Natural Language Understanding Within Interactive Drama

Mehmet Fidanboylu

Advisor: Michael Mateas

Abstract

Facade is a virtually simulated drama in which computer controlled believable agents and human players interact in a play. A believable agent is defined to be an autonomous entity whose behaviors are appropriate given the characteristics of his personality. The goal of this system is to make the player feel as if he is really a part of the story by allowing him to behave in any way he wants to. This 'freedom' on the player side generates a lot of difficult tasks, one of which is doing the natural language processing. In this paper, we present a template matching approach for implementing a broad (cover a lot of possibilities) but shallow (no deep parsing) natural language understanding (NLU) component for this system. The initial results are promising. Given the correct templates, the NLU system recognizes many statements said by the player; we also discuss how it can be further improved.

Introduction
One of the hot topics in Artificial Intelligence is how to come up with believable agents which are autonomous characters with various personalities and social interactions such that people find the agents successful in representing the character (Mateas 1999b; Bates, Loyall and Reilly 1992; Blumberg 1996; Hayes-Roth, van Gent and Huber 1997; Lester and Stone 1997; Stern, Frank and Resner 1998). The interactive drama project that I am working on (called Façade) is a virtually simulated drama in which people and believable agents act out a play (Mateas and Stern 2000; Mateas and Stern 2002). Façade’s story involves Grace and Trip, a married couple with problems (played by computer) and the human player. It takes place in the couple’s house where the player is invited for dinner. According to player’s sex, Grace or Trip will later confess his/her love towards player and admit that they are having problems. How the story goes will be in player’s hands. This makes the player feel that his presence is making a difference in the story and he is really part of the play, a totally different experience than what is available now. Natural language understanding (NLU) plays a key role in achieving this since language is a major dynamic input that comes directly from the player, so it is a very important aspect of interactivity. Before we get into details about NLU, here is an overview of the whole system.

Figure 1: Façade’s Architecture
Animation Engine: This is where the characters, their behaviors and the world are modeled and output to the screen.

Behavior Engine: This is the part of Façade that controls the character’s behaviors, either general or beat-specific. It is responsible for executing and monitoring appropriate behaviors for each agent given the inputs from the player and the drama manager.

Drama Manager: As the name suggests, this part controls whether the story is really going as desired. Through manipulation of dramatic beats, the drama manager tries to sequence a story in response to player interaction. Dramatic beats are knowledge representations describing the behaviors and goals for a small segment of the story. A more detailed description is provided below in NLU.
Story Memory: Any act’s effects must be stored in order to enable the interaction between different temporal states of the play. This is done using the story memory. It includes active conversations, current state of each conversation and how long ago the conversation was last discussed.

NLU (natural language understanding): Natural language is a very complex phenomenon. Given the current state of language technologies, there is no way of implementing a general algorithm that will handle “everything” considering the potential breadth of the language in Façade. However, it is not hopeless. A technique called Dialog Management is used in the system (Rich and Sidner 1998; Allen 1995). Dialog management is concerned with the pragmatic effects of language (how a language utterance changes the world) rather than with the syntax or semantics of the language. There are two parts in dialog management: The dialog context, and language utterances, called “the speech acts” (Traum 1999). The context can be defined as a single “beat”. A dramatic beat is the smallest set of actions that create a significant and dramatically meaningful change in the environment and agents (McKee 1997). The dialog, usually causing such changes, affects the beats strongly. So, the interaction is both ways. The beat determines our current context, and therefore has valuable information about how the dialog might advance, and the dialog will produce the speech acts through which context evolution will be determined. A speech act represents everyday conversational language as plain, predicate-calculus-like statements. To give an example, the speech act Inform (Want (Banana), Julie) translates into “Can you pass me a banana, Julie?”

NLU consists of four parts:

1. Template Matching

2. Rule System (Inference Engine) and Fact Listener

3. Inter-Beat Layer

4. Anaphoric Dereferencing

[image: image1]
Figure 2: High level representation of NLU

One aspect of NLU which is crucial in this system is its speed of processing. In Façade, we are targeting to generate real-time response to the input from player. Therefore, a fast NLU processor is necessary. The bold arrows in figure 2 indicate the main processing flow of NLU and the journey from the surface text to behavior engine should not take more than 2-3 seconds. Yet, we also want the system to give believable responses. Therefore, we need to be able to extract as much information from the surface text as we can without going into a time-consuming parsing process. For this purpose, we decided to employ a broad but shallow parsing technique using template matching. Template matching basically involves a number of rules which look for specific preconditions and, once they fire, they make this known by asserting a unique fact to the knowledge base. These facts are preconditions for other rules and this goes on until we reach to the final facts (“inferred facts” in figure 2). This is called forward-chaining and it is the technique we used in the inference engine. The important aspect of this chaining is that many rules might share the same fact as a precondition so the firing of a specific rule might activate a bunch of other rules like a chain reaction. So, the production process of the inferred facts is quite efficient compared to evaluating each rule chain one by one. Various other tools such as stemming and term expansion are used to enhance the power of our templates. These will be explained in more detail in the next section.

There are a couple of reasons why we chose template matching rather than other parsing techniques. Façade, more or less, follows a story; this gives the human player a context within which to interpret the character’s responses as making sense. In other words, we exploit the intellect of the player. Therefore, we do not have to have a deep understanding of what the player is saying. Instead, we just have to extract enough information from the surface text to get a sense of what the player is trying to communicate. Players will usually talk about the current context which is defined by the beats of the story, so it is often the case that we already know what we are looking for. This is exactly the necessary component for using template matching. Without having a sense of what the player might say, it would be impractical to try template matching since the number of cases to be handled would be immense. Also, the processing required for deep parsing would certainly destroy our hopes to be able to give a real-time response to the player. Given all this, template matching allowed us to implement a broad but shallow parsing structure while keeping the processing requirements to a minimum. In the next section, you will find the specifics of our template implementation and what these rules and facts look like.

This paper is organized as follows. In “Implementation and Integration”, we will describe how each component of NLU was implemented (depicted as boxes in Fig. 2) and how they are connected to each other. We will also talk about how NLU is linked to other parts of Façade (depicted with dashed circles in Fig. 2). In “Experimentation”, we will describe what tests we employed in order to experiment with the system. We will also discuss the results and the problems we encountered. Finally, in “Conclusion and Future Work”, we will provide the reader with a summary of our work and describe the potential areas where the system can be improved.

Implementation and Integration

I. Template Matching
Surface text as typed by the player is preprocessed using simple pattern matching rules (templates). In order to have a systematic way of writing templates, we defined a template language (TEM)
. In TEM, a template has the following form:

(template <matching-expression(s)>)

An example of a template is given below:

Example 1:
(template ((ha ha) (tand I happy)))
The matching expressions consist of rules which look for certain properties in a given string, which in this case, would be the surface text entered by the player. There are two kinds of expressions: regular expressions and ‘occurs’ expressions. The following table lists the expressions:

Expression

Equivalent to

Example

Regexp-and(x,y)
x AND THEN y

(x y)

Regexp-or(x,y)

x OR y

(x | y)

Regexp-opt(x)

x OR NOT x (used to donate that

([x])

whatever we are matching is optional)

*

all words

(x *)

?

single word

(x ?)

Occursexp-and(x,y)
x AND y anywhere in sentence

(tand x y)

Occursexp-or(x,y)
x OR y anywhere in sentence

(tor x y)

Occursexp-occurs(x)
there exists x anywhere in sentence

(toc x)

Not(x)

there is no x

(tnot x)

One big difference between regexps and occursexps is that regular expressions are ‘sensitive to the position’ of the words, while occurs expressions do not care about where the words are. In the example, (ha ha) is a regexp which is equivalent to (ha AND THEN ha). Since nothing precedes (ha ha) in the expression, nothing should precede it in the actual sentence. Hence, the sentence should start with “ha ha”. However, “tand I happy” will match to any sentence which contains both “I” and “happy”. So, even though both expressions are AND expressions, they are fundamentally different. It is also important to note that occurs expressions can be written in terms of regexps, (tand I happy) is equivalent to saying (* I * happy * | * happy * I *) but as you can see, if we need to discard the position information, regular expressions get messy. That is why we introduced occurs expressions. As illustrated in the example, occursexps and regexps can be nested in various ways. In ((ha ha) (tand I happy)), the highest level expression is a regexp-and. If the highest level expression is a regexp, then the template should match over the whole sentence because nothing either follows or precedes the regexp at the top. So, this template matches to “ha ha I am so happy” but not to “ha ha ha” since there is no “I” or “happy” after “ha ha ha”, so the second half of the top-level regexp-and is not matched.
Each of these template expressions can be decomposed into simple rules that can be inserted into an inference engine. The inference engine that we used for this project is a freeware one which is available via WWW. It is called JESS (Java Expert System Shell)
. It stores ‘rules’ and ‘facts’ in its knowledge base (KB) and when you run it, it uses forward-chaining to match the preconditions of the rules against the facts in KB. If there is a match, then that rule ‘fires’ and usually asserts even more facts to KB. We will return to this when we are discussing the rule engine of NLU. As an example, here is how we wrote regexp-and in terms of these rules
:

Expression

Rule _

regexp3 = regexp1 regexp2

regexp1(start-pos1, end-pos1)

regexp2(start-pos2, end-pos2)

start-pos2 == end-pos1 + 1

(
regexp3(start-pos1, end-pos2)

The expressions above the arrow are the preconditions. When the preconditions are satisfied, the rule fires and asserts the post condition, which indicates that regexp3 is true, into the knowledge base. Since regexps need to know about the positions of words/phrases, we keep track of positions (start-pos, end-pos etc) where the template expressions match. After defining all of template expressions in terms of JESS rules, we wrote a compiler using java compiler compiler (javacc) which compiles the TEM language into JESS source code. In the example, we go from regexp1 and regexp2 to regexp3. Yet, regexp3 might not be the final expression, in fact it might be part of another regular expression in the form (regexp5 = regexp3 regexp4). Nesting is not a problem since the compiler takes care of it by building the rules from bottom up. This compilation strategy is crucial for the performance of the system since it enables the rules to share preconditions. Imagine there are hundreds of expressions expanded this way. If you were to evaluate each one by one, your running time would be comparable to the number of individual expressions. In our system, there are usually many rules that share the same expression (e.g. regexp1). As a result, they will all fire simultaneously enabling us to get results of these rules much faster. Compiling template expressions to rules in this fashion allows us to take advantage of the Rete matching algorithm utilized by JESS (Forgy 1982).
Our template implementation supports the following features:

Term Expansion

A lexical thesaurus called WordNet (Fellbaum 1998) was used to expand the number of terms processed by the system by collapsing words into groups and using a single word that represents the whole group. “WordNet is a lexical reference system whose design is inspired by current psycholinguistic theories of human lexical memory. English nouns, verbs, adjectives and adverbs are organized into synonym sets, each representing one underlying lexical concept. Different relations link the synonym sets.”
 For example, synonym sets for “banana” “apple” and “orange” are all linked to “fruit”. This increases the vocabulary of the system vastly while keeping the amount of templates to be written the same. Here is an example of a template that contains some wordnet entries which encodes request for a drink:

Example 2:
(template (I (tand <want:V> <drink:N>)))

The words in the form <word:TYPE> are wordnet entries. The TYPE can be “V” for verb, “N” for noun, “ADJ” for adjective and “ADV” for adverb. WordNet consists of a huge graph of synonym sets which are connected with labeled links. For example, the word “fruit” is connected to “apple” with a hypernym link, i.e. fruit is a hypernym of apple.
 The template above would match to all of the following sentences:
I really lust for your best red Bordeaux. (lust is captured by <want:V> and Bordeaux by <drink:N>)
I crave for whisky on the rocks.
I hanker after vin ordinaire.
I long desperately for mulled wine.
I cry out in need of Armagnac.

and many more sentences of this sort. This demonstrates how term expansion allows a simple template to match a broad range of surface text.2

Stemming
Our template language also supports stemming which allows us to recognize various forms of words. This decreases the amount of work to be done while writing templates because it allows us to refer to all forms of a word just by a single expression in the form <word:S> where S stands for ‘apply Stemming’. All parts-of-speech can take on various forms (Frakes, 1992):

i. For verbs: We should be able to recognize “living, lived, lives” as the verb “live”.

ii. For nouns: Pluralization rules must be taken into account, e.g. (“tables” (“table”, “ponies” (“pony”).

iii. For adjectives: Superlative and comparative forms should be recognized, e.g. (“airier” (“airy”)

In example 2, the word “friend” is accompanied by the “S” keyword. If the player inputs “friends” as part of the sentence, this template would be activated even though the word that appears in the template is not in the same form as the word in the sentence. Normally, individual words are captured by rules whose precondition include a fact called “word-occurrence.” When we apply the stemming function to each word in the surface text to get its root, a special kind of fact called “root-occurrence” is asserted into KB for each root. The words that contain the “S” keyword therefore generate rules which look for root-occurrence facts instead of word-occurrence.
 This allowed us to integrate stemming into the template compiler with minimal change to our rule compilation approach.
Retraction

During the course of development of the template language, we realized that we needed some templates to be mutually exclusive. If X and Y are mutually exclusive, then when rule X fires, rule Y should not fire even if its preconditions are satisfied. The motivation was that we needed templates which would match to certain idioms such as “high five”. Idioms like these would need to be matched specifically by a template which could assert the meaning of the idiom to the knowledge base (in case of “high five”, this would be “player agreed”). Yet, there might be a more general template which would assert “player mentioned five” into the KB when it sees “five”. To prevent this, the word-occurrence fact of “five” should be retracted from the knowledge base after the idiom template fires. This ensures that the more general (non-idiom) templates will not fire. Intermediate facts (for example regexp(pos1, pos2)) can be retracted as well as basic facts (such as word-occurrence facts). Imagine that two intermediate facts Y and Z asserted to knowledge base if there is a basic fact X in KB. Assume that we want Y and Z to be mutually exclusive. Now, when the rule that asserts Z fires and we retract just Z itself, the rule that asserts Y will still fire since we had not removed the basic fact X from KB. Therefore, if we retract an intermediate fact, all the facts that led up to that fact should be retracted as well. So, our template language implements top-down retraction
.
Template matching has all kinds of advantages that we mentioned up to here, but it has drawbacks as well. One disadvantage is that, since we are not doing deep parsing of the sentences, we have no information about the structure of the sentence and therefore we cannot categorize the words in the surface text as nouns, verbs etc. The only words that we can categorize are those that we, as authors, wrote into the templates. As a result, all the techniques that I described so far have to be applied to the whole surface text. For example, when doing term expansion using WordNet, the FindLink() function of WordNet component (used to find hyponyms of terms - see Appendix C) has to be called on every word that the player enters because we do not have part-of-speech information about the surface text. This results in rather dumb calls such as FindLink(fruit, run) because FindLink() only makes sense when called on words which belong to the same part-of-speech class. The program knows that fruit is a noun since it has a template for it, yet it does not know that run is a verb. However, considering all the advantages that template matching has, this is just a minor moan and it does not really hurt us in terms of performance as it will be apparent from the runtime results that we provide in the Experimentation section.
II. Rule System (Inference Engine) and Fact Listener
This component of NLU is responsible for using forward-chaining rules to infer facts about the pragmatics of the player’s sentences. As we already mentioned, JESS is being used as the inference engine of NLU. JESS representation of the rule-system uses Rete-net. This system represents rules as flow networks and has a very efficient update mechanism (Friedman, 2001). A JESS rule has the following format:

(defrule <name> <LHS> => <RHS>)

The left-hand sides (LHS) of rules consist of facts and templates. A fact is simply a sequence of information in the form:

(<name> <arg1> <arg2> …)

The RHS of rules consist of function calls which modify the Rete-net engine. From now on, we will refer to Rete-net and JESS interchangeably. Here is an example of a JESS rule:

Example 3:
(defrule map_negative

(template (I do not like you))

(HI_NOT) (DAReferTo ?x)
=>

(assert (DANegExcl ?x)))

“?x”s are variables. This rule will fire when:

a. The surface text matches to the “I do not like you” template.

b. There is a (HI_NOT) fact and a (DAReferTo arg1) fact in the knowledge base (KB) where arg1 can be anything.

When this fires, the assert() function puts the (DANegExcl arg) fact into KB where arg = arg1. There is also retract() and undefrule() functions which remove facts and rules from KB respectively. From this example, you can see that template language is actually an extension of the regular JESS language. Templates exist as preconditions for rules. This is a necessary consequence of our implementation because we wanted to include arbitrary tests and templates in the LHS of the rules which would make the language flexible for future extensions.

Defrules also support salience declarations. This was already embedded in JESS and it enabled us to introduce controlled sequential execution into an otherwise fully-parallel one. The retraction mechanism of the template language would not work without controlling the order of execution. If all templates matched at once, there would be no way to deactivate a template by retracting facts. We usually assign high salience values to more specific templates which match to idioms and certain key concepts of the current beat. This is the rational thing to do since the effects of these templates on the knowledge base are more important than that of others. The compiled rules of a template, being part of the parent defrule, inherit the salience value of the parent.

Another feature that we added to the original JESS definition of rules is “timeout”. The timeout feature allows us to specify when a rule should expire. When a rule expires, all of its subrules along with the rule itself are automatically retracted from the knowledge base. There are certain conversational contexts in Façade that the system should be able to recognize even if the conversation took place a while ago. You can imagine that a fierce fight takes place between Trip and Grace but the player chooses not to interfere. Therefore, the templates which were written to handle the player input during the fight are not used. After the fight is over however, the player suddenly decides to say something. If we retract those templates as soon as the fight scene is over, then it would seem that the autonomous characters have no idea what the player is talking about. So, having “decaying” templates instead of instant retraction enables the autonomous characters to have some memory of what has happened in the past.

The rules generated by the template compiler are not always unique. There might be more than one template that contains the “ha ha ?” argument. JESS ignores the assertion of a rule if it is already in the KB. However, with subrule sharing, special care must be taken when retracting a template (essentially a set of rules) from KB. For the templates to work correctly, all of their compiled rules should exist in KB. If some of the rules of the retracted template were shared by other templates, then those templates would suddenly stop working. Therefore, we modified the Rete engine so that it keeps track of shared rules by incrementing a counter each time a rule is asserted, decrementing this counter by 1 each time the rule is retracted and only removing the rule from KB if the counter drops to zero. This is the same idea behind reference-counting garbage-collection technique (Jones, 1996).

Facts can be categorized into levels according to the amount of information that they carry. A low-level fact would carry a tiny bit of information while a final fact, which is the highest level, contains almost all the information that NLU could extract out of the surface text. A combination rule is a JESS rule which matches to lower-level facts and combines the information in them to generate a higher-level fact. If Example 3 on the previous page did not have a template on its LHS, it would be a pure combination rule.
(defrule map_negative

(HI_NOT) (DAReferTo ?x)
=>

(assert (DANegExcl ?x)))

The “HI_NOT” fact carries the information that player said something negative and “ReferTo” fact implies that player referred to some object. The rule combines these two pieces of information into one higher level fact “NegExclamation ?x” which indicates that the player has some negative feelings about object ?x. This kind of inference system is ideal for Façade because all the tiny bits of information extracted from the surface text by hundreds of templates must be combined and reduced to a few final facts which are then captured by fact listener part of NLU.

Fact listener is the bridge between JESS-based rule engine and java-based behavior engine of Façade. The behavior engine contains small java classes called Working Memory Elements (WMEs). These are responsible for storing state in the computer controlled agents including their position, posture, behavior etc. There are special kinds of WMEs called Discourse Act WMEs. These are generated by the fact listener component of NLU and they enable the agents to be aware of and respond to what the player says. An example of the DA WMEs is DAReferTo WME. This WME can be constructed by calling the following constructor:

Example 4:
public DAReferToWME(int tID, long ts)

{

topicID = tID;

timestamp = ts;

}

Since the topicID’s are numbers, they are difficult to remember and this is a big problem while writing templates. So, we store the id for everything as a constant in a separate java class with a friendlier name. When the template compiler sees a template which refers to a particular constant name, it stores the name of the constant and its value in a table which is saved onto disk while compiling. These numbers are not resolved until the fact listener receives a final fact referring to a particular DA WME and queries the hashtable for the constant. Once the constants are resolved and the WME is constructed, fact listener adds the WME to the memories of the agents. This is the mechanism that enables NLU to talk to the behavior engine of Façade.

III. Inter-Beat Layer
In the introduction, we mentioned that beats are very important in Façade. They are like chapters in a book and are the main means of defining the context at a given time in the story. Even though each beat has its own set of templates and rules, template or rule sharing is quite common among beats. Consider a template that handles the user input “I am thirsty”. This can happen anywhere in the play, so templates such as these are called global templates and they exist in every beat. Since the beats define the context, they help us to predict what the user might say, so each beat also has specific templates which are built around that context. As the story flows, the drama manager of Façade switches from beat to beat (each lasting from a few seconds to 15-20 seconds). As the beats switch, the templates and rules that should be active in NLU also change. In order to keep the performance up and minimize the amount of templates to be written, we had to implement an inter-beat layer for NLU which involved the following changes:

Support for “include” keyword in template file
Instead of copying and pasting every shared template across beats, one can now define a set of global templates and just include that file in the beat template source. The compiler than preprocesses the TEM files, appends the includes to one another in a big temporary source file and also checks to see if there is infinite nesting in the includes (a very simple loop is a file that includes itself). The compiler achieves this by keeping track of what it compiled so far and never compiling a file twice.

Changing the output of the compiler
The first implementation of the compiler used to just spit out a text file containing JESS rules as output. This was not helpful since we had no means of knowing which beat these rules belong to. For the inter-beat layer, we needed a way to associate rules/templates with beats. The current compiler saves two object binaries onto the hard drive. The first one is a hashtable that maps the template names to the actual rules of the template. The second object is again a hashtable that maps the beat names to the template names. This is a bit trickier since beats might have "include" statements in them which means that we have to keep track of which file templates belong to. Moreover, as mentioned above, the include keyword can be nested.
 This particular structure is motivated by the switch beat mechanism.

Switch Beat mechanism
Given the two data structures above, switching beats becomes trivial. Here is the simple algorithm for switching beats which switches from beat A to beat B:
SwitchBeat(A, B)

1
SA = Set of templates for A

2
SB = Set of templates for B

3
RetractFromKB(rulesof(SA – SB))

4
AssertIntoKB(rulesof(SB – SA))

Lines 1 and 2 uses the mapping data structure to get the sets of templates given a beat. This is just a lookup in the hashtable and it is constant time. Then we retract everything that is in A but not in B and we assert everything that is in B but not in A. The set difference is implemented very efficiently in java. The rulesof() function uses the template data structure to lookup a template name and return the rules for that template. It again takes constant time. So, the dominating running time is the retraction and assertion into the JESS engine. The running time of this algorithm is therefore O(m) where m is the number of different rules between A and B; this is definitely faster than the naïve algorithm which retracts everything in A and asserts everything in B.

IV. Anaphoric Dereferencing

This is the final addition to NLU which enables the user to use anaphora (he, she, it, her etc.) instead of the names of the objects. We use a very simple method to store the current context as JESS facts in the following form:

(anaphora
<it>
<null>

)
(anaphora
<she>
<Grace>
)
(anaphora
<he>
<Trip>

)
By default, “she” maps to Grace and “he” maps to Trip, the main characters of the play. Fact listener is responsible for catching the ReferTo facts and modifying this set of context facts. For example, when the player mentions “vase”, the fact listener modifies this set such that <it> maps to <vase>. When an anaphora appears in the surface text, NLU just finds the appropriate fact and returns the object that anaphora is referring to. Of course, there might be multiple references to third-party objects within a sentence. When assigning the mapping of <it> in such a case, we randomly pick the object. Anaphoric dereferencing is a whole research issue itself, so we do not expect that this simple approach will cover all cases. However, it turns out that people usually refer to objects as anaphora when they have used (or have heard) the name of the object two sentences ago in the conversation (Barbu, 2001). Therefore, we can safely say that this implementation is sufficient for our purposes. This psychological fact also creates the motivation for the use of timeout feature here. When the mapping of <it> is changed, the new mapping would have a timeout of 2 user utterances meaning that after the second time player says something, the mapping will decay into its default setting which is <null>.

Experimentation
The success of NLU is heavily dependent on the template matcher which is in turn dependent on the templates that we write. Assessing absolute success of such a system is very difficult since there are a lot of user-defined parameters because each template can be seen as a parameter given to NLU. This project is something that evolves through time. By generating lots of dialogs and example sentences, we can write better and better templates until we get to the point where the response given by the characters are believable to many people. Of course, some people might still not be satisfied, and that is precisely why it is hard to assess the success of the system without speaking subjectively. Thus, we will present some objective results such as the response time of NLU versus the number of simultaneous templates active in the system as well as some subjective ones such as the response generated by NLU to a test set of sentences given particular templates.

A person usually takes 7-8 seconds to type a sentence given that he knows what he is going to type. The moment the user hits enter, the animation engine plays the words back on the screen as if they are being said by the user. This simulation takes 2-3 seconds depending on the length of the sentence. This gives us time to process the surface text. Ideally, the agents should start responding within 2-3 seconds from the time user hitting enter key. Below is the time elapsed from the user hitting enter and the WME’s being asserted to the agents memory versus the number of templates active in NLU.

	# Active Templates
	# Rules in KB
	Runtime (seconds)

	60
	~500
	0.5

	150
	~950
	0.6

	250
	~1300
	0.6

	500
	~2000
	0.7

Considering the fact that each beat will have on the order of one hundred templates active at a time, this is better than the ballpark figure we were trying to achieve.

Of course, runtime is not everything. We should be able to produce accurate facts in order to make the agents respond appropriately. We wrote some templates for the first beat, which is the greeting beat, and tried various user inputs. Below are a few dialog outputs that we got. While reading these, keep in mind that Trip’s responses are hard-coded into the system. We do not do any natural language generation. Trip selects a predefined response (behavior) based on the DA WMEs asserted by NLU:

Example Dialog 1: User does not say anything.

Trip: Dave! Hey! So glad you could make it. Thanks for coming over, man!

User: …

Trip: Come on in! Don’t be shy.

User: …

Trip: My name is Trip by the way, in case you forgot. (chuckles)

User: …

Trip: Grace! Our guest is here. Come on out and say hello.

User: …

Trip: It is great that we have this chance to get to know each other before we start on the big new project!

Example Dialog 2: User mentions project earlier.

Trip: Dave! Hey! So glad you could make it. Thanks for coming over, man!

User: Hi Trip. How are you?

Trip: Fine, glad that you asked! Come on in, don’t be shy.

User: Are we going to discuss the project tonight?

Trip: Oh yeah. The project. Yeah, we will talk about it.

User: Okay.

Trip: Grace! Our guest is here. Come on out and say hello.

Example Dialog 3: User mentions Grace earlier, also asks to come in earlier.

Trip: Dave! Hey! So glad you could make it. Thanks for coming over, man!

User: Hi Trip. Is Grace here as well?

Trip: Grace? Umm, yeah… (frowns slightly) Grace! Our guest is here. Come on out and say hello.
User: Can I come in?

Trip: Umm, sure (a bit surprised)… Come on in.

User: Thanks for inviting me over.

Trip: This is great that we have this chance to get to know each other before we start on the big new project!

The advantage of using template matching is quite apparent in these dialog examples. In dialog example 2, there are many ways of asking about the project, however only one template that matches to the word “project” enables Trip to give a valid response. In dialog example 3, you could refer to Grace in many ways which would still generate the Trip’s frowning response. You could also refer to Grace in such a way that Trip’s response is not appropriate anymore, e.g. “Isn’t Grace beautiful?”. Yet, notice that, this is not an appropriate thing to say when you are still at the door of someone’s house anyways. This would be a malicious sentence that we mentioned earlier. However, since there is no way to handle all of these, if someone tries hard enough he will be able to confuse the system.

Now, we will present a good example of how hard it is to write good templates. Our approach for writing templates was to generate examples of sentences for each discourse act. For example, for DADisagree() we wrote down a number of ways that the player can disagree with the agent. Analyzing the common features among those sentences gave us a list of things to encode in our templates. We wrote a sample set of templates in this way for each discourse act and tried the following sentence, which is part of a special beat about Grace being spendthrift: “Why can’t Grace handle money?”. Processing the sentence generated four discourse acts:

DADisagree(Grace):

Acceptable. This sentence has negativity in it towards Grace.

DAReferTo(Grace):

Correct, this sentence refers to Grace.

DACustom(Grace, money):
Correct, this sentence is about the custom beat about Grace and money. DAIntimate(Grace):

WRONG! There is no sign of intimacy in this sentence.

Although an accuracy of 75% is not bad for an initial set of templates, the last discourse act generated is not only inaccurate, it is totally off the topic. In fact, in such cases, the agent might get confused because of the two-way emotional interpretation of the discourse acts and just pick the one with a higher priority which is not necessarily the correct one (the DA’s have priority assignments, usually negative DA’s are assigned a higher priority). There is also a simple template set implemented in NLU against malicious sentences which are intended to break down the system. These include things like “Who is your creator?” etc. If agents catch this, they usually respond with a funny remark or they just ignore.

When we analyzed the intermediate facts generated, we realized that it was the combination rule for intimacy that was causing the problem of the unwanted discourse act:

Example 5:
(defrule map_intimate

(ask)

(NOT)

(ReferTo ?character)

=>

(DAIntimate ?character))

This combination rule suggests that every sentence which is a question (ask), has a sign of negativity in it (NOT) and refers to a character is a sign of intimacy. Yet, this is not accurate at all. Although these were the common features of the example sentences that we had written for intimacy, they apply to a lot of other sentences as well. The remedy for this problem, is to modify the templates to more accurately capture the subset of sentences which are intimate. With hand-written templates one needs to keep patching and modifying the templates and combination rules until sufficient coverage (as determined by interaction with players) is achieved. In the next section, we conclude this paper with suggestions for automated generation of templates and other possible improvements to the system.

Discussion and Conclusion

In the AI world, it is usually preferred to have automated algorithms rather than requiring the user to specify parameters. The major drawback of this approach is that it works well if the templates that we write are good. Writing better templates and eliminating problems such as unwanted discourse acts requires a lot of experimentation. Many dialog examples should be generated and examined in order to find out how templates should interact with each other to produce the appropriate DAs. For example, we are planning on getting other people to interact with a preliminary version of the system and then record what they type. In this way, we would be able to see the common response to a specific situation and optimize the templates to handle that. Of course, there would always be bad apples which do not give the common response, yet as we mentioned before, natural language understanding is a very complex phenomenon and years of research awaits it before it becomes anywhere near the NLU level of a 5-year-old.

One possible way to improve this system is to automate the process of template writing using machine learning techniques. The recorded dialogs can potentially be input into an analyzer which extracts the common features of sentences and gives out templates which encode them. This would reduce the parameterization of NLU by a great deal. Automation of template generation would be a really big step for this project since it is difficult to analyze dialogs and write templates by hand. Of course, implementing such a system requires total understanding of how templates interact with each other. Therefore, it is an entire research issue in itself.

Another possible improvement is employing a simple spell-checking mechanism that can be used to correct simple mistakes in the surface text. Of course, conventional spell-checking cannot be used here since it does not make sense to stop the action in an interactive application and ask the user if he meant “potato” instead of “ptato”. Yet, there are algorithms which, given a word, can find all the words within a distance of 1 to the original word where distance is just the number of letters which are different.

In this paper, we presented a working approach towards broad but shallow parsing of natural language. Although it had some drawbacks, the system proved to be very fast and efficient which enabled us to use it for a real-time interactive simulation like Façade. Using template matching combined with WordNet, we were also able to keep the vocabulary count high without sacrificing too much from speed. Overall, this has been a successful attempt at solving a highly difficult task of providing a natural language understanding framework for believable agents.

APPENDIX A – Template Grammar

[] (indication that expression is optional

template

([-] [tnot] (occurs-expression | regular-expression)

regular-expression
(
word-match |

wordnet-word match |

regexp-optional |

regexp-or |

regexp-and |

word-wildcard

word-match

((<alphanumeric character>) +

regexp-optional
("[" template "]"

regexp-or

("(" regular-expression ("|" regular-expression)+ ")"

regexp-and

(“(“ template (template)+ “)”

word-wildcard

(
"?" |

"*"

occurs-expression
(
occurs-and |

occurs-or |

single-occurs

occurs-and

(“(tand” template template+ “)”

occurs-or

(“(tor” template template+ “)”

single-occurs

(“(toc” template “)”

APPENDIX B – Compilation Rules

Name

Expression

Rule . regexp-or

exp3 = exp1 | exp2

exp1(startpos, endpos)
(

exp3(startpos, endpos)

exp2(startpos, endpos)

(
exp3(startpos, endpos)

regexp-and

exp3 = exp1 exp2

exp1(start-pos1, end-pos1)

exp2(start-pos2, end-pos2)

start-pos2 == end-pos1 + 1

(
exp3(start-pos1, end-pos2)

regexp-opt

exp3 = [exp1]

exp1(startpos, endpos)

(

exp3(startpos, endpos)

lower salience

not (exp(startpos, endpos))

(

exp3(any, any)

occursexp-not

exp3 = (tnot exp1)

not(exp1 (startpos, endpos))

(

exp3(startpos, endpos)

occursexp-and

exp3 = (tand exp1 exp2)

exp1(startpos1, endpos1)

exp2(startpos2, endpos2)

(

exp3(
min(startpos1,startpos2),

max(endpos1, endpos2))

occursexp-or

exp3 = (tor exp1 exp2)

exp1(startpos, endpos)

(

exp3(startpos, endpos)

exp2(startpos, endpos)

(
exp3(startpos, endpos)

single-occurs

exp3 = (toc exp1)

exp1(startpos, endpos)

(

exp3(startpos, endpos)

mixed

regexp3 = regexp1 occursexp2

regexp1(startpos1, endpos1)

occursexp2(startpos2, endpos2)

startpos2 > endpos1

(

regexp3(startpos1, endpos2)

mixed

regexp3 = occursexp1 regexp2

occursexp1(startpos1, endpos1)

regexp2(startpos2, endpos2)

startpos2 > endpos1

(

regexp3(startpos1, endpos2)

toplevel

regexp

regexp(startpos, endpos)

startpos == 1

endpos == length of sentence

(

assert final fact

toplevel

occursexp

occursexp(startpos, endpos)

(

assert final fact

toplevel

regexp1 occursexp2

regexp1(startpos, endpos)

occursexp2(startpos2, endpos2)

startpos == 1

(

assert final fact

toplevel

occursexp1 regexp2

occursexp1(startpos, endpos)

regexp2(startpos2, endpos2)

endpos2 == length of sentence

(

assert final fact

APPENDIX C – Various Algorithms

Section I – Mapping beat names to template names

We use the following post-processing algorithm to generate the mapping from beat names to template names:

1
while(something changed)

2

something changed = 0

3

for each beat B do

4

for each included file I in B do

5

SI = the set of templates in I

6

SB = the set of templates that belong to B

7

FB = file that B belongs to

8

Sunion = SI(SB
9

if size(Sunion) > size(SB)

10

SB = Sunion
11

FB = SI(FB
12

something changed = 1

The included files cannot contain beats since it does not make sense for a beat to include another beat. However, the algorithm above requires at least a beat for each file since updating the FB (line 11) is done by getting the file that beat B belongs to (line 7). Therefore, we store an internal beat name for each included file during compile time. Those names are removed from the hashtable when we are ready to send it to OutputStream. Because of the nested (recursive) implementation of include’s, we need to know when we change something. This is done by having a variable which is set to 1 whenever there is an update. This algorithm terminates when we pass through all the beats and all the includes without changing anything. Then, the mapping is said to reach a stable state. When the mapping is stable, for each beat B, we would have the mapping B (SB where SB is the set of all templates in B plus the templates in the recursively included files. Note that, this algorithm is guaranteed to terminate since we catch loops in the preprocessing stage.

Section II – Offline Traversal of WordNet Space and WordNet Rules

Since run-time traversal of this graph is slow, we use the following algorithm for each wordnet entry X to hash all the words related to X.

BuildSynHashTable(word, linktype)

If(word is already in hashtable) return;

QueuePush (immediate neighbors (other words) of word which are linked by linktype)

Depth = Depth + 1

If(depth < 10) BuildSynHashTable(QueuePop() , linktype)

When the algorithm terminates; for every word x, we have a set of words {x1, x2 …, xn} where for every i between 1 and n, LinkType(x, xi) = linktype and Distance(x, xi) < 10. After building this hashtable, we can easily find if words x and y are related by simply looking up x in the hashtable and then checking if the corresponding set of words contain y. This is just two lookups each taking constant time and is implemented as FindLink() function in NLU. When compiling the template in example 2, the compiler generates a JESS rule for each of the wordnet entries. For example, for the word “like”, there will be a JESS rule which calls the java TermExpander() function which calls FindLink() function for every word that the player enters against “like”. The JESS rules for WordNet entries look like:
(defrule totest18402

(declare (salience 80))

//wordnet entry rule

(SENTENCE ?sentence)

//if there is a sentence in KB

=>

(bind $?result

(call ?mysearch TermExpander ?sentence like 1)//call TermExpander on ?sentence and “like”

)

(foreach ?x $?result

//assert each result into KB

(if (not(eq* ?x nil)) then

(assert(to-fruit ?x ?x))

)

)

)

Section III – WordNet Expansion

For each WordNet entry, there is a unique type of link for each part-of-speech that we traverse in the graph to find the linked synonym sets. For verbs and nouns, we use the hyponym links. Word X is a hyponym of Y if X is a Y. For example, apple is a hyponym of fruit because apple is a fruit. For adjectives, we use the “similar-to” link and for adverbs, we use “derived” link. These both find cases like X is a Y.

A typical wordnet expansion is given below. It is the noun expansion for word “fruit”. Since it is a noun, we used the hyponym links for expansion.

fruit

 <= edible fruit

 <= freestone

 <= cling, clingstone

 <= windfall

 <= apple

 <= crab apple

 <= eating apple, dessert apple

 <= Baldwin

 <= Cortland

 <= Delicious

 <= Golden Delicious, Yellow Delicious

 <= Red Delicious

 <= Empire

 <= Grimes' golden

 <= Jonathan

 <= McIntosh

 <= Macoun

 <= Northern Spy

 <= Pearmain

 <= Pippin

 <= Cox's Orange Pippin

 <= Prima

 <= Stayman

 <= Winesap

 <= Stayman Winesap

 <= cooking apple

……

These expansions are saved to disk to be loaded at the startup of Façade. Although it might seem a lot of data, the size of the file for 10 word expansions like this is only around 10 kilobytes. A template containing the noun type of word expansion for “fruit” will match to “Prima”, “Cox’s Orange Pippin”, “apple” and so on.

Section IV – Stemming

The stemming algorithm that we use is part of the WordNet package. It is referred to as morphology and it is written in C, so we had to write a java native interface in order to use it. Morphology in WordNet uses two types of processes to try to convert the string passed into something that is found in the WordNet database. There are lists of inflectional endings, based on syntactic category, that can be detached from individual words in an attempt to find a form of the word that is in WordNet. The rules of detachment that WordNet uses are very similar to Porter Algorithm (Porter, 1980) which consists of rules such as

SSES
(SS

caresses(caress

IES
(I

ponies
(poni

ties
(ti

SS, S
(SS

caress
(caress

cats
(cat

This addresses the issue of plural suffices of nouns. Yet, as you can see, it doesn’t solve the problem since “ponies” is converted to “poni” instead of “pony”. So, Porter Algorithm includes many other sets of rules which correct the mistakes introduced by earlier rules.
There are also exception lists, one for each part-of-speech, in which a search for an inflected form may be done. These lists include irregular verbs such as (gave (give), unusual pluralization suffices e.g. (acromia (acromion) and irregular comparative forms (farther (far). Morph function tries to use these two processes in an intelligent manner to translate the string passed to the base form found in WordNet. Morph first checks for exceptions, then uses the rules of detachment. The Morph functions are not independent from WordNet. After each transformation, WordNet is searched for the resulting string in the syntactic category specified. So, even if an absurd word is formed after detachment of a suffix (e.g. poni), it is not returned.

The returned stemmed word is asserted into KB as a root occurrence fact in the form:

(ro-pony 3 3)

This indicates that the sentence inputted by the player has a form of “pony” as the third word. If there is a template which included <pony:S>, it will be activated effectively getting rid of the requirement that author should write separate templates for each form of the word.

Section V – Template Compilation with Retraction

Here is a simple template rule with retraction in it:

(defrule giAgree

(declare (salience 80))

(template (I -agree you))

 =>

(assert (iAgree))
)
This rule matches to the exact sentence “I agree you” and then retracts the word occurrence fact of agree. Below are the set of JESS rules generated our compiler:
(defrule andtest25587

//child rule

(declare (salience 80))

//inherits salience from parent

(wo-I ?startpos1 ?endpos1)

// “I” occurred in the sentence

(wo-agree ?startpos2 ?endpos2)

// “agree” occurred in the sentence

(test (MyEquals ?startpos2 (MyPlus ?endpos1 1)))

// “agree” is in next to “I”

(wo-you ?startpos3 ?endpos3)

// “you” occurred in the sentence

(test (MyEquals ?startpos3 (MyPlus ?endpos2 1)))

// “you” is next to “agree”

=>

(assert(po-25587 ?startpos1 ?endpos3))

// “I agree you” exists in the sentence

)

(defrule giAgree

//parent rule

(declare (salience 80))

(SENTENCE ?sentence)

//if there is a sentence

(po-25587 ?startpos1 ?endpos1)
//there is “I agree you” in the sentence (effect of child)

(test (MyEquals ?startpos1 1))

//the startpos of “I agree you” is 1 (beginning of sentence)

(_NUM_WORDS ?wordno)

(test (MyEquals ?endpos1 ?wordno))
//endpos of “I agree you” is number of words (end)
 =>

(conditionalRetract wo-agree)

//retract word occurrence (wo) agree

(assert(iAgree))

//assert the effect into KB
)

(defrule retractgiAgree

//this rule is used for retracting the whole template

(RETRACTgiAgree)

//if this fact is asserted to KB
=>

(undefrule andtest25587)

//undefine every rule of this template (there are three)

(undefrule giAgree)

(undefrule retractgiAgree)
)

Please refer to the regexp-and expansion in compilation rules in Appendix B if the ‘andtest’ rule is not clear. The numbers next to child rule-names are assigned by our compiler using a hash function on the body of the rule since there might be many andtest rules in KB at any given time. Rules with identical names cannot coexist in the knowledge base; the most recently defined rule overwrites the old rule with the same name. This also ensures that our reference counting technique works because if two names are the same, then their hash values are the same which means the rules themselves are identical.
Each time the player hits enter, the animation engine passes the inputted text to the NLU daemon. This daemon is responsible for breaking the sentence into words and asserting the word-occurrence and root-occurrence facts into knowledge base. Apart from these, it asserts two special facts. The SENTENCE fact indicates that there is surface text to be evaluated. The text itself exists as an argument of SENTENCE fact and can be retrieved by using a variable (?sentence). “_NUM_WORDS” is another special fact asserted to the KB at the same time SENTENCE is asserted. Its argument contains the number of the words in the sentence. The SENTENCE fact is currently needed by rules that handle the WordNet expansion (see section II of this appendix) but in the near future, all such rules will operate on individual word occurrence facts using the power of rule sharing and SENTENCE fact will be obsolete.
APPENDIX D – Bibliography

Allen, J. F., Schubert, L. K., Ferguson, G., Heeman, P., Hwang, C. H., Kato, T., Light, M., Martin, N. G., Miller, B. W., Poesio, M., and Traum, D. R. 1995. The TRAINS project: A case study in designing a conversational planning agent. Journal of Experimental and Theoretical AI. 7, pp. 7 - 48.

Barbu, C., Mitkov R. 2001. Evaluation tool for rule-based anaphora resolution methods. In Proceedings of the 39th ACL/10th EACL, pages 34-41, 2001.

Bates, J., Loyall, A. B., and Reilly, W. S. 1992. Integrating Reactivity, Goals, and Emotion in a Broad Agent. Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, Bloomington, Indiana, July 1992.

Blumberg, B. 1996. Old Tricks, New Dogs: Ethology and Interactive Creatures. Ph.D. Thesis. MIT Media Lab.

Fellbaum, C. (Ed.). 1998. Wordnet: An Electronic Lexical Database. MIT Press.

Forgy, C. L. 1982. Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match Problem. Artificial Intelligence 19(1982), 17-37
Frakes, W., Baeza-Yates R. 1992. Stemming Algorithms. [image: image2.wmf]

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image3.wmf]

0134638379

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image4.wmf]

1

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image5.wmf]

stores/detail

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image6.wmf]

books

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image7.wmf]

1

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image8.wmf]

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image9.wmf]

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image10.wmf]

1

Information Retrieval: Data Structures and Algorithms, 131-161. Prentice Hall.

Friedman-Hill E. 2001. Jess, The Expert System Shell for the Java Platform. Online Documentation (http://herzberg.ca.sandia.gov/jess/docs/60/)
Hayes-Roth, B., van Gent, R. and Huber, D. 1997. Acting in character. In R. Trappl and P. Petta (Eds.), Creating Personalities for Synthetic Actors. Berlin, New York:Springer.
Jones, R., Lins, R., 1996. Reference Counting. Garbage Collection: Algorithms for Automatic Dynamic Memory Management, 62-64. Wiley Press.
Lester, J., Stone, B. 1997. Increasing Believability in Animated Pedagogical Agents. Proceedings of the First International Conference on Autonomous Agents. Marina del Rey, CA, USA, 16-21.

Mateas, M. and Stern, A. 2002. A Behavior Language for Story-Based Believable Agents. In Ken Forbus and Magy El-Nasr Seif (Eds.), Working notes of Artificial Intelligence and Interactive Entertainment. AAAI Spring Symposium Series. Menlo Park, CA: AAAI Press. 2002.
Mateas, M., Stern, A. 2000. Towards Integrating Plot and Character for Interactive Drama.
Mateas, M. 1999b. An Oz-Centric Review of Interactive Drama and Believable Agents. In M. Wooldridge and M. Veloso, (Eds.), AI Today: Recent Trends and Developments. Lecture Notes in AI 1600. Berlin, New York: Springer. First appeared in 1997 as Technical report CMU-CS-97-156. Computer Science Department, Carnegie Mellon University.

McKee, R. 1997. Story: Substance, Structure, Style, and the Principles of Screenwriting. New York, NY: HarperCollins.
Porter, M.F., 1980, An algorithm for suffix stripping, Program, 14(3) :130-137.
Rich, C., and Sidner, C. 1998. COLLAGEN: A Collaboration Manager for Software Interface Agents.

User Modeling and User-Adapted Interaction. Vol. 8, No. 3/4, pp. 315-350.

Stern, A.; Frank, A.; and Resner, B. 1998. Virtual Petz: A hybrid approach to creating autonomous, lifelike Dogz and Catz. In Proceedings of the Second International Conference on Autonomous Agents, 334 - 335. Menlo Park, Calif.: AAAI Press.

Traum, D. R. 1999. Speech Acts for Dialogue Agents, in Michael Wooldridge and Anand Rao, editors, "Foundations And Theories Of Rational Agents", Kluwer Academic Publishers, pages 169 - 201.

Story Memory

Templates

Input from player

(Surface Text)

Template

Matching

Inference Engine

Speech Acts

Inferred Facts

Fact Listener

Inter-Beat

Layer

Anaphoric

Dereferencing

Rules

Story Memory

Behavior Engine

NLU

Drama Manager

Behavior Engine

Animation Engine

� See Appendix A for template language grammar

� http://herzberg.ca.sandia.gov/jess/

� For full list of rule expansions see Appendix B

� WordNet website: http://www.cogsci.princeton.edu/~wn/

� See Appendix C – Section II and III for the details on how we use WordNet

� See Appendix C – Section IV for details on the implementation of stemming.

� See Appendix C – Section V for examples of JESS rules produced by the templates which employ retraction.

� See Appendix C – Section I for the details of the algorithm that generates this mapping.

PAGE
20

_1082036993.unknown

_1082036995.unknown

_1082036996.unknown

_1082036994.unknown

_1082036991.unknown

_1082036992.unknown

_1082036989.unknown

_1082036990.unknown

_1082036988.unknown

