Pervasive Computing: Supporting Group Activities

Dominic Jonak (dom@cmu.edu)
Advisor: Peter Steenkiste
(prs@cs.cmu.edu)

May 2, 2003

Abstract

We have developed a group scheduler which allows
users to specify personal preferences and request a
suggestion for an activity and group of partners. This
service confronts three major challenges; coordinat-
ing multiple users, modeling user intent, and main-
taining privacy. We overcame these obstacles by us-
ing a central web server and optimizing a heuristic.
We also describe potential attacks against this sys-
tem and show how to defend the data by injecting
random noise.

1 Introduction

We have developed a group scheduler which allows
users to specify personal preferences and request a
suggestion for an activity and partners. This system
demonstrates how private data from many sources
can be used to answer a query while revealing little
personal information.

For example, suppose we have two activities (both of
which require two people) and two users in the sys-
tem. Alice is very agreeable, she likes both activities
and Bob. Bob is ambivalent towards the activities
and doesn’t get along with Alice.

Now a third user, Chuck, enters the scene. Chuck
is new to the area and doesn’t know anyone, but
he can specify his preferences towards both activi-
ties. When he requests a suggestion, the scheduler

will most likely match him with Alice since she rated
both activities favorably.

We could guarantee a very effective system by pub-
lishing all the data. Then Chuck could make what
he considers the perfect choice. But Alice and Bob
would not be happy; their private data has been dis-
closed.

On the other extreme we could guarantee privacy by
never revealing any data. Now Alice and Bob are sure
that no one knows their preference, but the system is
useless for Chuck.

We take a middle position by using a trusted third
party. This takes the form of a website where each
user can enter their private data. These ratings can
then be accessed only by the server to generate a
suggestion.

On behalf of a user, the server will rank all poten-
tial matchings. Fach suggestion is given a numerical
score using a heuristic. Only the highest ranking re-
sult is returned.

To protect against malicious users, random noise is
added. The noise prevents attackers from accurately
reproducing the database. Furthermore this element
of non-determinism turns out to improve the quality
of the system.

The rest of this paper is organized as follows. In sec-
tion 2, we compare the scheduler to similar modern
systems. In section 3, we highlight the major chal-
lenges and briefly sketch the steps we took to confront



them. In sections 4 and 5, we discuss in detail how
the system works. In section 6, we describe an at-
tack by a malicious user. In section 7, we evaluate
how effective and safe this system is. In section 8.
we suggest future lines of research and development.
And in section 9, we draw our final conclusions.

2 Related Work

Multi-user services have been online for over a
decade[l] and are still evolving. Modern systems have
begun to use private data and have taken some mea-
sures against malicious users. We present two com-
mon services; online dating and partner matching for
games. In both arenas, the designers are using sys-
tems that similar to our own, but have fundamental
differences.

2.1 Online Dating

There is a preponderance of online dating sites avail-
able on the web. These clearly involve some sensi-
tive information and all rely on a matching heuristic.
Some of the more successful services use a very so-
phisticated model[5] but they don’t reveal how their
algorithms work.

Our scheduler is different in a number of ways.
Firstly there is a choice of activities beyond dat-
ing. Second we allow for different sized groups.
Even within the same activity, groups of various sizes
should be considered. Finally these systems typi-
cally have a binary privacy model where data is cate-
gorized public or private. We allow for sensitive data
which is critical for making a good match but should
not be revealed.

2.2 Online Gaming

Online gaming is becoming a large market and many
new games offer matching systems. These are be-
coming more advanced and take into consideration a
growing list of factors. Some use skill level to ensure
a fair game and even allow players to set preferences
for game options[4].

While they do share many characteristics with our

scheduler, there are two major distinctions. Firstly
they fail to address privacy concerns, which admit-
tedly may not be an issue in a game setting. The
other key difference is that these systems are tailored
for each game, so once again the activity has already
been chosen by the users.

3 Major Challenges

The scheduler gathers data from many private
sources in order match up users. It must sift through
a large collection of preferences to generate these
matchings. Furthermore we assume that all data
involved is sensitive, in other words, no user wants
their preferences revealed. This presents three major
challenges; coordinating the users, generating sugges-
tions, and maintaining privacy.

3.1 Coordination

Each user can enter their preferences for activities
and other people. They can also request a suggestion
which returns an activity and group of people. This
matching may include anyone in the system including
people that user does not know.

We use a trusted third party that has access to all
the data. This takes the form of a web server with a
database backend.

Using a third party ensures that we can find match-
ings involving any user or activity. Since it is trusted
by everyone, we also have access to everyone’s data
and can produce a globally optimal solution.

3.2 Generating Suggestions

The end-user receives the matching and is the ulti-
mate test for what constitutes a good result. This
small piece of information must be generated from
all the data in the system.

We model the subjective value of a matching with
a deterministic heuristic. In this way every possible
matching can be assigned a score. The scheduler op-
timizes this heuristic over all matchings and only the
highest ranking one will be given to the user.



Clearly a simple heuristic can not accurately model
the user’s intent. No heuristic can generate optimal
results because every user’s notion of the “best” ac-
tivity will be different. Furthermore since the user
can not access the entire database, they are unable
to determine what the best match for them is. Con-
sequently it is crucial that the heuristic comes close
and provides reasonable values.

3.3 Privacy

Multiple users have private data that should not be
revealed. In this domain, some of the private data
will be exposed off-line when people actually get to-
gether. However even then only a limited number of
preferences will be revealed with low accuracy.

All the pieces of data stored in the system are highly
interdependent. Any change by any user could po-
tentially impact the suggestion given to others. Also
note that each suggestion reveals some information
about the data used to generate it.

For these reasons, it is critical that the system be
protected against malicious users. It is not practi-
cal to completely block any malicious usage, instead
we aim to limit the amount of information they can
extract

To address this challenge we inject random noise into
the data used by the heuristic. The amount is based
on the volume of queries which is one indicator of ma-
licious usage. This change makes the full algorithm
non-deterministic and actually improves the quality
of results. Furthermore it makes the malicious user
less certain of the results they are getting.

Balancing privacy against system effectiveness is a
challenge presented to all collaborative services. As
these systems become more common they will involve
more people and use more private data. Thus an
ever-growing class of applications faces these chal-
lenges.

4 System Design

The scheduler relies on a trusted third party with
full access to all the data and a model that captures
the user’s intent. To this end, we have designed a
web-based service coupled with a database.

_Batabas;_

(MySQL)
3
Q - Web Server
i Personal (Apache
Tomcat)
. | I
Activity —

Suggestions

Figure 1: System Overview

4.1 Trusted web server

This system has a web interface, which was developed
using the Apache Tomcat web server[3]. Tomcat sup-
ports Java servlets and SSL connections. This allows
dynamic content to be sent securely to the user.

Users can connect to the server through Secure Hy-
pertext Transport Protocol (https), which provides
an encrypted communications channel. When a user
connects to the web server, they must authenticate
themselves with a password which is transmitted over
this secure connection.

4.2 Servlets

The servlets running on the server contain all the
system logic. This includes the entire matching algo-
rithm and user interaction.



When a user clicks on any link, they trigger an event
which causes Tomcat to run a servlet. Each servlet
first checks the user’s credentials. This is done by
calling an authenticator which searches for a cookie.
If this cookie is not found or does not match the
record in the database then the user is shown a login
prompt. Otherwise the servlet is allowed to continue.

Once the user has been authenticated, the servlet is
allowed to continue its function. Generally this will
involve making a database query to fetch some data
and generate a web page. The matching servlet is the
only one that significantly differs. It has the added
role of randomizing the data before running the op-
timization algorithm.

4.3 Central database

A MySQL[2] database runs on the same host as the
web server. This database provides the backend for
the website and is not accessible remotely.

This database stores the information for each user
and activity. For each user we must store their login
information as well their preference for potentially
every user and activity. We must also store some in-
formation for each activity, name the number of par-
ticipants. For instance an activity like reading a book
involves just one person, whereas playing volleyball
can involve anywhere between 4 and 12 people.

Between the core logic and the database lies a set of
wrappers. This abstraction is a piece of Java code
that communicates with the database using standard
UNIX interprocess communication.

This important software layer also provides secu-
rity protections. It helps the matching servlet apply
timestamps and randomization to perturb the inputs
to the matching heuristic.

4.4 Emalil notification

After a user has received a suggestion, she can choose
to accept or reject it. When a match is accepted, the
scheduler will notify all the group members of the
proposed activity. Currently the system is prepared
to send an email to each person in the group. Since

the system is still being tested, this feature is dis-
abled.

5 Algorithm Design

The trusted third party attempts to model the user’s
intent. We have developed a heuristic which captures
several key features of the subjective “goodness” of a
proposed matching. Since we have access to the en-
tire database of preferences, we can use this to eval-
uate every potential matching.

In this way, every suggestion can be given a numeri-
cal value. The matching algorithm simply considers
all possible matchings and finds the global optimum.
The user is then given only the highest ranking result.

Request
Suggestion \

Users Preferences w
— _;— -

Randomize

Generate
Matching
Evaluate
Matching
Find Global
Optimum

_

Figure 2: Algorithm Overview

Return
Matching

5.1 Editing Ratings

Each rating for a person or activity is stored as a
value between 0 and 1, unknown values are treated
as 0.5. When a user updates their preference, this
value is immediately stored in the database. It should
be noted that the user sees a scale of 1-10, which is



translated into an internal value. Since the final value
of a matching is a weighted average of these ratings,
it too is assigned a value between 0 and 1.

5.2 Matching heuristic

The following factors affect how “good” a suggestion
is:

- User’s rating for the activity

- User’s rating for the partner(s)

- Other partner(s) rating(s) for the activity

- Other partner(s) rating for each person in the

group

These factors are not of equal importance, in fact
different types of people value each in different ways.
The user issuing the query is very concerned with the
first two, however the last two are more important for
a globally optimal solution.

The final heuristic is the weighted average of these
factors. Each of the four factors is assigned a weight
based on its importance. Lacking data to support
any particular weight distribution, we simply gave
each factor an equal weight.

The last two factors may actually be averages them-
selves. If a matching contains more than one other
person we treat each of them equally. Thus the sec-
ond two factors are the average rating for the activity
or partners.

Giving every other person an equal weight is not the
only option. Other potential schemes include weight-
ing their preferences based on the user’s rating for
them. This makes the algorithm more complex and
uses certain ratings multiple times. For these reasons
we did not pursue such a weighting method.

This heuristic has two potential problems. Firstly
the user has direct control over half the inputs to the
function. Secondly it is entirely deterministic. Both
these factors could be exploited by a malicious user
because they give her precise control of part of heuris-
tic. This could lead to serious problems because the
heuristic is the only thing that the matching algo-
rithm considers.

5.3 Perturbing results

Every input is blended with a random value. The
amount of noise is called the user’s penalty score. It
is based on the volume and frequency of activity. We
use the blending function:

vl =v(l —p)+1p

where v is the true value, v/ is the observed value, p
is the penalty score, and r is a random number. This
function is applied to every rating considered in an
evaluation. Notice that in the case p = 1 the observed
value is completely random, so the heuristic value of
a matching would also be completely random.

Every time a query is made, the user’s penalty is
updated. It is first discounted with an exponential
decay. This is based on the amount of time since the
last query was issued. Then the penalty is increased
by a small additive constant. We use the penalty
update equation:

pl—c+p2~"

where p is the original penalty, p/ is the updated
penalty, c is the additive constant, and ¢ is the time
since the last query.

Typical values for p and ¢ are 0.15 and 0.05 respec-
tively. With a penalty score of 0.15, a preference of 1
could actually be observed as small as 0.85. Similarly
a rating of 0.5 would be transformed into the range
0.425 — 0.575.

The goal is to ensure that a malicious user would
merely see the results of optimizing almost com-
pletely random noise. Note that a flood of queries
will raise this penalty quickly. The small increments
will add up and the frequency of queries prevents
substantial decreases.

As the penalty approaches 1, the matching algorithm
will use values that are increasingly random. The
optimization algorithm is still deterministic, but it’s
inputs become less reliable. Consequently a malicious
user will have little confidence in the responses.

These equations can easily be tuned to be more ag-
gressive towards potential attackers. By raising the



constant, the system will be quicker to add noise.
Similarly one could scale the time units so that the
penalty takes longer to dissipate. This would prolong
an attack because because the attacker would need to
wait longer between queries, allowing more time for
the attack to be detected or peoples preferences to
change.

6 Attacks

By using a central server, this system is susceptible to
traditional information warfare attacks such as denial
of service attacks and software vulnerability exploits.
We do not address these concerns because they have
been studied in detail and exploit weaknesses beyond
our control. Instead we focus on malicious users try-
ing to deduce personal preferences based on the sug-
gestions from many queries.

6.1 Types of Attacks

Anyone can simply listen to the reported suggestions
and gain information. However in this sort of passive
attack, the users and activities involved can not be
controlled. If a malicious user were able to defeat the
SSL encryption, they could eavesdrop on many users’
communications and quickly gain a lot of data. The
strength of this form attack is that it can be done
covertly.

In contrast, a targeted attack focuses on a particular
preference that a certain user has set. We present one
such attack later in this section which involves mak-
ing many requests with carefully crafted preferences.
This type of attack is the most dangerous because
it allows an attacker to get exactly the information
they want.

An attack may only be partially targeted if the at-
tacker does not (or is not able to) completely con-
strain the portion of the database used. For example
a malicious user could focus on a particular user while
not targeting any particular preference they have set.

6.2 Similarities Among Attacks

All attacks rely on the results from many queries,
which are usually generated by the attacker. To de-
termine an accurate value it is helpful to compare
with a known value, such as the heuristic’s evalua-
tion of a one-person activity. Finally it is helpful
to fix as many variables in the heuristic as possible.
This can be accomplished by setting preferences to
the maximum and minimum ratings

6.3 Two-person activity

This attack allows a malicious user to determine any
user’s preference for an activity involving two people.
Although limited to certain activities, this algorithm
demonstrates that a malicious can accurately repro-
duce at least a portion of the database.

The attack consists of these five steps:

1 Create a new account (so the target’s rating for
the malicious user will be 0.5)

2 Set all ratings to 0

Set rating for target user and activity to 1

4 Raise rating for reading a book and make a
query

5 Repeat the previous step until the one-person
activity is suggested

w

Let X be the rating being targeted and Y the ma-
licious user’s rating for reading when the suggestion
switches. Of the four factors that influence the eval-
uation function for the target activity, only X is un-
known.

User’s rating for the activity = 1
User’s rating for the partner = 1
Partner’s rating for the activity= X
Partner’s rating for the user  =0.5

At this point we can evaluate the heuristic to (2.5 +
X)/4 for the target activity and Y for the one-person
activity. Steps 4 and 5 ensure that these two are
nearly equal so (2.5+ X)/4=Y or

X =4Y - 25

With more queries we could determine a more accu-



rate value for Y. In fact it is possible to do a binary
search, so every query doubles the precision.

This method could fail if X = 0, however the attack
will still succeed. In this case the heuristic evaluates
to 0.625. This is the maximum that can be attained
for another user or activity, so a third activity or user
might be suggested instead of the target activity or
the one person activity. However if this occurs we
know immediately know that X must be 0, so we have
still determined the user’s preference for the target
activity.

We note that there is nothing special about the book
reading activity. The malicious user simply needs a
known reference point to compare the unknown with.
Any 1-person activity would work. Similarly if the
malicious user had two accounts she could accurately
determine the value for a 2-person activity.

Using the full algorithm and adding noise limits this
attack. In particular the malicious user can no longer
determine exactly where the cross-over occurs. Thus
they can not set the two quantities equal and must
introduce an uncertainty. Now the attack produces:

X =4Y —-25+e

where e is the maximum error attained. This con-
fidence interval is based on the parameters of the
penalty update function as well as the pattern of re-
quests used.

7 Evaluation

This scheduler was tested in small controlled settings.
While operating the system we considered these three
subjective questions:

7.1 How good is the heuristic?

In controlled tests the heuristic produces an activ-
ity and grouping which reflects the entered prefer-
ences. Upon initial inspection it seems biased to-
wards smaller groups and favors the user that made
the request. This suggests that the four parts of the

heuristic should not be given equal weight. How-
ever the end-user is the ultimate judge of what is
reasonable, so a larger study with human subjects is
required to gauge this accurately.

7.2 What is the effect of added noise?

In controlled tests, a small amount of noise seems to
improve the results. With an entirely deterministic
algorithm, the user must edit their preferences before
they can get a different suggestion. However by mak-
ing several requests the user will accumulate a small
penalty.

This will introduce a little randomness which has the
to potential to raise or lower the value of any match-
ing. So other highly ranked suggestions could be
boosted above the “optimal” one allowing the user to
see these alternative choices. Since the heuristic can
only guess at what the user wanted, revealing more
options makes the system appear more intelligent.

7.3 Does entropy stop intruders?

Adding noise based on the volume of queries ap-
pears very successful in preventing a single malicious
user from reconstructing a significant portion of the
database.

There are two major limitations to this approach.
Firstly it does not stop a group of malicious users.
The system can not detect collusion among several
users. Furthermore each of these users would need to
issue far fewer queries so it is not sufficient to merely
examine the usage patterns of a single user.

The other drawback is that it has limited success
defending against a focused attack. An attack like
the one described above needs relatively few queries.
This defense is reactive in the sense that it becomes
more and more effective as the abuse becomes more
pronounced. If the attacker is only interested in a cer-
tain key piece of information, it may be determined
with high accuracy before the penalties begin to set
in.

Nonetheless, perturbing input data seems to provide
a simple and effective deterrent. In order to produce
a better estimate of a particular piece of data, an



attacker must issue more queries. This in turn raises
the penalty score which introduces more randomness.
As a result, the attacker has less confidence in the
results.

8 Future Work

This system only scratches the surface of what
scheduling services can do. We have sketched many
interesting ways to improve this service below. Many
of these ideas apply to collaborative systems in gen-
eral.

Our search technique guarantees optimality of the
heuristic by performing an exhaustive search. This
is computationally intensive and does not necessarily
reflect the quality from the users perspective. The
running time is bounded by O(AUP), where A is the
number of activities, U the number of users, and p
the maximum number of participants in an activity.
We expect the number of activities to be relatively
small, but O(UP) is still too great to scale to a large
user base.

A better way to do this is with satisficing behavior,
in other words to generate a good matching which is
close to optimal. This technique could be a lot faster
and may be indistinguishable for the end user.

While adding random noise to the data thwarts a
lone attacker, there are other defenses that should be
considered. For instance we may seek to identify col-
lusion among users and penalize both. Alternatively
it might be possible to get better results by injecting
non-uniform noise. Finally a hybrid defense involv-
ing an intrusion detection system scanning preference
settings may be able to detect attacks with greater
confidence.

There is an overwhelming number of options, the sys-
tem could be trained to learn preferences by examin-
ing which queries are accepted. Completely automat-
ing this process is made difficult by the relatively
small number of queries issued.

The scheduling system could be expanded in several

ways. One useful extension would be to provide cal-
endar functionality allowing the system to schedule
times and reserve spaces. Adding a notion of skill
levels or otherwise associating users with activities
would generalize the system further and make it more
applicable.

One of the biggest assumptions we made was the exis-
tence of a trusted third party. However the users may
not trust anyone, or are partially disconnected. One
radical departure would be to design a similar sys-
tem that did not rely on a centralized server. While
a user could guarantee privacy by limiting what data
is sent to peers, we would expect the quality of results
to suffer.

9 Conclusions

Relying on a trusted third party allows the system
to access all the data. While this makes the service
susceptible to traditional information warfare tech-
niques (e.g. cracking the host, masquerading, etc),
the potential benefits outweigh these risks. Perhaps
the greatest benefit is that one can guarantee a glob-
ally optimal solution.

Attacking these systems to access the private data is
non-trivial but it can be accomplished. Each opera-
tion reveals some small amount of information. By
carefully examining these traces, it is possible to re-
construct a portion of the database. This reproduc-
tion is imperfect and subject to accuracy limitations.

Privacy and system effectiveness are two conflicting
goals. We could improve privacy by being more ag-
gressive about adding noise. While attackers would
have less confidence in the values they obtain, normal
users would be adversely affected. Balancing these
two depends on the sensitivity of the data and it is
design choice to be made in numerous scenarios.



10 Acknowledgments

I want to thank my advisor, Peter Steenkiste, for his
support and encouragement. I also want to thank Urs
Hengartner for logistical support in getting started.
Finally I want to thank Latanya Sweeney for giving
me a forum to discuss my privacy concerns.

References

[1]

NannyMUD, a social game, went online in 1990
www.lysator.liu.se/nanny/

MySQL is an open source database
www.mysql.com

Apache Tomcat is an open source web server
jakarta.apache.org/tomcat/index.html

Blizzard offers a player matching system in their
Warcraft 3 game.
www.blizzard.com/war3

eHarmony offers uses a matching heuristic in
their dating service.
www.eharmony.com



