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Abstract

We investigate new techniques for solving the two-level logic minimization problem: Given

a Boolean function, find the smallest OR-of-ANDs expression that represents it. This is a

problem of both theoretical and practical interest. It arises in several fields of Computer

Science, such as digital design, reliability analysis and automated reasoning.

This project explores a new approach that involves the use of SAT checkers: programs

that accept as input a Boolean formula f using only ANDs, ORs and NOTs, and determine

whether the given formula f is satisfiable or not. To some, this approach might seem

counter-intuitive; the SAT problem is NP-complete, and so it may appear inefficient to base

our techniques on it. Thus, it is a surprise to learn that the SAT-based approach has shown

considerable promise in our work.

As a by-product, our research has yielded a number of ideas and observations that can

be explored in other contexts, such as hardware verification, software verification, and QBF

checking (satisfiability checking for a class of formulae that is ’harder’ than what SAT check-

ers can handle).
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Chapter 1

Introduction

Recent advances in satisfiability checkers have induced breakthroughs in various areas of com-

puter science, such as digital design and verification. It is interesting to consider how these

advances may be exploited to improve the performance of logic minimization algorithms,

which themselves have several applications in computer science. Studies like Coudert’s [4]

have investigated the use of other techniques (like BDD-manipulation algorithms) to solve

the two-level logic minimization problem. We focus on applying satisfiability checkers.

The two-level logic minimization problem can be informally stated as follows: Given a

Boolean function, find the smallest or-of-ands expression that represents it. This problem

is encountered in several practical areas of computer science, such as in the fields of logic

synthesis, artificial intelligence, and reliability analysis [4, 10]. As an example, consider

its application to logic synthesis. Every combinational circuit C implements a Boolean

function on n variables. Further, every Boolean function can be realized in or-of-ands form

(also known as sum-of-products form) — informally, the form f =
∑

l1l2...ln, where each

li is either a Boolean variable or its complement. By finding a minimum sum-of-products

representation for f , we can produce an efficient combinational logic design.

The problem is also of theoretical interest. Umans [19] studied its computational complex-

ity and established that when the input function is specified in sum-of-products form, then

the problem is
∑p

2−complete. (
∑p

2−complete denotes a class of problems that are ‘harder’

than NP-complete problems. An example of a
∑p

2−complete problem is to determine the

satisfiability of a quantified Boolean formula with two alternating levels of quantification:

∃X1∀X2φ where X1 and X2 are disjoint sets of variables and φ is in sum-of-products form.)

As mentioned previously, our approach to the two-level logic minimization problem in-

volves the use of SAT checkers. A SAT checker is a program that accepts as input a Boolean

formula f using only ands, ors and nots, and determines whether the formula f is sat-
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isfiable or not. To some, this approach might seem counter-intuitive. The SAT problem is

NP-complete, and so it may appear inefficient to base our techniques on it. However, in prac-

tice, SAT checkers perform very well and are able to solve ‘real-world’ formulae containing

hundreds of thousands of variables within minutes. This high performance has resulted from

recent breakthroughs in the strategies and heuristics used by SAT algorithms [14, 17, 20].

These breakthroughs have motivated the application of SAT checkers in a number of other

contexts (such as model checking), yielding positive results [12, 3].

We explore SAT-based approaches for both exact and heuristic minimization. (Since solv-

ing the two-level logic minimization problem can be computationally expensive, heuristic ap-

proaches have been developed as well.) State-of-the-art heuristic minimizers like Espresso-

II are used world-wide. Given its practical appliability, our focus in terms of implementation

and results is on heuristic minimization.

The minimization strategies used by Espresso-II almost always lead to (near-)minimum

solutions in practice. However, for large problems (functions with over 200 input variables)

Espresso-II takes a long time to execute. SAT checkers, on the other hand, have recently

become capable of handling comparatively huge numbers of variables. We therefore try

to combine the strengths of Espresso-II (quality of approximation) and SAT (speed on

large problems) by adopting the same basic strategies as Espresso-II but performing them

efficiently by developing algorithms that use (appropriately adapted) SAT checkers.

The remainder of this document is structured as follows: Chapter 2 introduces useful

definitions and background material. Chapters 3 and 4 discuss our techniques for applying

SAT to heuristic minimization, with Chapter 3 focusing more on the theory and algorithms

and Chapter 4 focusing more on the experimental results. In Chapter 5, we develop exact

minimization strategies that use SAT and QBF checkers (QBF checkers being algorithms that

test the satisfiability of quantified Boolean formulae). Finally, in Chapter 6 we summarize

the work done and draw conclusions.

[TO-DO: Expand]
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Chapter 2

Background

This chapter first reviews a number of fundamental definitions in Boolean algebra and logic

synthesis. Then, two-level logic minimization algorithms are surveyed. This background

forms the basis for the new approaches presented in subsequent chapters.

Some concepts are crucial to the understanding of specific chapters (but not others).

Introduction of such concepts has been deferred to the appropriate chapters.

2.1 Basic Logic Synthesis - Definitions

The following definitions are taken from Theobald [18], Rudell [16], and standard text-

books [9, 8] with small modifications.

Let B := {0, 1} be the set of binary values. Bn can be modeled as a binary n-cube, and

each element e = (e1, . . . , en) ∈ Bn is called a minterm. Figure 2.1(a) shows B3, the three-

dimensional Boolean space, and its minterms. Note that the well-known binary Boolean

algebra is given by the the set B together with the operations + (also called disjunction,

sum, or) and · (conjunction, product, and).

A Boolean function f of n variables, x1, . . . , xn, is a mapping f : Bn → {0, 1, ∗}. Here,

the symbol ∗ denotes a don’t care condition, i.e. the value of the function does not matter.

Note that a minterm (e1, . . . , en) indicates which values are assigned to the variables of a

function, i.e. x1 = e1, x2 = e2, and so on.

The ON-set of a Boolean function f is defined as the set of minterms for which the

function has value 1. Similarly, the OFF-set and DON’T-CARE-set are defined as the

sets of minterms for which the function has value 0 and *, respectively.

Boolean functions as defined above are often referred to as single-output Boolean func-

tions. A multi-output Boolean function is a mapping f : Bn → {0, 1, ∗}m. Note that each
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Figure 2.1: (a) Binary cube B3 and its minterms; (b) Minterm x1x2x3 and cube x1x3

of the output functions f1, . . . , fm has its own ON-set, OFF-set, and DON’T-CARE-set as-

sociated with it. For the sake of simplicity of presentation, only single-output functions are

considered in the remainder of this section.

Each variable xi has two literals associated with it: an uncomplemented (or positive)

literal xi, and a complemented (or negative) literal xi or x′i. The literal xi (xi) represents

a Boolean function which evaluates to 1 (0) for minterms with ei = 1, and to 0 (1) for

minterms with ei = 0.

A product term is a Boolean product (and) of literals. That is, a product evaluates

to 1 for a minterm e, if each literal included in the product evaluates to 1 for the minterm

e. Otherwise, the product evaluates to 0. In the former case, the product is said to con-

tain minterm e. Note that each minterm corresponds to a product that only contains the

given minterm. More specifically, the minterm e = (e1, . . . , en) corresponds to the product

xe1
1 · · · xen

n , where xei
i denotes the positive (negative) literal of xi if ei = 1(0). For exam-

ple, the minterm e = (1, 0, 1) corresponds to the product x1x2x3, which is often used as a

convenient abbreviation.

Since a product corresponds to a set of adjacent minterms in the binary n-cube, a product

is also referred to as a cube. Figure 2.1(b) shows a cube and a minterm in B3.

A cube α is contained in a cube β (α ⊆ β) if each minterm contained in α is also

contained in β. The intersection of cubes α and β (α ∩ β) is the uniquely defined cube

which contains those minterms contained in both cubes. The supercube of cubes α and β,

denoted supercube(α, β), is the uniquely defined smallest cube that contains both cubes. For

example, if α = x1x2, and β = x1x2x3, then supercube(α, β) = x2. In general, to compute

the supercube each literal is considered. A literal is included in the supercube of two cubes

if and only if it is included in both cubes.
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A sum-of-products is a Boolean sum (or) of products. That is, a sum-of-products

evaluates to 1 for a given minterm if some product contains the minterm.

An implicant of a Boolean function is a cube which contains no minterm in the OFF-set.

A prime implicant is an implicant contained in no other implicant of the function. An

essential prime implicant is a prime implicant containing at least one ON-set minterm

which is not contained in any other prime implicant.

A cover of a Boolean function is a set of implicants interpreted as a sum-of-products,

which evaluates to 1 for all the minterms of the ON-set, and none of the OFF-set. We use

the term prime cover to refer to a cover containing only prime implicants.

The complement of a Boolean function f is denoted by f , and evaluates to 1 (0) if f

evaluates to 0 (1).

2.2 2-Level Logic Minimization

The two-level logic minimization problem is to find a ‘sum-of-products’ representation for

f that minimizes a given cost function. Or equivalently, the problem is find a cover of f

that minimizes a given cost function. In digital design, such a cover can be implemented as

a minimum-cost or-of-ands (two-level) circuit. Here, the cost, or size, of a cover is often

defined as the number of cubes in the cover, which will be used in the following presentation.

Figure 2.2 given an example of a digital design application of two-level logic minimization.

Here we are given function f = x(x + y) + (x + xz) + xyz + xyz and we want to find an

efficient way of implementing it in hardware. A two-level logic minimizer would give us

the sum-of-products representation f = xy + xz, which is much smaller than the original

representation.

This section surveys the most significant previous algorithms for solving the two-level

logic minimization problem.

Quine-McCluskey

The classic Quine-McCluskey algorithm [11, 16] to solve the two-level minimization prob-

lem is based on the insight that the implicants in a minimum-cost cover can be restricted to

prime implicants. (Assume a minimum-cost cover included a non-prime implicant, then the

non-prime implicant could be replaced by a prime implicant covering it.)

The Quine-McCluskey algorithm consists of two steps:

1. generate the set of all prime implicants;
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Figure 2.2: An example of how two-level logic minimization might be applied in the field of

digital design

2. select a minimum number of prime implicants such that each ON-set minterm is con-

tained.

The first step — to generate the set of prime implicants — starts from the set of ON-set

minterms, and it iteratively computes larger implicants by removing literals. The prime

implicants are then those implicants from which no more literals can be removed.

The second step is a so-called unate set covering problem [8]: Given two sets X and Y ,

and a relation R ⊆ X × Y , find a minimum-cardinality subset S of Y such that

∀x ∈ X ∃y ∈ S ((x, y) ∈ R)

More recent algorithms for two-level logic minimization follow the Quine-McCluskey

algorithm but with a number of improvements.

Scherzo

Scherzo [4, 7, 5, 6] is currently the state-of-the-art exact two-level logic minimization

algorithm. Using implicit minimization techniques, i.e. using data structures that facilitate

the manipulation of a large number of objects simultaneously, Scherzo is 10 to more than

100 times faster than the best previous minimization methods. In addition, Scherzo has

solved examples with 1020 prime implicants. These huge examples are by far out of the reach

of previous minimization algorithms.
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Espresso-II

Since solving the 2-level logic minimization problem involves computationally intractable

problems, heuristic approaches have been developed as well.

Espresso-II [15, 2] is the state-of-the-art tool for heuristic two-level logic minimization.

The output of Espresso-II is a cover, which in practice is almost always (near-)minimum

in cardinality. The tool is very efficient and is used world-wide.
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Chapter 3

Heuristic Minimization Using SAT

Checkers

As mentioned previously, solving the two-level logic minimization problem can be computa-

tionally expensive. Hence, heuristic tools like Espresso-II have been developed as powerful

practical alternatives. While Espresso-II almost always produces (near-)minimum solu-

tions in practice, it takes a long time to solve large problems.

With regard to heuristic minimization, our aim is to achieve high-quality approximations

efficiently for large problems. We try to combine the strengths of Espresso-II (quality of

approximation) and SAT (speed on large problems) by adopting the same basic strategies

as Espresso-II but by performing them efficiently using SAT-based algorithms.

Espresso-II’s strategies are implemented by various procedures called ‘operators’. The

major Espresso-II operators are called EXPAND, IRREDUNDANT, REDUCE and ES-

SENTIALS (these are described in more detail in the following section). Espresso-II’s

runtime profile was analyzed for some large examples that we were interested in, and our

analysis indicated that the major bottlenecks were REDUCE, ESSENTIALS and IRRE-

DUNDANT (in that order). The EXPAND operator wasn’t a bottleneck and executed

quickly even on large examples with 200 variables. Accordingly, our efforts were focused on

developing SAT-based algorithms for the other three operators.

In this chapter, we begin by giving background on Espresso-II, since its basic mini-

mization strategy is similar to the one that we use. We then develop SAT-based algorithms

to implement the IRREDUNDANT, REDUCE and ESSENTIALS operators.
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3.1 Background on Espresso-II

Espresso-II, developed in the early 1980s, is a very powerful tool for heuristic two-level

logic minimization, and the tool is used world-wide.

The input to Espresso-II is the Boolean function to be minimized, specified in terms of

an arbitrary set of implicants (e.g. all ON-set minterms, or possibly larger cubes). This set of

implicants represents an initial unoptimized cover, or solution. The output of Espresso-II

is a cover, which is in practice almost always (near-) minimum in cardinality.

Espresso-II iteratively refines the cover by applying three ‘operators’ in its main loop.

This iteration continues until no further improvement is possible:

• EXPAND enlarges each implicant of the current cover, in turn, into a prime implicant.

• IRREDUNDANT makes the current cover irredundant by deleting a maximal number

of redundant implicants from the cover.

• REDUCE sets up a cover that is likely to be made smaller by the following EXPAND

step. To achieve this goal, each cube in the current cover is maximally reduced, in

turn, to a smaller cube such that the resulting set of cubes is still a cover.

Example. Figure 3.1 illustrates the EXPAND operator. As indicated in the example, it

may be possible to expand an implicant along alternative dimensions. The actual algorithm

uses heuristics to decide which direction is best.

Figure 3.2 illustrates the main loop of the algorithm. In Part A an initial cover of the

function is given as its set of ON-set minterms. Part B presents the cover that results after

EXPAND is applied to only one minterm, the one labeled 1. The new expanded cube includes

other cubes of the cover, which are consequently deleted from the cover. Part C shows the

cover as obtained after applying the EXPAND operator to the entire initial cover, resulting

in a cover of size five. Next, the application of the operator IRREDUNDANT removes the

one redundant cube from the cover, and the result is shown in Part D. The cover now consist

of four cubes. Then, the operator REDUCE is applied to maximally reduce cubes in turn;

the outcome is shown in Part E. Two of the four cubes were transformed into smaller cubes,

yet the collection of cubes still covers all ON-set minterms. Finally, EXPAND is applied

a second time. As the EXPAND operator considers one of the two smaller cubes, it is

determined that this cube can be expanded to overlap the other smaller cube, thus reducing

the size of the cover from four to three. The resulting cover is a minimum cover and no

further application of the above operators will change it. Accordingly, the iteration stops. 2
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Figure 3.1: Expand in Espresso-II

Espresso-II also employs additional operators, such as ESSENTIALS and LAST GASP,

which can be quite powerful. ESSENTIALS is used to identify all essential prime implicants

before the main loop is entered, in order to simplify the covering problem. LAST GASP

is applied after the main loop is exited, to try to escape a suboptimal local minimum; if

successful the main loop is entered again.

One key reason for the efficiency of Espresso-II is the so-called unate recursive paradigm,

i.e., to decompose operations recursively leading to efficiently solvable sub-operations on

unate functions (i.e. functions that are unate in all of their variables). 1

3.2 Irredundant

The IRREDUNDANT operator takes a cover produced by EXPAND and tries to reduce its

cardinality to a local minimum. To understand this better, let us first distinguish between

the notions of irredundant cover and IRREDUNDANT operator.

Definition 3.2.1 An irredundant cover of a function is one that is not a proper superset

of any cover of the same function. For example, in Figure 3.3, (a) represents a redundant

(i.e. not irredundant) cover of a logic function, whereas (b) and (c) represent irredundant

covers.

It follows from the definition that the cardinality of an irredundant cover is at a local mini-

mum. Removal of any implicant from an irredundant cover makes the cover invalid. Equiv-

alently, in an irredundant cover, all cubes are relatively essential, where relative essentiality

is defined as follows:

1A function is unate in a variable if changing the value of that variable from 0 to 1 either never changes

the function’s value from 0 to 1 or never changes the function’s value from 1 to 0. A function would not be

unate in a variable if changing the value of that variable from 0 to 1 sometimes changed the function’s value

from 0 to 1 and sometimes changed it from 1 to 0 depending on the values of the remaining variables.
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Definition 3.2.2 Given a cover F of a Boolean function f , an implicant α ∈ F is said to

be relatively essential if it contains an ON-set minterm of f that is not contained in any

other implicant of F . For example, in the irredundant covers (b) and (c) all of the implicants

are relatively essential, but in the redundant cover (a) only the implicants ac and acd are

relatively essential.

The IRREDUNDANT operator, on the other hand, is a procedure that makes a

cover irredundant by removing some of its implicants. Given a redundant cover, there may

be multiple ways of removing implicants from it, possibly yielding different irredundant

covers (see Figure 3.3). Some of these irredundant covers may have lower cost than others,

making covers like Figure 3.3(c) more desirable than those like Figure 3.3(b). To address

this issue, Espresso-II’s IRREDUNDANT operator sets up and solves an optimization

problem to find a largest subset of implicants that can be removed from the given cover

without making it invalid.

Currently, our implementation uses a simple-minded algorithm where we test each impli-

cant α in a cover F for relative essentiality. Whenever we encounter an implicant α that fails

the test, we delete it from F . This algorithm does produce an irredundant cover, but the
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resulting quality may be suboptimal. For example, if we are given Figure 3.3(a) and start

by testing bcd, we end up with Figure 3.3(b). [TO-DO for final draft: In practice,

what was the observed loss in qly vs speedup already due to SAT?]. In the fu-

ture, we might be able to develop an efficient SAT-based algorithm to handle the optimization

problem as well.

In our algorithm, SAT is employed in the test for relative essentiality. For α ∈ F to be

relatively essential, there must exist a witness ON-set minterm that is contained in α but

not in any other implicant of F . That is, the following formula must be satisfiable:

α ·
∏
β∈F
β 6=α

β ·
 ∑

γ∈F ON

γ

 (3.1)

where α, β and γ are of course cubes over x1, x2, . . . , xn. It is straightforward to convert

this formula into CNF and feed it to a SAT checker.

As an optimization, from the summation part of formula (3.1), we can exclude those γ

that are disjoint from α. As mentioned previously, disjointness of implicants can be computed

efficiently using bitwise operators.

3.3 Reduce

The purpose of the REDUCE operator is to modify the current cover so that its cardinality

may be improved by the following EXPAND. Each implicant in a given cover is maximally

reduced in size, i.e. reduced to the smallest cube such that the resulting set of implicants is

still a cover.

Consider the example shown in Figure 3.4. Note that the end result of REDUCE depends

on the order in which implicants are processed. In Figure 3.4, (b) was obtained from (a) by

reducing a before c, whereas (c) was obtained by reducing c before a. Various heuristics have

been developed to sort a cover before reducing its implicants. In Espresso-II, implicants

are weighted and then sorted in descending order of weight so as to first process those that

are large and overlap many other implicants. Our implementation reuses the techniques

adopted by Espresso-II.

Let us now consider how to compute a maximally reduced cube. We are given a (sorted)

cover F and an implicant α ∈ F . Reducing α to the cube α̃ results in a new set of cubes

F ′ = (F − {α}) ∪ {α̃}. We want to find the smallest cube α̃ that makes F ′ a cover. Any α̃

that makes F ′ a cover must contain all of the ON-set minterms of α that are not contained
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Figure 3.4: REDUCE is order-dependent

in any other implicant of F . The smallest α̃ that contains all of these minterms is simply

their supercube (by definition).

Equivalently, we are looking for the supercube of all satisfying assignments of the follow-

ing formula:

α ·
∏
β∈F
β 6=α

β ·
 ∑

γ∈F ON

γ

 (3.2)

It is straightforward to convert formula (3.2) into CNF. Note the similarity to (3.1).

Finally, it remains to be ensured that α̃ does not intersect the OFF-set. This follows

from the fact that the smallest cube that contains a set of minterms (i.e. their supercube)

is a subset of any other cube that contains those minterms. Thus, α̃ is guaranteed to be a

subset of α, which itself does not intersect the OFF-set.

Espresso-II computes maximally reduced cubes by using the aforementioned unate

reursive paradigm (Section 3.1).

How might SAT be exploited to compute maximally reduced cubes? Formula (3.2)

suggests one simple approach — find all the satisfying assignments of (3.2) using a SAT

checker, and then compute their supercube

This approach, called Maximally-Reduce-Simple, is shown in Figure 3.5. The func-

tion SAT Check() takes a CNF formula as its first parameter and determines whether it

is Satisfiable. If so, a satisfying assignment is returned by modifying the second param-
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Maximally-Reduce-Simple (α, F , FON)

1 {
2 Φ ← toCNF

(∑
γ∈F ON γ

)
3 Ψ ← α ·

(∏
β∈F
β 6=α

β

)
· Φ

4 S ← ∅
5 while (SAT Check (Ψ, &assignment) == Satisfiable)

6 {
7 S ← S ∪ assignment

8 Ψ ← Ψ · assignment ′

9 }
10 return Supercube(S);

11 }

Figure 3.5: Simple method to compute maximally reduced cubes

eter (passed-by-pointer). The function Supercube computes and returns the supercube of

its argument cubes. Cubes may be passed either together as a set or individually via the

parameter list.

In each iteration of the while loop, we determine if Ψ is satisfiable. If it is, then satisfying

assignment is returned via assignment, Ψ is modified to ‘block’ out assignment (line 8),

and assignment is added to the collection S of assignments found so far (line 7). Continuing

in this way, eventually all satisfying assignments are found, and we compute and return their

supercube in line 10.

However, we can do exponentially faster! A modified algorithm (Figure 3.6) maintains a

‘running total’ supercube α̃ of all the assignments found so far, and blocks out each updated

supercube α̃ from Ψ instead of each individual assignment. In the end the algorithm simply

returns the running total so far.

To see the intuition behind this approach, see Figure 3.7.
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Maximally-Reduce-Faster (α, F , FON)

{
Φ ← toCNF

(∑
γ∈F ON γ

)
Ψ ← α ·

(∏
β∈F
β 6=α

β

)
· Φ

α̃ ← 0

while (SAT Check (Ψ, &assignment) == Satisfiable)

{
α̃ ← Supercube(α̃, assignment)

Ψ ← Ψ · α̃ ′

}
return α̃;

}

Figure 3.6: Faster method to compute maximally reduced cubes
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Figure 3.7: The new SAT-based REDUCE operator
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3.4 Essentials

The ESSENTIALS operator is intended to simplify the minimization problem. Essential

prime implicants must be present in any prime cover of the given function. Therefore, they

can be identified at the outset so that the subsequent main loop of Espresso-II only has

to deal with non-essential primes.

Recall that for a prime implicant α of a function f to be essential, there must exist at

least one witness ON-set minterm that is contained in α but not in any other prime implicant

of f . Consequently, to compute the essentials of a function, it is sufficient to compute their

witnesses. To get the actual essentials given the witnesses, we need only EXPAND each

witness, removing duplicates from the result.

We note the following facts, which will help us identify witnesses (f denotes a given

Boolean function):

Fact 3.4.1 Every implicant of f is contained by some prime implicant of f (possibly itself).

This prime implicant need not be unique.

Fact 3.4.2 An ON-set minterm e is a witness to essentiality if and only if there is exactly

one prime implicant that contains it, namely the corresponding essential. (Follows from

definition of essential prime implicant.)

Suppose we have a minterm e = l1l2 . . . ln. In n-dimensional Boolean space (i.e. in the

Boolean n-cube), there are n minterms that are adjacent to it:

l1l2 . . . ln, l1l2 . . . ln, . . . l1l2 . . . ln

each of which is obtained by negating one literal in e. Let us denote the set of minterms

adjacent to e by Adj(e). Then we define

AdjON(e) ≡ Adj(e) ∩ON-set(f) (ON-set minterms that are adjacent to e)

AdjDC(e) ≡ Adj(e) ∩DC-set(f) (DC-set minterms that are adjacent to e)

AdjOFF (e) ≡ Adj(e) ∩OFF-set(f) (OFF-set minterms that are adjacent to e)

It holds that

AdjON(e), AdjDC(e) and AdjOFF (e) are pairwise disjoint; and

AdjON(e) ∪ AdjDC(e) ∪ AdjOFF (e) = Adj(e)
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Given a cube α, we also define Adj{α}(e) to be the set of all minterms contained in α

that are adjacent to e. In this section, we denote the (uniquely defined) supercube of a set

S of minterms by supercube(S).

Fact 3.4.3 If A ⊆ B, then supercube(A) ⊆ supercube(B).

Fact 3.4.4 If α is a Boolean k-cube, e is a minterm in α, and then we can write

α = supercube({e} ∪ Adj{α}(e))

Since α has k dimensions, there are k minterms in α that are adjacent to e (i.e. |Adj{α}(e)| =
k). Since the supercube under consideration must contain e and all of these k adjacent

minterms, it itself must have dimensionality at least k. In fact, since α has k dimensions,

the supercube must also have exactly k dimensions (by definition). Further, for the super-

cube to be uniquely defined, we must have that α is the supercube.

Fact 3.4.5 Given an ON-set minterm e and a prime implicant α containing it, e is a witness

of essentiality (with α its essential prime) if and only if all minterms in AdjON(e)∪AdjDC(e)

are contained in α.

(‘only if’): Assume there is an e′ ∈ AdjON(e) ∪ AdjDC(e) that is not contained in α.

Since Then e and e′ are adjacent, they form a binary cube. Further, neither minterm is in

the OFF-set. Hence, the set {e, e′} represents an implicant, which we will denote as β for

brevity. Let β′ be a prime implicant containing β (Fact 3.4.1 guarantees the existence of β′).

Then β′ contains both e and e′. But this means β′ is a prime implicant that contains e but

is distinct from α (α doesn’t contain e′ by assumption). Hence, e is not a witness and α is

not an essential.

(‘if’): Assume all minterms in AdjON(e) ∪ AdjDC(e) are contained in α. Then we must

have that AdjON(e) ∪ AdjDC(e) ⊆ Adj{α}(e)

Now let β be an arbitrary prime implicant containing e. Since β cannot intersect the

OFF-set, every minterm in β must be either an ON-set minterm or a DC-set minterm. This

implies that Adj{β}(e) ⊆ AdjON(e) ∪ AdjDC(e).

Hence we must have that Adj{β}(e) ⊆ Adj{α}(e). This in turn means that

β = supercube({e} ∪ Adj{β}(e)) (Fact 3.4.4)

⊆ supercube({e} ∪ Adj{α}(e))

= α
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Thus, β ⊆ α. But since β is also prime implicant and hence cannot be contained in any

other implicant, this means that β = α. Hence there is exactly one prime implicant that

contains α, so by Fact 3.4.2, e is a witness to essentiality and α is an essential prime.

[TO-DO for final draft:

- Complete characterization of witnesses as those (and only those) ON-set minterms

e for whom supercube({e} ∪ AdjON(e) ∪ AdjDC(e)) does not intersect the OFF-set.

- Show how this lead to the procedure outlined below

- ‘‘Encode’’ that procedure into a single CNF formula]

∃ a minterm l1l2 . . . ln such that following function gives 1:

1 must have f(l1l2 . . . ln) = 1

2 for each i in 1 . . . n

2a Let pi = (l1l2...li−1lili+1 . . . ln ∈ some α ∈ FON)

3. Compute supercube with all l1l2...li−1lili+1 . . . ln whose pi = 1

4. Supercube must be covered by FON ∪ FDC

(Want to actually do 3 & 4 together)

- out optimization

- 3 levels of leniency or ’strength’ of the notion of essentiality
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Chapter 4

Experimental Results

[For this draft only]

Our final goal is to compare the overall runtimes of our approach with those of Espresso-

II on large examples. However, due to a recently-discovered bug in a library function that we

use, our implementation terminates abnormally on all the examples we have tried, so we are

unable to report overall runtime on any example. We are working hard to resolve the issue.

However, we have been able to conduct preliminary comparisons on an operator-by-operator

basis. These partial results indicate that our approach is promising.

name SAT-Espresso Espresso-II

50x50 Error! Error!

200x200 70.18 261.95

Figure 4.1: REDUCE (run-times reported in seconds). Here is where the bug first manifested

itself

name SAT-Espresso Espresso-II

50x50 0.02 0.24

200x200 0.65 168.14

Figure 4.2: ESSENTIALS (run-times reported in seconds)

In our experiments we focus on the execution time required for the operators REDUCE,

ESSENTIALS and IRREDUNDANT.

In our implementation, we reuse most of the code for Espresso-II, replacing only the

operators REDUCE, ESSENTIALS and IRREDUNDANT, for simplicity of comparison. As
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name SAT-Espresso Espresso-II

50x50 0.12 0.34

200x200 0.81 47.33

Figure 4.3: IRREDUNDANT (run-times reported in seconds)

our SAT checker we used a modified version of zChaff [14] from Princeton University. Our

implementation involves a lot of redundant file I/O, so there is room for improvement in our

performance.

Two examples are presented:

1. ‘50x50’: A [five-output] Boolean function over 50 variables. The input file was

of type fr, meaning that it specified the ON-set and OFF-set, and the DC-set was

assumed to be the complement of ON-set ∪ OFF-set. The initial cover had cardinality

50. This example was randomly generated.

2. ‘200x200’: A [five-output] Boolean function over 200 variables. The input file was

randomly generated, of type fr, and specified an initial cover of cardinality 200.

Both examples were randomly generated under the restriction that the DC-set should con-

stitute approx. 20% of the Boolean space.

All experiments were performed using a Linux workstation with an Intel processor.

‘Espresso-II’ denotes Espresso-II and ‘SAT-Espresso’ denotes our implementation. [Add

more specifics about workstation environment.]
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Chapter 5

Exact Minimization Using QBF

Checkers

In this section, we present techniques for solving the two-level logic minimization problem ex-

actly by using QBF checkers. (QBF checkers are satisfiability testers for Quantified Boolean

Formulae.)

Recall the classic Quine-McCluskey algorithm used to solve this problem (presented

in Chapter 2):

1. generate the set of all prime implicants;

2. set covering problem: select a minimum number of prime implicants such that each

ON-set minterm is contained.

We follow the same basic approach. This means that we need to address two challenges:

1. Devising reasonably efficient ways of using QBF formulae to implicitly represent the

set of prime implicants of a function.

2. Devising reasonably efficient ways of using the above technique along with SAT or

QBF checkers to implicitly solve the set covering problem.

This chapter is organized around these two steps. We begin by introducing data struc-

tures to efficiently represent Boolean functions and sets of products.

5.1 Background on Decision Diagrams

This section introduces data structures to efficiently represent Boolean functions and sets of

products, called Binary Decision Diagrams and Zero-Suppressed Binary Decision Diagrams.
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These data structures have been used in Scherzo [4, 7, 5, 6], discussed previously, and will

also be used in the new SAT-based exact two-level minimization techniques presented later

in this chapter.

5.1.1 BDDs

Binary Decision Diagrams (BDDs) [1] are used to efficiently represent Boolean functions.

An ordered BDD (OBDD) is a canonical representation of a function f which is obtained

from the Shannon tree representation of f by reduction rules which (i) identify isomorphic

subgraphs and (ii) delete each vertex that has the same left and right children.

Example 5.1.1 In Figure 5.1(a) the Shannon tree of the function f = ab + c is shown. To

find the function value for a specific assignment to the variables, one follows the path from

the root node to a terminal node, taking the left (right) branch if the corresponding variable

is assigned the value 0 (1). The corresponding BDD obtained by the above reduction rules

is shown in part (b) of the figure. Note that the BDD of f is just a compact representation

of the Shannon tree of f . In particular, the same algorithm can be used to evaluate the

function for an assignment to the variables. 2

Important properties of BDDs include canonicity of representation (if the variable order-

ing is fixed), and the efficiency of binary operators, e.g. the Boolean and of two functions

represented by BDDs can be efficiently computed in time proportional to the product of the

number of nodes of the two BDDs.

5.1.2 ZBDDs

Zero-suppressed BDDs (ZBDDs) [13] are a variant of BDDs which were introduced to effi-

ciently represent sets of products, e.g. the set of prime implicants of a function f . A ZBDD

of a set of products is obtained from a tree representation of the set of products by reduction

rules which (i) identify isomorphic subgraphs and (ii) delete each vertex whose right chil-

dren points to 0 (i.e. the empty set). Note that to achieve small representations for sparse

sets, the second reduction rule differs from the second reduction rule for BDDs. Another

difference from BDDs is that a ZBDD makes decisions based on literals instead of variables.

Example 5.1.2 Consider Figure 5.1(c), which shows the tree representation of the given

set of products {b, a, ab, a, ab}. Here each path from the root node to a terminal 1 node

corresponds to a product in the set. The product consists of those literals encountered on

taking right branches on the path. Here, positive (negative) literals are denoted by a ’+’
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Figure 5.1: BDDs and ZBDDs

superscript (‘−’ superscript). The ZBDD for this set of products obtained by the above

reduction rules is shown in part (d) of the figure. 2

Important properties of ZBDDs include canonicity of representation and efficient com-

putation of set-operations, such as union and intersection.

5.1.3 Application: Implicit Techniques

Based on Binary Decision Diagrams new efficient algorithms to solve standard problems in

digital design have been developed. The main idea of implicit approaches is to use compact

data structures such as BDDs and ZBDDs to eliminate the need to explicitly represent each

object of interest (e.g. prime implicants, minterms). Such implicit approaches typically can
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• Classic Quine-McCluskey:

• Scherzo [Coudert] (implicit logic 
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Figure 5.2: Classic vs. Implicit Logic Minimization

solve much more complex problems than previous methods.

In fact, the use of implicit minimization techniques made Scherzo [4, 7, 5, 6] 10 to more

than 100 times faster than the best previous exact two-level logic minimization methods.

Scherzo has solved examples with 1020 prime implicants, which are by far out of the reach

of classic minimization algorithms like the well-known Quine-McCluskey algorithm.

The new concepts of Scherzo are as follows:

• Scherzo uses data structures like BDDs [1] and ZBDDs [13] to represent Boolean

functions and sets of products very efficiently. For example, consider how Scherzo

computes the set of prime implicants for a Boolean function f . It first computes a

BDD for the Boolean function f from an initial unoptimized cover (e.g. from the set

of ON-set minterms). Then, it uses the BDD representation of f to directly generate

a ZBDD that represents the set of prime implicants of f . The computation time to

generate the ZBDD as well as the size of the ZBDD are both independent of the number

of prime implicants. As mentioned before, this algorithm has been used to compute

ZBDDs that represent up to 1020 prime implicants.

• Scherzo includes new algorithms that operate on these implicit data structures. For

example, classic techniques are based on a ‘covering’ matrix where rows are labeled by

the minterms (refer to Figure 5.2) and columns are labeled by the prime implicants. In

contrast, Scherzo operates on two much more compact ZBDDs: one for the minterms

and one for the prime implicants.
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5.2 Implicitly Representing Prime Implicants

Actually, we can get by even if we can just represent the set of all implicants of a function

f by an ordinary Boolean formula, say I(f).

I(f) is constructed so that there is a 1-to-1 and onto mapping between implicants of f ,

and satisfying instances of I(f).

There are several ways of expressing I(f). Here we focus on an approach to generating

I(f) based on the BDD for f . One feature of this approach is that the structures of generated

formulae are closely related to the structures of the corresponding BDDs.

I(f) is a Boolean formula over lx1 , lx1 , lx2 , lx2 , . . . , lxn , lxn . Each assignment to the 2n

variables corresponds to a product term such that: ∀i, 1 ≤ i ≤ n, the positive (or negative)

half-space of variable xi is present in the product if and only if lxi
(or lxi

) is true. If fx1 and

fx1 are the cofactors of f wrt x1, then we can see:

I(f) ←→
[(

lx1 + lx1

)(
lx1 → I(fx1)

)(
lx1 → I(fx1)

)]
(5.1)

NOTE: I(fx1) and I(fx1) are Boolean formulae over lx2 , lx2 , . . . , lxn , lxn .

This immediately suggests the following approach:

• Start with the BDD of f , where f is a Boolean function over n variables x1, x2, . . . ,

xn.

• Uniquely number the BDD nodes (suppose there are m of them).

• Let var(j) denote the variable associated with node j. Then construct the desired

formula I(f) over

- the 2n variables lx1 , lx1 , lx2 , lx2 , . . . , lxn , lxn ; and

- m “implied” variables A1, A2, . . . Am (one for each BDD node; we will shortly

see why they are “implied”)

as follows:

I(f) = A1

·
n∏

i=1

(lxi
+ lxi

)

·
m∏

j=1

[
Aj ↔

( (
lvar(j)′ → Aleft

) (
lvar(j) → Aright

) )]

30



3DUW�,,,��5HFXUVLYHO\�WUDYHUVH�WKH�%''

xi0 1

This node 
numbered as j
⇒ var(j) = xi

This node 
numbered as

left

This node 
numbered as 

right

X

0

Aleft ≡ X

X

1

Aright ≡ X
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f(x,y) = x + y

0 1

x

y

0 1

0
1

0 1

1;x
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0 1

0
1

BDD: Numbering:

Figure 5.4: Constructing I(f) for f(x, y) = x + y

In the above formula, A1 corresponds to the root node.
∏n

i=1(lxi
+ lxi

) ensures that

no variable appears more than once in the implicants characterized by I(f). Finally, each[
Aj ↔

( (
lvar(j)′ → Aleft

) (
lvar(j) → Aright

) )]
‘fixes’ the value of Aj for some BDD node

numbered j. It is built by recursively traversing the BDD of f as shown in Figure 5.3.

As an example, consider the function f(x, y) = x + y. The BDD is represented and

numbered as shown in Figure 5.4.

Here, I(f) = A1 · (lx + lx) · (ly + ly)

· [
A1 ↔

(
(lx → A2)(lx → 1)

)]
· [

A2 ↔
(
(ly → 0)(ly → 1)

)]
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Satisfying instances (lx, lx, , ly, ly, A1, A2): {(0, 1, 0, 1, 1, 1), (0, 1, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0),

(1, 0, 0, 1, 1, 1), (1, 1, 0, 1, 1, 1)}
These correspond exactly to the implicants of f : {xy, xy, x, xy, y}

5.3 Implicitly Solving the Set Covering Problem

We want to produce a Boolean formula Ψ(f, i) that is satisfiable if and only if there is a set

S of implicants of f , (|S| ≤ i), such that
∑

p∈S p = f .

E.g. Ψ(f, 3) should express:

∃p1∃p2∃p3 such that
[
(p1, p2, p3 are implicants of f) and (p1 + p2 + p3 = f)

]
(5.2)

so a likely form would be:

∃l1,x1∃l1,x1 . . . ∃l1,xn∃l1,xn

∃l2,x1∃l2,x1 . . . ∃l2,xn∃l2,xn

∃l3,x1∃l3,x1 . . . ∃l3,xn∃l3,xn

[ I1(f) · I2(f) · I3(f)

· ∀x1 . . . ∀xn(f → p1 + p2 + p3) ]

[to add - description of formula]

where each pk =
n∏

i=1

[
(lk,xi

+ xi)(lk,xi
+ xi)

]
(5.3)

Given an assignment of values to the lk,xi
’s and lk,xi

’s, pk gives the corresponding product

term. E.g. If f is over two variables x and y, and (lx, lx, , ly, ly) = (0, 1, 1, 0), then

p1 = (l1,x + x)(l1,x + x)(l1,y + y)(l1,y + y)

= (0 + x)(1 + x)(1 + y)(0 + y)

= xy

Now, using a SAT checker, we keep testing the satisfiability of Ψ(f, i) for i = 1, 2, . . .

until we find an i that makes Ψ(f, i) satisfiable. Any satisfying instance corresponding to

this i gives a minimal sum-of products (SOP) representing f . Each of the products in the

minimal SOP is given by one of the i copies of lx1 , lx1 , lx2 , lx2 , . . . , lxn , lxn .
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Chapter 6

Conclusion

With regard to heuristic minimization: We have observed that state-of-the-art heuristic

minimizers produce high-quality approximate solutions, but are computationally expensive

on large examples. We have presented an approach to efficiently achieve high-quality ap-

proximations on large problems, by combining the strengths of Espresso-II (quality of

approximation) and SAT checkers (speed on large problems). Preliminary experiments show

promising results.

With regard to exact minimization: We have observed that traditional exact minimizers

suffer from the problem of explicit representation. This can be computationally expensive

when there are an exponential number of prime implicants and minterms that need to be

explicitly represented in memory. State-of-the-art exact minimizers use implicit techniques

based on BDDs to tackle this problem. We have presented another kind of implicit approach,

based on SAT and QBF (Quantified Boolean Formula) checkers.

The techniques presented in this documents can be explored in other interesting contexts,

such as:

- QBF checking

- hardware verification

- software verification

[TO-DO: Expand]
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