounded representation, allObjects performance does not depend on the

number of fish but is proportional to O(numRows() * numCols()), while in the

unbounded representation it is O(n), where n is the number of fish.

7. The answer is the same as for Question 5 because isInEnv calls objectAt.

Teaching tip: Here is an excellent opportunity to discuss trade-offs when choosing how

an object will be represented. Will some methods be called more frequently than

others? Will breeding and dying make a difference?

8. Again, this question is open-ended and a source of considerable classroom

discussion. If you cover the case study before you get to topics such as binary

search trees, hash tables, and maps, you may wish to bring these questions up later

in the course at a time when they are appropriate. (See the code in Exercise Set 1.)

This table gives the average case Big-Oh running times for a sorted list, BST, and a

map that is implemented as a hash table using the Java HashMap class.

 objectAt allObjects add remove

Sorted List O(log n) O(n) O(n) O(n)

BST O(log n) O(n) O(log n) O(log n)

HashMap O(1) O(n) O(1) O(1)

Chapter 5 74

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Exercise Set 1 (page 104)

1. The test cases work as expected. That is, valid data files run without error and

fish move as expected to valid locations. Invalid data files continue to generate

an error. The major difference is that fish can move in and out of the observed

environment. Without encountering a barrier or another fish, DarterFish can

move away forever.

2. Fish lined up in row 0 and column 0 no longer are constrained by a boundary. They

can move to negative positions.

3. The following are examples of implementations.

VLBoundedEnv

The code that follows implements a very large bounded environment as an extension of

UnboundedEnv.

public class VLBoundedEnv extends UnboundedEnv

{

 private int numberOfRows;

 private int numberOfCols;

 public VLBoundedEnv(int rows, int cols)

 {

 // Construct and initialize the inherited attributes

 super();

 numberOfRows = rows;

 numberOfCols = cols;

 }

 public int numRows()

 {

 return numberOfRows;

 }

 public int numCols()

 {

 return numberOfCols;

 }

Chapter 5 75

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public boolean isValid(Location loc)

 {

 if (loc == null)

 return false;

 return (0 <= loc.row() && loc.row() < numRows()) &&

 (0 <= loc.col() && loc.col() < numCols());

 }

}

The ListEnv class

The ListEnv class, an abstract class, will include the implementation of all the

methods from the UnboundedEnv class except numRows, numCols, and isValid,

which will be made abstract. These three methods will be implemented in the

subclasses UnboundedEnv and VLBoundedEnv. The only change needed to the

VLBoundedEnv class shown above is in the extends clause so that the class extends

ListEnv instead of UnboundedEnv.

Note to teachers: You can copy UnboundedEnv and save it as ListEnv, being careful

to change each UnboundedEnv in the code to ListEnv, adding the abstract

keyword and removing the method bodies for numRows, numCols, and isValid.

import java.util.ArrayList;

public abstract class ListEnv extends SquareEnvironment

{

 private ArrayList objectList;

 public ListEnv()

 {

 objectList = new ArrayList();

 }

 public abstract int numRows();

 public abstract int numCols();

 public abstract boolean isValid(Location loc);

 // The rest of the methods copied from UnboundedEnv

}

Chapter 5 76

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

UnboundedEnv as a subclass of ListEnv

public class UnboundedEnv extends ListEnv

{

 public UnboundedEnv()
 {
 super();
 }

 public int numRows()
 {
 return -1;
 }

 public int numCols()
 {
 return -1;
 }

 public boolean isValid(Location loc)
 {
 return loc != null;
 }

}

Chapter 5 77

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

SMBoundedEnv class

Note to teachers: In this code, you will see similarities with the BoundedEnv and

VLBoundedEnv classes. Consider how this code would look if you started with

BoundedEnv. The code that follows shows modifications in boldface. Many of the

comments have been removed to save space.

import java.util.LinkedList;

import java.util.Iterator:

public class SMBoundedEnv extends SquareEnvironment

{

 private LinkedList[] rows;

 private int numberOfCols;

 public SMBoundedEnv(int nRows, int nCols)

 {

 super();

 numberOfCols = nCols;

 rows = new LinkedList[nRows];

 for (int index = 0; index < rows.length; index++)

 rows[index] = new LinkedList();

 }

 public int numRows()

 {

 return rows.length;

 }

 public int numCols()

 {

 return numberOfCols;

 }

 public int numObjects()

 {

 int objectCount = 0;

 for (int index = 0; index < rows.length; index++)

 objectCount += rows[index].size();

 return objectCount;

 }

Chapter 5 78

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public Locatable[] allObjects()

 {

 Locatable[] theObjects = new Locatable[numObjects()];

 int tempObjectCount = 0;

 // Step through all the rows.

 for (int index = 0; index < rows.length; index++)

 {

 // Step through all the objects in this row.

 Iterator itr = rows[index].iterator();

 while (itr.hasNext())

 {

 // Put the next object in the array.

 theObjects[tempObjectCount] = (Locatable)itr.next();

 tempObjectCount++;

 }

 }

 return theObjects;

 }

 public boolean isValid(Location loc)

 {

 if (loc == null)

 return false;

 return (0 <= loc.row() && loc.row() < numRows()) &&

 (0 <= loc.col() && loc.col() < numCols());

 }

 public boolean isEmpty(Location loc)

 {

 return isValid(loc) && objectAt(loc) == null;

 }

 public Locatable objectAt(Location loc)

 {

 if (! isValid(loc))

 return null;

Chapter 5 79

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Step through all the objects in the row for location loc

 Iterator itr = rows[loc.row()].iterator();

 while (itr.hasNext())

 {

 // Is this object at the location we're looking for?

 Locatable obj = (Locatable) itr.next();

 if (obj.location().equals(loc))

 {

 // Found the object -- return it.

 return obj;

 }

 }

 return null;

 }

 // modifier methods

 public void add(Locatable obj)

 {

 Location loc = obj.location();

 if (! isEmpty(loc))

 throw new IllegalArgumentException("Location " + loc +

 " is not a valid empty location");

 // Add object to the environment.

 rows[loc.row()].add(obj);

 }

 public void remove(Locatable obj)

 {

 // Make sure that the object is there to remove.

 Location loc = obj.location();

 if (objectAt(loc) != obj)

 throw new IllegalArgumentException("Cannot remove " +

 obj + "; not there");

 // Remove the object from the environment.

 rows[loc.row()].remove(obj);

 }

Chapter 5 80

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public void recordMove(Locatable obj, Location oldLoc)

 {

 // Simplest case: There was no movement.

 Location newLoc = obj.location();

 if (newLoc.equals(oldLoc))

 return;

 // Verify that there wasn't already an object at new location.

 Iterator itr = rows[newLoc.row()].iterator();

 while (itr.hasNext())

 {

 Locatable current = (Locatable) itr.next();

 if (current.location().equals(newLoc) && current != obj)

 {

 throw new IllegalArgumentException("There's already " +

 "an object (" + current + ") at location " + newLoc);

 }

 }

 // If object stayed within same row, no change made;

 // otherwise remove object and add it to new row.

 if (newLoc.row() != oldLoc.row())

 {

 // Remove object from old row and add it to new row.

 rows[oldLoc.row()].remove(obj);

 add(obj);

 }

 }

}

4. SLUnboundedEnv class implementation

The class SLUnboundedEnv is an implementation of an unbounded environment that

uses a sorted ArrayList to store the fish.

The advantage of using a sorted list is that it enables you to use binary search to find

an object in the list, taking O(log n) time for n fish, instead of O(n) time. In addition,

a binary search can be used to find the location in which to add or remove an element.

However, note that the add operation is still O(n) overall since in an ArrayList

the elements above the index where an element is added must all be moved up one

position. The remove operation is similarly O(n) because of the work required to

shuffle down the elements once an object has been removed.

Chapter 5 81

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

The time for the recordMove method is also O(n). This method starts with a linear

loop to verify the preconditions. This code is copied from the ordinary unsorted list

traversal in UnboundedEnv. It doesn’t use binary search because the fish that is

moving has updated its internal location but it is still in its old position within the

sorted list, making the list unsorted. Until that fish is properly moved, methods that

depend on binary search such as isEmpty and objectAt can return erroneous

results. If the fish has moved up in the list, a search for the correct index is carried out

by moving down the list from the old index, sliding elements up until the correct index

is reached, much like the inner loop in insertion sort. If the fish moves down, the same

procedure is used, but moving up the list instead of down.

The class SLUnboundedEnv is an implementation of an unbounded environment that

uses a sorted ArrayList to store the fish. It again uses the helper method indexOf

to find the index of an object in this ArrayList. In this case, however, when an

object is not found, indexOf returns the index, k, where that object would be placed

if it were added to the list.

The following methods for SLUnboundedEnv have identical implementations as for

UnboundedEnv.

the constructor

numRows

numCols

isValid

numObjects

allObjects (but the order of objects is row major order for this version)

isEmpty

toString

The method objectAt is changed to verify that the desired object is actually at the

index returned by indexOf.

The add and remove methods both use indexOf to find the index from which to

add or remove the object.

The method recordMove starts with the same body as the version from the original

UnboundedEnv but has additional code to move the object to the correct place within

the sorted list using a shuffle operation similar to that of insertion sort.

Chapter 5 82

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

import java.util.ArrayList;

public class SLUnboundedEnv extends SquareEnvironment

{

 private ArrayList objectList;

 public SLUnboundedEnv()

 {

 // Construct and initialize inherited attributes.

 super();

 objectList = new ArrayList();

 }

 // accessor methods

 public int numRows()

 {

 return -1;

 }

 public int numCols()

 {

 return -1;

 }

 public boolean isValid(Location loc)

 {

 return loc != null;

 }

 public int numObjects()

 {

 return objectList.size();

 }

 public Locatable[] allObjects()

 {

 Locatable[] objectArray = new Locatable[objectList.size()];

 // Put all the environment objects in the list.

 for (int index = 0; index < objectList.size(); index++)

 {

 objectArray[index] = (Locatable) objectList.get(index);

 }

 return objectArray;

 }

Chapter 5 83

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public boolean isEmpty(Location loc)

 {

 return (objectAt(loc) == null);

 }

 public Locatable objectAt(Location loc)

 {

 int index = indexOf(loc);

 if (index >= objectList.size())

 return null;

 Locatable objAtIndex = (Locatable)objectList.get(index);

 if (!objAtIndex.location().equals(loc))

 return null;

 return objAtIndex;

 }

 public String toString()

 {

 Locatable[] theObjects = allObjects();

 String s = "Environment contains " + numObjects() + " objects: ";

 for (int index = 0; index < theObjects.length; index++)

 s += theObjects[index].toString() + " ";

 return s;

 }

 // modifier methods

 public void add(Locatable obj)

 {

 // Check precondition. Location should be empty.

 Location loc = obj.location();

 if (! isEmpty(loc)) // loc is not empty

 {

 throw new IllegalArgumentException("Location " + loc +

 " is not a valid empty location");

 }

 else

 { // add object to list in correct position

 objectList.add(indexOf(loc), obj);

 }

 }

 public void remove(Locatable obj)

 {

Chapter 5 84

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Find the index of the object to remove.

 int index = indexOf(obj.location());

 if (index >= objectList.size() || objectList.get(index) != obj)

 {

 throw new IllegalArgumentException("Cannot remove " +

 obj + "; not there");

 }

 else

 {

 // Remove the object.

 objectList.remove(index);

 }

 }

 public void recordMove(Locatable obj, Location oldLoc)

 {

 // We cannot use binary search to find the existing object

 // (or object at the new location) since the object

 // being moved is in the list, but at the "wrong" place

 // for its current location. We have to find the object

 // the "hard" way with an ordinary linear search

 int objectsAtOldLoc = 0;

 int objectsAtNewLoc = 0;

 int foundIndex = -1;

 // Look through the list to find how many objects are at old

 // and new locations.

 Location newLoc = obj.location();

 for (int index = 0; index < objectList.size(); index++)

 {

 Locatable thisObj = (Locatable) objectList.get(index);

 if (thisObj.location().equals(oldLoc))

 objectsAtOldLoc++;

 if (thisObj.location().equals(newLoc))

 objectsAtNewLoc++;

 if (thisObj == obj)

 foundIndex = index;

 }

 // There should be one object at newLoc. If oldLoc equals

 // newLoc, there should be one at oldLoc; otherwise, there

 // should be none.

 if (! (objectsAtNewLoc == 1 &&

 (oldLoc.equals(newLoc) || objectsAtOldLoc == 0)))

 {

 throw new

 IllegalArgumentException("Precondition violation moving "

 + obj + " from " + oldLoc);

 }

Chapter 5 85

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 int index = foundIndex;

 if (newLoc.compareTo(oldLoc) < 0)

 {

 // move to earlier position in list, sliding elements up

 while (index > 0 &&

 newLoc.compareTo(((Locatable)objectList.get(index-1)).location())<0)

 {

 objectList.set(index, objectList.get(index - 1));

 index--;

 }

 objectList.set(index, obj);

 }

 else if (newLoc.compareTo(oldLoc) > 0)

 {

 // move to later position in list, sliding elements down

 while (index < objectList.size() - 1 &&

newLoc.compareTo(((Locatable)objectList.get(index+1)).location())>0)

 {

 objectList.set(index, objectList.get(index + 1));

 index++;

 }

 objectList.set(index, obj);

 }

 }

 // internal helper method

 /** Get the index of the object at the specified location or

 * or the index where an object at that location should be added

 * to the list.

 * Uses binary seach, so time is O(log K) for K fish,

 * Returns the location of the object if found, or where it

 * should be, if not found

 **/

 protected int indexOf(Location loc)

 {

 int low = 0;

 int high = objectList.size() - 1;

 while (low <= high)

 {

 int mid = (low + high) / 2;

 Location midLoc = ((Locatable)objectList.get(mid)).location();

 if (loc.equals(midLoc))

 {

 Debug.println("indexof " + loc + " is " + mid);

 return mid;

 }

Chapter 5 86

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 else if (loc.compareTo(midLoc) < 0)

 high = mid - 1;

 else // loc > midLoc

 low = mid + 1;

 }

 Debug.println("indexof " + loc + " is " + low);

 return low;

 }

}

5. BSTUnboundedEnv class implementation

This problem asks that the unbounded environment be implemented using a binary

search tree (BST). This could be done directly as shown in this solution or indirectly

by using the TreeMap implementation of a map. (The Java library class TreeMap is

implemented with a balanced binary search tree.) Exercise 6 shows a solution using

the HashMap implementation of a map. The code for a TreeMap would be virtually

identical to the code for Exercise 6 that uses a HashMap. Here we directly implement a

BST within the environment.

We use the implementation class TreeNode to implement the nodes of the BST

and we store the Locatable objects directly in the nodes. We need a private data

field, root, for the root node of the tree. We also need a private integer data field,

numObj, to store the number of objects, since we are not using a structure with a

size method.

The following methods for BSTUnboundedEnv have identical implementations as for

UnboundedEnv.

the constructor

numRows

numCols

isValid

isEmpty

toString

The method numObjects simply returns the value of the instance variable numObj,

which is updated each time an object is added or removed.

The other methods all use recursive helper functions. The helper method for

allObjects does an in-order traversal of the BST.

Chapter 5 87

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

The helper method for add uses the location of the object to search for the node where

the object should be added, throwing an exception if there is already an object at that

location. Otherwise, the helper method creates and adds a node at the appropriate

position in the tree and returns the tree to the add method.

The helper method for remove has a twist. It carries the location as well as the

object as parameters through the recursive calls. By using this technique, this helper

method can also be used in the recordMove method, where the object already has a

changed location, but oldLoc contains the location that is used to locate the object

in the BST. This is the most complicated of the helper methods since after locating

the node containing the object to be removed, it must carry out the removal. For

clarity of code, the actual removal of the target node has been factored out in method

removeTargetNode which is called from the removeHelper method when the object

is found.

The method recordMove uses the helper method removeHelper to remove the

object from its previous position. This works because although this particular object

has changed its internal representation of its location, the other nodes in the BST have

not and the old location is passed as a parameter that is used for the search. The search

proceeds normally until the node with the object to be removed is reached. Since the

first check at each node is to see if the object reference is the same as the object to be

removed, the fact that the object being removed has a changed location will not affect

the search. If the objects are not the same, then their locations are compared. If the

object is removed successfully, then the add method is used to place it back into the

BST at the correct position.

The add, remove, and recordMove methods all have expected O(log n) time (where

n is the number of objects) for a balanced tree. Since this implementation does not

balance the tree, the worst case of O(n) time could occur.

public class BSTUnboundedEnv extends SquareEnvironment

{

 private TreeNode root; // root of the BST

 private int numObj; // stores the number of objects

 // constructors

 public BSTUnboundedEnv()

 {

 // Construct and initialize inherited attributes.

 super();

 root = null;

 numObj = 0;

 }

 // accessor methods

Chapter 5 88

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public int numRows()

 {

 return -1;

 }

 public int numCols()

 {

 return -1;

 }

 public boolean isValid(Location loc)

 {

 return loc != null;

 }

 public int numObjects()

 {

 return numObj;

 }

 public Locatable[] allObjects()

 {

 Locatable[] objectArray = new Locatable[numObjects()];

 // Put all the environment objects in the list.

 // Uses inorder traversal with allObjectsHelper method.

 allObjectsHelper(root, objectArray, 0);

 return objectArray;

 }

 private int allObjectsHelper(TreeNode node,

 Locatable[] objectArray, int indexIn)

 {

 if (node != null)

 {

 int index = allObjectsHelper(node.getLeft(),

 objectArray, indexIn);

 objectArray[index] = (Locatable)node.getValue();

 index++;

 return allObjectsHelper(node.getRight(), objectArray, index);

 }

 else

 {

 return indexIn;

 }

 }

Chapter 5 89

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public boolean isEmpty(Location loc)

 {

 return (objectAt(loc) == null);

 }

 public Locatable objectAt(Location loc)

 {

 return objectAtHelper(root, loc);

 }

 private Locatable objectAtHelper(TreeNode node, Location loc)

 {

 if (node == null)

 return null;

 else

 {

 int cmp =

 loc.compareTo(((Locatable)node.getValue()).location());

 if (cmp == 0)

 return (Locatable)node.getValue();

 else if (cmp < 0)

 return objectAtHelper(node.getLeft(), loc);

 else // cmp > 0

 return objectAtHelper(node.getRight(), loc);

 }

 }

 public String toString()

 {

 Locatable[] theObjects = allObjects();

 String s = "Environment contains " + numObjects() + " objects: ";

 for (int index = 0; index < theObjects.length; index++)

 s += theObjects[index].toString() + " ";

 return s;

 }

 // modifier methods

 public void add(Locatable obj)

 {

 if (!isEmpty(obj.location()))

 throw new IllegalArgumentException("Location " + obj.location() +

 " is not a valid empty location");

 root = addHelper(root, obj);

 }

 private TreeNode addHelper(TreeNode node, Locatable obj)

 {

Chapter 5 90

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 if (node == null)

 {

 numObj++;

 return new TreeNode(obj);

 }

 Location loc = obj.location();

 if (loc.compareTo(((Locatable)node.getValue()).location()) < 0)

 node.setLeft(addHelper(node.getLeft(), obj));

 else //loc.compareTo(((Locatable)node.getValue()).location()) > 0

 node.setRight(addHelper(node.getRight(), obj));

 return node;

 }

 public void remove(Locatable obj)

 {

 root = removeHelper(root, obj, obj.location());

 }

 private TreeNode removeHelper(TreeNode node,

 Locatable obj, Location loc)

 {

 if (node == null)

 {

 throw new IllegalArgumentException("Cannot remove " +

 obj + "; not there");

 }

 else if (node.getValue().equals(obj)) // found it

 {

 numObj--;

 return removeTargetNode(node);

 }

 else if (((Locatable)node.getValue()).location().equals(loc))

 {

 throw new IllegalArgumentException("Cannot remove " + obj +

 "; different object at its location");

 }

 else if (loc.compareTo(((Locatable)node.getValue()).location()) < 0)

 {

 node.setLeft(removeHelper(node.getLeft(), obj, loc));

 return node;

 }

 else //loc.compareTo(((Locatable)node.getValue()).location()) > 0

 {

 node.setRight(removeHelper(node.getRight(), obj, loc));

 return node;

 }

 }

Chapter 5 91

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 private TreeNode removeTargetNode(TreeNode target)

 {

 if (target.getRight() == null)

 {

 return target.getLeft();

 }

 else if (target.getLeft() == null)

 {

 return target.getRight();

 }

 else if (target.getRight().getLeft() == null)

 {

 target.setValue(target.getRight().getValue());

 target.setRight(target.getRight().getRight());

 return target;

 }

 else // right child has left child

 {

 TreeNode parent = target.getRight();

 while (parent.getLeft().getLeft() != null)

 parent = parent.getLeft();

 target.setValue(parent.getLeft().getValue());

 parent.setLeft(parent.getLeft().getRight());

 return target;

 }

 }

 public void recordMove(Locatable obj, Location oldLoc)

 {

 Location newLoc = obj.location();

 int oldCount = numObj;

 root = removeHelper(root, obj, oldLoc);

 if (oldCount == numObj || !isEmpty(newLoc))

 {

 throw new

 IllegalArgumentException("Precondition violation moving "

 + obj + " from " + oldLoc);

 }

 root = addHelper(root, obj);

 }

}

Chapter 5 92

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

6. The hash map code bears similarities to the sparse matrix and unbounded

environment code. The code below lists only the modified methods with

modifications shown in boldface.

import java.util.HashMap;

public class HMUnboundedEnv extends SquareEnvironment

{

 private HashMap objectMap;

 public HMUnboundedEnv()

 {

 // Construct and initialize inherited attributes.

 super();

 objectMap = new HashMap();

 }

 public int numObjects()

 {

 return objectMap.size();

 }

 public Locatable[] allObjects()

 {

 Locatable[] objectArray = new Locatable[objectMap.size()];

 // Put all the environment objects in the list.

 Iterator keyIterator = objectMap.keySet().iterator();

 for (int index = 0; keyIterator.hasNext(); index++)

 {

 Location loc = (Location) keyIterator.next();

 objectArray[index] = (Locatable) objectMap.get(loc);

 }

 return objectArray;

 }

Note to teachers: The above allObjects code is correct and in line with the AP Java

subset (testable subset of the Java language). Two alternative solutions are on the

following pages.

Chapter 5 93

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

// Alternate code 1

 public Locatable[] allObjects()

 {

 Locatable[] objectArray = new Locatable[objectMap.size()];

 // values not in subset

 Iterator objectIterator = objectMap.values().iterator();

 for (int index = 0; objectIterator.hasNext(); index++)

 {

 objectArray[index] = (Locatable) objectIterator.next());

 }

 return objectArray;

 }

// Alternate Code 2

 public Locatable[] allObjects()

 {

 Locatable[] objectArray = new Locatable[objectMap.size()];

 index = 0;

 // values not in subset

 Iterator objectIterator = objectMap.values().iterator();

 while (objectIterator.hasNext())

 {

 objectArray[index] = (Locatable) objectIterator.next();

 index++;

 }

 }

Note to teachers: The following is the rest of the HashMap code.

 public boolean isEmpty(Location loc)

 {

 return (objectAt(loc) == null);

 // OR return ! objectMap.containsKey(loc);

 }

 public Locatable objectAt(Location loc)

 {

 return (Locatable) objectMap.get(loc);

 }

Chapter 5 94

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // modifier methods

 public void add(Locatable obj)

 {

 // Check precondition. Location should be empty.

 Location loc = obj.location();

 if (! isEmpty(loc))

 throw new IllegalArgumentException("Location " + loc +

 " is not a valid empty location");

 // Add object to the environment.

 objectMap.put(loc, obj);

 }

 public void remove(Locatable obj)

 {

 // Find the index of the object to remove.

 Location loc = obj.location();

 if (! objectMap.containsKey(loc))

 throw new IllegalArgumentException("Cannot remove " +

 obj + "; not there");

 // Remove the object.

 objectMap.remove(loc);

 }

 public void recordMove(Locatable obj, Location oldLoc)

 {

 // Simplest case: There was no movement.

 Location newLoc = obj.location();

 if (newLoc.equals(oldLoc))

 return;

 // Otherwise, the object should still be mapped to the old

 // location, and nothing should be mapped (yet) to the new

 // location.

 Locatable foundObject = objectAt(oldLoc);

 if (! (foundObject == obj && isEmpty(newLoc)))

 throw new

 IllegalArgumentException("Precondition violation moving"

 + obj + " from " + oldLoc);

 // Associate the object with the proper location.

 objectMap.remove(oldLoc);

 objectMap.put(newLoc, obj);

 }

}

Appendix A A1

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Appendix A

Sample Multiple-Choice Questions

1. Assume that fsh has been defined and initialized as a Fish object in a client

class that contains the following code segment.

int leftCounter = 0;

for (int k = 0; k < 100; k++)

{

 Direction dir = fsh.direction();

 Direction dirLeft = dir.toLeft();

 fsh.act();

 if (/* condition */)

 leftCounter++;

}

 Which of the following could be used to replace /* condition */ so that the

variable leftCounter accurately stores the number of times that fsh turned to

the left?

 (A) dir.equals(dirLeft)

 (B) dir.equals(fsh.direction())

 (C) dirLeft.equals(dir)

 (D) dirLeft.equals(fsh.direction())

 (E) (fsh.direction()).equals(new Direction(dir))

2. Consider the following three statements.

 I. SlowFish “is-a” Fish

 II. SlowFish “is-a” Locatable

 III. Location “is-a” Locatable

 Which of the above statements is (are) true?

 (A) I only

 (B) II only

 (C) III only

 (D) I and II only

 (E) I, II, and III

Appendix A A2

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

3. Three students attempt to create an AnchoredFish class. An AnchoredFish

breeds and dies like a regular fish but never moves. All three students started with

the following code.

public class AnchoredFish extends Fish

{

 // constructors not shown

 protected void generateChild(Location loc)

 { /* implementation not shown */ }

}

 Each of them chose to override a single method from the Fish class. However,

each chose a different method.

 I. public void act()

 {

 /* does nothing */

 }

 II. protected void move()

 {

 /* does nothing */

 }

 III. protected Location nextLocation()

 {

 return location();

 }

 Which of these attempts successfully create(s) an AnchoredFish class that breeds

and dies like a regular fish but never moves?

 (A) I only

 (B) II only

 (C) I and II only

 (D) II and III only

 (E) I, II, and III

Appendix A A3

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

(AB only)

4. If the 2-D array theGrid in the BoundedEnv class was replaced by a linked list

of Locatable objects, which of the following method’s running time would

improve if the environment was sparsely populated?

 (A) isValid

 (B) numObjects

 (C) allObjects

 (D) objectAt

 (E) add

(AB only)

5. Let n be the number of fish in the environment. Assume that UnboundedEnv

is implemented efficiently. What would be the average-case running time of

the method isEmpty in UnboundedEnv if the environment was represented

as a HashMap ?

 (A) (1)O

 (B) (log)O n

 (C) ()O n

 (D) 2()O n

 (E) The answer depends on the number of rows and columns occupied by fish.

Appendix A A4

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Sample Free-Response Question (A Exam)

This question involves reasoning about the code from the AP Marine Biology

Simulation Case Study. A copy of the code is provided as part of this exam.

Consider defining a new type of fish called CircleFish that swims in circles. A

CircleFish alternates the way that it moves. It first goes one cell forward, if possible.

Next it moves to the cell diagonally to the right if that cell is empty, turning right at the

same time. (This is illustrated by moving from position 2 to position 3 in the diagram

below.) If either type of move is blocked because the target cell is not empty, then the

CircleFish stays in place, but turns right. Whenever a CircleFish turns, it should

next attempt to move forward. The moves of a single CircleFish object are shown in

the diagram below.

A CircleFish class can be defined by inheriting behavior from the Fish class and

adding or overriding methods as appropriate. Since a CircleFish alternates its

pattern of movement, it will need a state variable to keep track of which movement

is next.

(a) Write a partial class declaration for CircleFish that includes the heading for the

class, any instance variables that must be declared in the CircleFish class, and a

two-parameter constructor that takes the environment and the initial location of the

CircleFish as parameters. Other constructors and methods need not be shown.

Appendix A A5

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

(b) One way to implement CircleFish is to override the nextLocation method to

return the next location of the CircleFish, which may be the cell immediately

forward, the cell diagonally to the right, or the same cell that the CircleFish

currently occupies, according to the rules given on the previous pages.

 Write the CircleFish method nextLocation. If the state of the fish is such that

this move should be forward, then nextLocation should return the location

forward from this fish unless it is not empty, in which case the current location

should be returned. If the state of the CircleFish is such that this move should be

diagonally to the right, then nextLocation should return the location diagonally

to the right, unless that location is not empty, in which case the current location

should be returned.

 In writing nextLocation you may use any accessible CircleFish methods and

any other public classes and methods from the MBS case study. Solutions that

reimplement functionality provided by these methods, rather than invoking these

methods, will not receive full credit.

 Complete method nextLocation below.

protected Location nextLocation()

(c) Write the CircleFish move method. Method move should change the location

and direction of the fish as needed, according to the rules of movement described at

the beginning of the question. In addition, the state of the fish must be updated.

 In writing move you may use any accessible CircleFish methods including

nextLocation and any other public classes and methods from the MBS case

study. Solutions that reimplement functionality provided by these methods,

rather than invoking these methods, will not receive full credit. Assume that

nextLocation works as specified, regardless of what you wrote in part (b).

 Complete method move below.

 protected void move()

Appendix A A6

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Sample Free-Response Question (AB Exam)

This question involves reasoning about the code from the AP Marine Biology

Simulation Case Study. A copy of the code is provided as part of this exam.

In the original version of the case study, the BoundedEnv class uses a two-

dimensional array of Locatable objects, theGrid, to represent the region in which

the simulation takes place. Consider an alternate representation where the fish in each

row are stored in a singly linked list. The implementation of theGrid becomes a one-

dimensional array where each entry is a reference to the first node in the linked list for

that row, or null if the row is empty. Each list node contains a fish and a reference

to the node containing the next fish in that row. The linked list is ordered by column

index of the location of the fish, from smallest to largest.

In the example below, a 5 x 5 grid is diagrammed on the left and the list representation

of that grid is shown on the right. In this representation, theGrid[2] is a reference

to the first node of a list containing two fish: a fish facing north at location (2,1) and a

fish facing west at location (2,4). The element theGrid[1] is null, indicating that

there are no fish in that row.

Each list of fish will be implemented using the ListNode implementation class

provided in the Quick Reference.

Consider the following changes (shown in bold) to the private instance variables of

the BoundedEnv class.

// Instance Variables: Encapsulated data for each

// BoundedEnv object

 private ListNode[] theGrid; // array representing the

 // environment

 private int objectCount; // # of objects in current

 // environment

 private int myNumCols; // # of columns in the grid

Appendix A A7

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

(a) Modify the BoundedEnv method allObjects to use the revised data structure. In

writing allObjects, you may use any other BoundedEnv methods or the public

methods of any other class used in this case study. Solutions that reimplement

functionality provided by these methods, rather than invoking these methods, will

not receive full credit. Assume all methods work as specified.

 Complete method allObjects below.

 /** Returns all the objects in this environment.

 * @return an array of all the environment objects

 **/

 public Locatable[] allObjects()

 {

 Locatable[] theObjects = new Locatable[numObjects()];

 int tempObjectCount = 0;

 // Look at all grid locations.

 // insert code here

 // end of inserted code

 return theObjects;

 }

Appendix A A8

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

(b) Modify the BoundedEnv method add to use the revised data structure. The new

Locatable object should be inserted into the correct row’s linked list, maintaining

the order of the list sorted by the object’s location’s column index.

 In writing add, you may use any other BoundedEnv methods or the public

methods of any other class used in this case study. Solutions that reimplement

functionality provided by these methods, rather than invoking these methods, will

not receive full credit. Assume that all methods work as specified.

 Complete method add below.

 /** Adds a new object to this environment at the

 * location it specifies.

 * (Precondition: <code>obj.location()</code> is a

 * valid empty location.)

 * @param obj the new object to be added

 * @throws IllegalArgumentException if the precondition

 * is not met

 **/

 public void add(Locatable obj)

 {

 // Check precondition. Location should be empty.

 Location loc = obj.location();

 if (! isEmpty(loc))

 throw new IllegalArgumentException("Location " + loc +

 " is not a valid empty location");

 // Add object to the environment.

 // insert code here

Appendix B B1

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Appendix B

Solutions for Sample Test Questions

Multiple-Choice

1. (D) dirLeft.equals(fsh.direction())

 Rationale:

 Each time through the loop, the variable dir holds the direction of the fish before

it acts, and dirLeft holds the direction facing left of the fish’s direction before

the call to act. After the call to act, the current direction of the fish can only be

obtained through the accessor method direction.

2. (D) I and II only

 Rationale:

 The Fish class implements the Locatable interface and the SlowFish class

extends the Fish class. The Location class is a separate class encapsulating

a location in the grid. It does not fall into the hierarchy of the Fish class and

its subclasses.

3. (D) II and III only

 Rationale:

 Overriding the move method to do nothing will cause the fish to stay in the same

location. Overriding the nextLocation method to return the current location will

also keep the fish in the same location. In each of these cases, the fish will still

breed and die as inherited from the Fish class. Overriding the act method to do

nothing will keep the fish in the same location, but will not allow the fish to breed

and die as specified.

4. (C) allObjects

 Rationale:

 The performance of the isValid and numObjects methods would be about the

same as before. The performance of the allObjects method improves because

the loop will only traverse locations that hold fish rather than traversing the entire

grid as in the original implementation. The performance of the objectAt and

add methods is worse because the appropriate location must be found within the

linked list.

Appendix B B2

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

5. (A) (1)O

 Rationale:

 Method isEmpty will hash based on the location to determine if a fish is present

at that location. The question states that UnboundedEnv is implemented

efficiently. Lookup in a hash table is (1)O .

Sample Free-Response Solution (A Exam)

(a)

public class CircleFish extends Fish

{

 private boolean justTurned;

 public CircleFish(Environment env, Location loc)

 {

 super(env, loc);

 justTurned = true;

 }

 // other constructors and methods not shown

}

Appendix B B3

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

(b)

protected Location nextLocation()

{

 Environment env = environment();

 Location forward = env.getNeighbor(location(), direction());

 Location rightDiag = env.getNeighbor(forward,

 direction().toRight());

 if (justTurned && env.isEmpty(forward))

 {

 return forward;

 }

 else if (!justTurned && env.isEmpty(rightDiag))

 {

 return rightDiag;

 }

 else

 {

 return location();

 }

}

(c)

protected void move()

{

 Location oldLoc = location();

 Location nextLoc = nextLocation();

 if (nextLoc.equals(oldLoc))

 {

 changeDirection(direction().toRight());

 justTurned = true;

 }

 else

 {

 changeLocation(nextLoc);

 if (!justTurned)

 {

 changeDirection(direction().toRight());

 justTurned = true;

 }

 else

 {

 justTurned = false;

 }

 }

}

Appendix B B4

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Sample Free-Response Solution (AB Exam)

(a)

/** Returns all the objects in this environment.

 * @return an array of all the environment objects

 **/

public Locatable[] allObjects()

{

 Locatable[] theObjects = new Locatable[numObjects()];

 int tempObjectCount = 0;

 // Look at all grid locations.

 // insert code here

 ListNode curNode;

 for (int r = 0; r < numRows(); r++)

 {

 curNode = theGrid[r];

 while (curNode != null)

 {

 theObjects[tempObjectCount] = (Locatable)curNode.getValue();

 curNode = curNode.getNext();

 tempObjectCount++;

 }

 }

 // end of inserted code here

 return theObjects;

}

Appendix B B5

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

(b)

/** Adds a new object to this environment at the location

 * it specifies.

 * (Precondition: <code>obj.location()</code> is a valid empty

 * location.)

 * @param obj the new object to be added

 * @throws IllegalArgumentException if precondition is not met

 **/

public void add(Locatable obj)

{

 // Check precondition. Location should be empty.

 Location loc = obj.location();

 if (! isEmpty(loc))

 throw new IllegalArgumentException("Location " + loc +

 " is not a valid empty location");

 // Add object to the environment.

 // insert code here

 if (theGrid[loc.row()] == null ||

 ((Locatable)theGrid[loc.row()].getValue()).location().col() >

 loc.col())

 {

 theGrid[loc.row()] = new ListNode(obj, theGrid[loc.row()]);

 }

 else

 {

 ListNode curNode = theGrid[loc.row()];

 while (curNode.getNext() != null &&

 ((Locatable)curNode.getNext().getValue()).location().col() <

 loc.col())

 {

 curNode = curNode.getNext();

 }

 ListNode temp = new ListNode(obj, curNode.getNext());

 curNode.setNext(temp);

 }

 objectCount++;

}

Appendix C C1

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Appendix C

Chapter 1

Exercise Set 2: Problem 1 (page 11)

Timestep

Fish’s

Location

Fish’s

Direction

Did It

Move?

In What

Direction?

New

Location

New

Direction

1

2

3

4

5

Appendix C C2

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 1

Analysis Question Set 2: Problem 2 (page 12)

Timestep

Fish’s

Location

Fish’s

Direction

Did It

Move?

In What

Direction?

New

Location

New

Direction

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Appendix C C3

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 2

Exercise Set 5: Problem 3 (page 45)

Step Fish 1 Fish 2 Fish 3 Fish 4 Fish 5 Fish 6

0

1

2

3

4

5

Appendix C C4

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 1

Object Diagram: Driver (page 17)

Appendix C C5

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 2

Object Diagram: Simulation – step (page 23)

Appendix C C6

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 2

Object Diagram: Fish – act (page 34)

Appendix C C7

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Chapter 4

Object Diagram: DarterFish (page 65)

Appendix D D1

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Appendix D

Supplemental Example: Fast Fish

Problem Specification

The marine biologists decided that they would also like faster-moving fish in the

simulation. In particular, the biologists decided that:

A fast fish can move one or two cells away in a single timestep, in any of the four

directions. It can only move to an empty location two cells away if the first cell in the

two-step sequence is empty also. In other words, if an immediately adjacent location is

empty, the fast fish looks at the cell beyond it in the same direction to see if it is empty

also. The left diagram below shows all the possible neighboring locations (~) of a fast

fish (F). The diagram on the right shows how neighboring fish (N) can keep the fast

fish from moving to some of its empty neighboring locations (the ones marked X).

Fast fish, like other fish, move only if they do not breed.

 ~ X

 ~ N

 ~ ~ F ~ ~ X N F ~ ~

 ~ ~

 ~ ~

Implementation of the FastFish Class

The specification for a fast fish states that in a single timestep it can move one or

two cells away in any of the four neighboring directions. It can only move to empty

cells, however, and it can only move to a cell two units away if the cell it would be

swimming through to get there is also empty.

The key to the movement of fast fish is the way they choose the empty neighboring

locations to which they could move. Fast fish move within a wider neighborhood

than just their immediately adjacent neighbors. I decided to create a new method,

findMoveLocs, that would find the possible move locations in the wider

neighborhood. I then redefined the nextLocation method to call findMoveLocs

rather than calling emptyNeighbors. It also no longer needs to remove the location

behind the fish from the list of possible moves. The following code is for the

redefined nextLocation method, without debugging messages and with the

key changes in boldface.

Appendix D D2

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 protected Location nextLocation()

 {

 // Get list of possible move locations.

 ArrayList moveLocations = findMoveLocs();

 // If there are no possible moves, then we're done.

 if (moveLocations.size() == 0)

 return location();

 // Randomly choose one neighboring empty location and return it.

 Random randNumGen = RandNumGenerator.getInstance();

 int randNum = randNumGen.nextInt(moveLocations.size());

 return (Location) moveLocations.get(randNum);

 }

The neighborhood for a fast fish consists of its immediately adjacent empty neighbors

and some of their immediately adjacent neighbors. The first thing the findMoveLocs

method does, therefore, is to call the inherited emptyNeighbors method to get a list

of the fish’s immediately adjacent empty neighbors. Next, findMoveLocs steps

through that list, putting the empty neighbors, which are among the possible move

locations, in a new list, and checking for empty neighbors two cells away. For

example, if the cell to the fish’s north is in the list of empty neighbors, then the method

looks to see if the cell north of that northern neighbor is also empty. It does this by

storing the immediate neighbor (called neighborLoc) in a local variable, asking the

environment for the direction to neighborLoc (called dirToNeighbor), asking the

environment for the next location in the same direction (called nextOver), and then

checking to see if nextOver is a valid, empty location in the environment. If it is,

then the further cell’s location is added to the list of possible move locations.

The code that follows is for the findMoveLocs method, which is shown without

debugging messages.

 protected ArrayList findMoveLocs()

 {

 Environment env = environment();

 // Generate a list of all the immediately adjacent empty neighbors.

 ArrayList emptyNbrs = emptyNeighbors();

 // Build list of possible move locations.

 ArrayList moveLocations = new ArrayList();

 for (int index = 0; index < emptyNbrs.size(); index++)

 {

 // Add this location to list of possible moves.

 Location neighborLoc = (Location) emptyNbrs.get(index);

 moveLocations.add(neighborLoc);

Appendix D D3

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Find the next location over in the same direction.

 Direction dirToNeighbor =

 env.getDirection(location(), neighborLoc);

 Location nextOver = env.getNeighbor(neighborLoc, dirToNeighbor);

 if (env.isEmpty(nextOver))

 {

 // Next location over is empty, so add it too.

 moveLocations.add(nextOver);

 }

 }

 return moveLocations;

 }

As with the darter and slow fish, I decided to make all fast fish one color (cyan) to help

them show up as I ran the simulation. Since FastFish does not use any additional

instance variables, the FastFish constructors are very simple. The redefined

generateChild method is just as straightforward.

Analysis Question Set 1:

1. What if location nextOver is outside the bounds of the environment?

Will findMoveLocs handle this case correctly? (Hint: read the class

documentation for the Environment class. What is the behavior of

the isEmpty method?)

2. Consider the following four-by-four environment with a single fast fish
(F) in it.

 F ~ ~ ~

 ~ ~ ~ ~

 ~ ~ ~ ~

 ~ ~ ~ ~

What locations would you expect to be in the ArrayList returned

by findMoveLocs, given the problem specification? Using paper and

pencil, “hand-execute” (or “mind-execute”) the code. Keep track of

the loop index, index, the contents of moveLocations, and the

values of the other local variables for every step through the loop.

Appendix D D4

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Testing the FastFish Class

As I did with DarterFish and SlowFish, I decided to start my testing of FastFish

with regression tests to make sure that I had not done anything to break the Fish,

DarterFish, or SlowFish classes (or other classes in the marine biology simulation).

My regression tests ran without any problem.

Next, I developed the black box test cases to test the FastFish class, basing them on

the test cases for Fish. The list below shows some of the interesting boundary cases I

identified. (It does not show all the new and modified test cases.)

A fast fish with no empty adjacent locations but four empty locations two cells

away should not move.

A fast fish with exactly one empty adjacent location should always move there.

A fast fish with four empty adjacent locations but no empty locations two cells

away should move to the four empty neighbors with equal probability.

A fast fish with four empty adjacent locations and four empty locations two

cells away should move to each of the eight possible move locations with

equal probability.

I then considered the code in the nextLocation and findMoveLocs methods in the

FastFish class to see if I needed to develop additional test cases.

Appendix D D5

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Analysis Question Set 2:

1. Why did Pat introduce the findMoveLocs method instead of

redefining the behavior of the emptyNeighbors method?

2. Based on the code in nextLocation and findMoveLocs, did Pat

need to develop additional code-based test cases?

3. Sometimes when adding functionality to a program, you realize that

you could have designed it differently in the first place in a way that

would make it easier to modify now. You might even decide that it's

worth going back and changing the original before making your new

changes. (This is sometimes called refactoring.) For example, Pat

could have decided to break up the nextLocation method in the

Fish class and create a findMoveLocs method there. If Pat had

done this, which pieces of the current nextLocation method in

Fish would stay in nextLocation and which would move to

findMoveLocs ? What methods would FastFish have to redefine?

What would be the impact on DarterFish and SlowFish ? What

are the advantages or disadvantages of this solution compared to the

solution Pat actually implemented?

Appendix D D6

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Exercise Set 1:

1. Make a copy of the 3species.dat initial configuration file,

rename it 4species.dat and modify it to include some fast fish.

Run the marine biology simulation with this file to see how the

behavior has changed. (Again, you may find it easier to see the

differences in types of movement without breeding and dying

behavior.)

2. Redefine the toString method in FastFish to clarify that

this is a fast fish. This makes it easier to keep track of slow, fast,

and normal fish in the debugging output. Turn on debugging in

the Simulation step method, if it isn’t on already, and run the

simulation again. This will let you observe the changed behavior

at a greater level of detail. Run the simulation for several timesteps

with debugging turned on. What evidence do you have that the

program is working or not working?

3. Run the simulation program with fast fish for 10 timesteps and record

the results of your tests. What percentages of fast fish bred and died

during your test run? Continue the program for another 10 timesteps.

What percentages of fast fish bred and died over 20 timesteps?

4. Modify the FastFish class so that fast fish can move one or two

cells forward or to the side, but can only move one cell backward.

5. Modify the FastFish class so that fast fish can move one or two

cells forward or one cell to either side, but never move backward

in a single timestep.

6. Refactor the Fish class so that it has a findMoveLocs method

that creates an ArrayList of the locations that the fish could move

to. Its nextLocation method should call findMoveLocs and then

randomly choose one of the possible move locations. Test the Fish

class to make sure that its behavior is unchanged. Finally, modify the

FastFish class to work with the modified Fish class, and test it.

(See Question 3 in the Analysis Question Set on the previous page.)

Appendix D D7

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Quick Reference for FastFish

This quick reference lists the constructors and methods associated with the specialized

FastFish class, introduced in this example. Public methods are in normal type.

Private and protected methods are in italics. (Complete class documentation for the

Marine Biology Simulation classes can be found in the Documentation folder)

FastFish Class (extends Fish)

public FastFish(Environment env, Location loc)

public FastFish(Environment env, Location loc, Direction dir)

public FastFish(Environment env, Location loc,

 Direction dir, Color col)

protected void generateChild(Location loc)

protected Location nextLocation()

protected ArrayList findMoveLocs()

Appendix D D8

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Code for FastFish Class

// Class: FastFish class

//

// Author: Alyce Brady

//

// This class is free software; you can redistribute it and/or modify

// it under the terms of the GNU General Public License as published by

// the Free Software Foundation.

//

// This class is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

import java.awt.Color;

import java.util.ArrayList;

import java.util.Random;

/**

 * Marine Biology Simulation:

 * The FastFish class represents a fish in the Marine Biology

 * Simulation that moves very quickly. A fast fish looks for empty

 * neighbors that are one or two cells away from it. It can only "see"

 * an empty location two cells away if the cell in between is empty

 * also. In other words, if an immediately adjacent location is empty,

 * the fast fish looks at the cell beyond it in the same direction to

 * see if it is empty also. The left diagram below shows all the

 * possible neighboring locations (~) of a fast fish (F). The diagram

 * on the right shows how neighboring fish (N) can keep the fast fish

 * from seeing some of its empty neighboring locations (the ones

 * marked X).

 * <pre>

 * ~ X

 * ~ N

 * ~ ~ F ~ ~ X N F ~ ~

 * ~ ~

 * ~ ~

 * </pre>

 *

 * <p>

 * FastFish objects inherit instance variables and much of their

 * behavior from the Fish class.

 *

 * @author Alyce Brady

 * @author APCS Development Committee

 * @version 1 June 2002

 **/

public class FastFish extends Fish

{

Appendix D D9

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // constructors

 /** Constructs a fast fish at the specified location in a

 * given environment. This fast fish is colored cyan.

 * (Precondition: parameters are non-null; <code>loc</code> is valid

 * for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 **/

 public FastFish(Environment env, Location loc)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, env.randomDirection(), Color.cyan);

 }

 /** Constructs a fast fish at the specified location and direction in

 * a given environment. This fast fish is colored cyan.

 * (Precondition: parameters are non-null; <code>loc</code> and

 * <code>dir</code> are valid for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 **/

 public FastFish(Environment env, Location loc, Direction dir)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir, Color.cyan);

 }

 /** Constructs a fast fish of the specified color at the specified

 * location and direction.

 * (Precondition: parameters are non-null; <code>loc</code> and

 * <code>dir</code> are valid for <code>env</code>.)

 * @param env environment in which fish will live

 * @param loc location of the new fish in <code>env</code>

 * @param dir direction the new fish is facing

 * @param col color of the new fish

 **/

 public FastFish(Environment env, Location loc,

 Direction dir, Color col)

 {

 // Construct and initialize the attributes inherited from Fish.

 super(env, loc, dir, col);

 }

 // redefined methods

 /** Returns a string representing key information about this fish.

 * @return a string indicating the fish's ID, location, and

 * direction

 **/

Appendix D D10

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 public String toString()

 {

 return "FF " + super.toString();
 }

 /** Creates a new fast fish.

 * @param loc location of the new fish

 **/

 protected void generateChild(Location loc)

 {

 // Create new fish, which adds itself to the environment.

 FastFish child = new FastFish(environment(), loc,

 environment().randomDirection(),

 color());

 Debug.println(" New FastFish created: " + child.toString());

 }

 /** Finds this fish's next location.

 * Fast fish may move to an empty adjacent location one or two

 * cells away in any direction. To move to a location two cells

 * away, though, the intervening location must also be empty.

 * If the fast fish cannot move, <code>nextLocation</code>

 * returns the fish's current location.
 * @return the next location for this fish

 **/

 protected Location nextLocation()

 {

 // Get list of possible move locations.

 ArrayList moveLocations = findMoveLocs();

 Debug.print("Possible new postions are: " +

 moveLocations.toString());

 // If there are no possible moves, then we're done.

 if (moveLocations.size() == 0)

 return location();

 // Randomly choose one neighboring empty location and return it.

 Random randNumGen = RandNumGenerator.getInstance();

 int randNum = randNumGen.nextInt(moveLocations.size());

 return (Location) moveLocations.get(randNum);

 }

 /** Finds locations to which this fish might move.

 * Fast fish can move further than to just their immediate neighbors.

 * They can move up to two squares in each of the 4 directions, if

 * not blocked.

 * @return a list of locations to which this fish might move

 **/

 protected ArrayList findMoveLocs()

 {

 Environment env = environment();

 // Generate a list of all the immediately adjacent empty neighbors.

Appendix D D11

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 ArrayList emptyNbrs = emptyNeighbors();

 Debug.println("Has adjacent empty positions: " +

 emptyNbrs.toString());

 // Build list of possible move locations.

 ArrayList moveLocations = new ArrayList();

 for (int index = 0; index < emptyNbrs.size(); index++)

 {

 // Add this location to list of possible moves.

 Location neighborLoc = (Location) emptyNbrs.get(index);

 moveLocations.add(neighborLoc);

 // Find the next location over in the same direction.

 Direction dirToNeighbor =

 env.getDirection(location(), neighborLoc);

 Location nextOver = env.getNeighbor(neighborLoc, dirToNeighbor);

 if (env.isEmpty(nextOver))

 {

 // Next location over is empty, so add it too.

 moveLocations.add(nextOver);

 }

 }

 return moveLocations;

 }

}

Appendix D D12

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

Answers for FastFish Exercises

Analysis Question Set 1

1. Yes, this case is handled correctly. The findMoveLocs method will work

correctly even when the nextOver variable refers to a location outside the

bounds of the environment, because isEmpty returns true only if the

location is both in bounds and empty.

2. Given the problem specification, one would expect findMoveLocs to return

an ArrayList containing the locations (0, 1), (0, 2), (1, 0), and (2, 0). Students

should be able to “mind-execute” the code to verify their understanding of it.

The emptyNbrs local variable is initialized to the ArrayList returned by the

emptyNeighbors method, which contains two locations, (0, 1) and (1, 0). The

moveLocations local variable is then initialized to be an empty ArrayList.

The code enters the loop, setting index to 0. This is less than the size of the

emptyNbrs ArrayList (which is 2), so we enter the loop. The neighborLoc

variable is set to the first location in emptyNbrs, (0, 1), which is also added to

the previously empty moveLocations ArrayList. The dirToNeighbor local

variable is set to Direction.EAST (the direction from the current location,

(0, 0), to (0, 1)). Then the nextOver variable is set to (0, 2), which is the

location east of (0, 1). Since that location is in bounds and is empty, it is added

to moveLocations, which now contains (0, 1) and (0, 2). The looping variable,

index, is incremented from 0 to 1. This is still less than the size of the emptyNbrs

list, so we re-enter the loop. This time neighborLoc is set to (1, 0), the

second location in emptyNbrs, which is then added to moveLocations. The

dirToNeighbor variable is set to Direction.SOUTH, the direction from (0, 0) to

(1, 0), and nextOver is set to (2, 0). Location (2, 0) is empty, and so it is added to

moveLocations. The looping variable, index, is incremented from 1 to 2, which

is NOT less than the size of the emptyNbrs list, so we are done with the loop.

The final contents of moveLocations when it is returned to nextLocation

is {(0, 1), (0, 2), (1, 0), (2, 0)}.

Analysis Question Set 2

1. The method emptyNeighbors is also used by breed, and the problem

specification does not say that fast fish breed into all empty locations in the

wider neighborhood.

2. The boundary cases listed cover the test conditions from these two methods. You

could ask students to identify which boundary cases test the boundaries of the loop

in findMoveLocs and which ones test each of the conditional statements in

nextLocation and findMoveLocs.

Appendix D D13

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

3. The nextLocation in Fish would be exactly the same as the nextLocation

in FastFish in the current solution. The findMoveLocs in Fish would call

emptyNeighbors and remove the location behind. FastFish would redefine

only the findMoveLocs method. Neither DarterFish nor SlowFish would

be affected in any way; both would redefine nextLocation, as they do now.

SlowFish would make use of the new findMoveLocs method in Fish through

its call to super.move(). DarterFish, with its deterministic nextLocation

method, doesn't have any use for the findMoveLocs method.

Exercise Set 1

1. Students should observe that each species moves in the way its move method has

been defined.

2. Students are being asked to redefine the toString method in the FastFish

class. One simple example is given below. Encourage your students to find other

ways to make the fast fish information stand out, especially when there is more

than one species in the environment.

 /** Returns a string representing key information about this fish.

 * @return a string indicating the fish's ID and location

 **/

 public String toString()

 {

 return "FastFish " + super.toString();

 }

3. Answers will vary.

Appendix D D14

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

4. One possible answer is shown below with changed code in bold.

protected ArrayList findMoveLocs()

{

 Environment env = environment();

 ArrayList emptyNbrs = emptyNeighbors();

 Direction oppositeDir = direction().reverse();

 ArrayList moveLocations = new ArrayList();

 for (int index = 0; index < emptyNbrs.size(); index++)

 {

 Location neighborLoc = (Location) emptyNbrs.get(index);

 moveLocations.add(neighborLoc);

 Direction dirToNeighbor =

 env.getDirection(location(), neighborLoc);

 Location nextOver = env.getNeighbor(neighborLoc, dirToNeighbor);

 if (env.isEmpty(nextOver) &&

 (! dirToNeighbor.equals(oppositeDir)))

 {

 moveLocations.add(nextOver);

 }

 }

 return moveLocations;

}

Appendix D D15

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

5. One possible solution is shown below with changed code in bold.

protected ArrayList findMoveLocs()

{

 Environment env = environment();

 ArrayList emptyNbrs = emptyNeighbors();

 Direction oppositeDir = direction().reverse();

 Location locationBehind = env.getNeighbor(location(), oppositeDir);

 ArrayList moveLocations = new ArrayList();

 for (int index = 0; index < emptyNbrs.size(); index++)

 {

 Location neighborLoc = (Location) emptyNbrs.get(index);

 moveLocations.add(neighborLoc);

 Direction dirToNeighbor =

 env.getDirection(location(), neighborLoc);

 Location nextOver = env.getNeighbor(neighborLoc, dirToNeighbor);

 if (env.isEmpty(nextOver) && dirToNeighbor.equals(direction()))

 {

 moveLocations.add(nextOver);

 }

 }

 moveLocations.remove(locationBehind);

 return moveLocations;

}

6. The following are the modified methods for refactored Fish class. The

findMoveLocs method has been added to the Fish class and the only class

method to change is nextLocation. The only change needed for the FastFish

class is to remove the redefined nextLocation method.

// Additional method findMoveLocs in Fish class

 /** Finds locations to which this fish might move.

 * A fish may move to any empty adjacent locations except the one

 * behind it (fish do not move backwards).

 * @return a list of locations to which this fish might move

 **/

 protected ArrayList findMoveLocs()

 {

Appendix D D16

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

 // Get list of neighboring empty locations.

 ArrayList emptyNbrs = emptyNeighbors();

 Debug.println("Has adjacent empty positions: " +

 emptyNbrs.toString());

 // Remove the location behind, since fish do not move backwards.

 Direction oppositeDir = direction().reverse();

 Location locationBehind = environment().getNeighbor(location(),

 oppositeDir);

 emptyNbrs.remove(locationBehind);

 // If no valid empty neighboring locations, then we're done.

 return emptyNbrs;

 }

// Modified version of nextLocation method in Fish class

 /** Finds this fish's next location.
 * Finds the possible move locations for this fish and then randomly

 * chooses one. If this fish cannot move, <code>nextLocation</code>

 * returns its current location.

 * @return the next location for this fish

 **/

 protected Location nextLocation()

 {

 // Get list of possible move locations.

 ArrayList moveLocations = findMoveLocs();

 Debug.print("Possible new locations are: " +

 moveLocations.toString());

 // If there are no possible moves, then we're done.

 if (moveLocations.size() == 0)

 return location();

 // Randomly choose one neighboring empty location and return it.

 Random randNumGen = RandNumGenerator.getInstance();

 int randNum = randNumGen.nextInt(moveLocations.size());

 return (Location) moveLocations.get(randNum);

 }

Copyright © 2003 by College Entrance Examination Board. All rights reserved.

Available at apcentral.collegeboard.com

6/2003 I.N. 997121

2002-03 AP Computer Science
Development Committee
and Chief Reader

Mark Weiss, Florida International University, Miami, Chair

Robert (Scot) Drysdale, Dartmouth College, Hanover, New Hampshire

Reginald Hahne, Atholton High School, Maryland

Judith Hromcik, Arlington High School, Texas

Richard Kick, Hinsdale Central High School, Illinois

Andrea Lawrence, Spelman College, Atlanta, Georgia

Julie Zelenski, Stanford University, California

Chief Reader: Christopher Nevison, Colgate University, Hamilton, New York

ETS Consultants: Frances Hunt, Dennis Ommert

	AP Marine Biology Simulation Case Study Teacher's Manual
	Table of Contents
	Introduction to Case Studies
	Introduction to the Teacher's Manual
	Chapter 1
	Experimenting with the Marine Biology Simulation Program
	Exercise Set 1 (page 10)
	Analysis Question Set 1 (page 10)
	Exercise Set 2 (page 11)
	Analysis Question Set 2 (page 12)
	Analysis Question Set 3 (page 13)
	Exercise Set 3 (page 13)
	Sneaking a Peek at Some Code (pages 14-17)

	Chapter 2
	Guided Tour of the Marine Biology Simulation Implementation
	The Big Picture (page 19)
	What do the core classes look like? (page 20)
	The Simulation Class (pages 21-23)
	Analysis Question Set 1 (page 24)
	The Environment Interface (pages 24-25)
	Analysis Question Set 2 (page 26)
	Exercise Set 1 (page 26)
	The Fish Class (pages 27-29)
	Analysis Question Set 3 (page 31)
	Exercise Set 2 (page 32)
	Simple accessor methods in Fish (pages 32-33)
	Analysis Question Set 4 (page 33)
	Fish movement methods - act and its helper methods (pages 33-34)
	Analysis Question Set 5 (page 35)
	Analysis Question Set 6 (page 36)
	The emptyNeighbors method (page 36)
	Exercise Set 3 (page 37)
	Analysis Question Set 7 (page 38)
	The changeLocation and changeDirection methods (page 39)
	Analysis Question Set 8 (page 40)
	Exercise Set 4 (page 40)
	Test Plan (pages 41-43)
	Analysis Question Set 9 (page 43)
	Exercise Set 5 (page 45)
	Analysis Question Set 10 (page 47)

	Chapter 3
	Creating a Dynamic Population
	Design and Implementation (pages 52-53)
	Analysis Question Set 1 (page 56)
	Testing (pages 58-60)
	Analysis Question Set 2 (page 60)
	Exercise Set 1 (page 61)

	Chapter 4
	Specialized Fish
	Design Issues (pages 63-65)
	Darter Fish (pages 65-67)
	Analysis Question Set 1 (page 68)
	Testing the DarterFish Class (pages 68-70)
	Exercise Set 1 (page 71)
	Slow Fish (page 72)
	Implementation of the SlowFish Class (page 72)
	Analysis Question Set 2 (page 74)
	Testing the SlowFish Class (pages 74-75)
	Analysis Question Set 3 (page 75)
	Exercise Set 2 (pages 76-77)

	Chapter 5
	Environment Implementation
	Analysis Question Set 1 (page 80)
	Analysis Question Set 2 (page 83)
	Analysis Question Set 3 (page 83)
	Analysis Question Set 4 (page 88)
	Analysis Question Set 5 (page 90)
	Analysis Question Set 6 (page 95)
	Searching through the environment (pages 95-97)
	Analysis Question Set 7 (page 97
	Analysis Question Set 8 (page 101)
	Analysis Question Set 9 (page 103)
	Exercise Set 1 (page 104)
	The ListEnv class

	Appendix A
	Sample Multiple-Choice Questions
	Sample Free-Response Question (A Exam)
	Sample Free-Response Question (AB Exam)

	Appendix B
	Solutions for Sample Test Questions
	Multiple-Choice
	Sample Free-Response Solution (A Exam)
	Sample Free-Response Solution (AB Exam)

	Appendix C
	Chapter 1
	Exercise Set 2: Problem 1 (page 11)
	Analysis Question Set 2: Problem 2 (page 12)
	Object Diagram: Driver (page 17)

	Chapter 2
	Exercise Set 5: Problem 3 (page 45)
	Object Diagram Simulation - step (page 23)
	Object Diagram: Fish - act (page 34)

	Chapter 4
	Object Diagram: DarterFish (page 65)

	Appendix D
	Supplemental Example: Fast Fish
	Problem Specification
	Implementation of the FastFish Class
	Analysis Question Set 1
	Testing the FastFish Class
	Analysis Quesiton Set 2
	Exercise Set 1
	Quick Reference for FastFish
	Code for FastFish Class

	Answers for FastFish Exercises
	Analysis Question Set 1
	Analysis Question Set 2
	Exercise Set 1

	2002-03 AP Computer Science Development Committee and Chief Reader

