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Abstract

Cheating is currently a major problem in today’s mul-
tiplayer games. One of the most popular types of
cheating involves having the client software render
information which is not in the player’s current field
of view. This type of cheating may allow a player
to see their opponents through walls, or to see their
opponents on a radar, or at extreme distances, when
they would normally not be able to. Currently, much
research is being done to learn how cheating can be
detected and prevented in the context of client-server
multiplayer games, but little research is being done
studying how cheating behaviors can be detected or
prevented in a distributed context.

In this research, we study what kinds of cheating
behaviors are possible in a distributed game environ-
ment. First, we create an implementation of Mer-
cury, a scalable publish-subscribe system for inter-
net games, and we evaluate the implementation’s per-
formance. Second, we create a framework for inter-
facing a game with the Mercury system, and for
managing distributed game state. Finally, we write
a distributed game using this framework in order to
learn what cheating behaviors are possible in this new
distributed context. Several cheating behaviors are
identified in this context, and several algorithms are
developed to detect when players in the system are
cheating. One of these algorithms is designed to de-
tect discrepancies in a player’s movement, and it’s ac-
curacy is measured. The accuracy of this algorithm
is not yet adequate for use in a real-time game, and
future enhancements to increase its accuracy are dis-
cussed.

1 Introduction

Multiplayer video games have become increasingly
popular over the past decade, with the online gam-

ing market predicted to be worth $2.3 billion by 2005
[17]. Services such as Microsoft’s XBox Live [22] have
introduced multiplayer gaming to the video game
console, lowering the cost of participating in online
games, and increasing the number people playing on-
line games. Even movie theatres are being converted
into large gaming centers, increasing the availability
and exposure of online multiplayer games [15].

Current multiplayer games are divided into two
types — first person shooter (FPS) games, which can
have up to around 64 players in a game world [19],
and massively multiplayer online role playing games
(MMORPG), which support around 6,000 players in
one world [17]. Both of these types of games are
immensely popular. For example, the GameSpy net-
work [7] is a service used by game players to find
other game players to play games with. On a Sun-
day evening at 5:30pm EST, GameSpy reported hav-
ing approximately 200,0001 players using their sys-
tem. Dark Ages of Camelot, one of the more popu-
lar MMORPGs, had on the order of 28,000 players
playing on this same Sunday evening. Both of these
statistics show that multiplayer online games are ex-
tremely popular, and played by a lot of people.

Because of the recent trend in increasing the num-
ber of simultaneous participants in a single online
game, solutions have been developed to allow a game
developer to run game servers supporting up to
32,000 players [25]. However, these solutions are pro-
prietary, and require that a single entity (such as the
game’s developer) run the game server. This can be
a problem when a game developer chooses to discon-
tinue support for their game, leaving players out in
the cold. Examples of this include multi-user shared
dungeons (MUDs) which are no longer run by any-
one, and hence are no longer playable (the original
GemStone is one example of this).

1This number varies with the day and time; observed player
counts have been observed from 70,000 to 200,000 at different
times and on different days.
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Therefore, the main motivations for this research
are to scale real-time games to support hundreds of si-
multaneous players in order to keep up with industry
trends, and to create a fully decentralized multiplayer
game not dependent on any central authority. These
motivations give us the following objectives:

• Design a distributed system upon which a real-
time game can be built.

• Implement this system.

• Evaluate the performance of the implementa-
tion.

In developing a multiplayer game, there is one very
important issue which arises, and that issue is cheat-
ing.

Cheating in online multiplayer games is a very big
problem, and many people do not feel that they are
doing wrong by cheating [20]. This mentality leads to
the creation and wide-spread use of tools for cheat-
ing in games. For example, there are programs for the
game The Sims Online which will play automatically,
in order to increase the status and wealth of a player’s
character. This is normally a time-consuming pro-
cess, but having automated software automatically
play the game frees one up from the tedium of actu-
ally playing the game, in order to be highly ranked
among other players. Ironically, players who use
these tools do not feel they are doing anything wrong,
but rather feel that they are making the game more
fair, because they are not actually able to devote the
same amount of time to the game as other players
[20].

The use of automated software also takes place in
other games as well. For example, in Diablo II, au-
tomated software can be used to find rare items, and
duplication bugs exist which allow a player to dupli-
cate any item they wish. In the popular game Ev-
erQuest, which boasts the 77th most wealthy econ-
omy in the world [10], entire characters have been sold
for upwards of $1, 4002. Because of this widespread
selling of EverQuest items and characters, Sony has
had such sales banned, in order to keep the game fair
for honest players [16].

All of these examples illustrate how multiplayer
games can become unbalanced, because a population
of users are able to perform behaviors in the system
which give them an unfair advantage. In multiplayer
games, the actions of one user have a direct conse-
quence on the actions of other users, and when a user

2These are real US dollars.

behaves in such a way as to unbalance the game, it
can ruin the enjoyment of the game for others. This
is especially true if one player’s actions gives him the
power to completely dominate over his opponents. Or
worse yet, having tangible rewards for performing ac-
tivities not intended by the game’s developer, such as
duplicating items, can encourage players to perform
these activities, further upsetting the game’s balance.

Returning the discussion to FPS games, such as
CounterStrike or Quake III, automated software ex-
ists which gives players an extremely unfair advan-
tage over their opponents. These programs are called
“aim bots”, and they automatically aim a player’s
targeting reticle over their opponent’s head [14]. This
allows the player to kill their opponent without hav-
ing to aim manually, and without needing any real
skill in the game [2].

Cheating detection has been studied in FPS games,
and software has been developed to detect when a
player is cheating. PunkBuster, created by Even Bal-
ance, Inc. is one of the more popular anti-cheating
programs, and has been incorporated into many of
today’s popular FPS games [12]. PunkBuster works
by scanning the memory of a player’s computer for
known cheats and exploits, and reporting them to
the game server. However, this system is dependent
on a client-server architecture, where the server is a
trusted entity, and as such, cannot be used in a dis-
tributed environment.

Ultimately, behavior on the Internet is character-
ized by reduced inhibition [8]. People are less inhib-
ited in their speech and actions, and thus are more in-
clined to behave in a way which is more deviant from
traditional social norms. Our research is concerned
with deviant behavior that impacts negatively others.
In a general context, our process is one of identifying
behaviors which can cause a negative impact, and of
create a method to detect when these behaviors are
occurring.

Therefore, in the specific context of a distributed
multiplayer game environment, and after satisfying
the objectives presented above, our goals are to:

• Examine what cheating behaviors can be exe-
cuted in the environment,

• Create an algorithm to detect these behaviors,
and

• Evaluate the performance of this algorithm.

In the next section, we give an overview of the
project, describing each component of the implemen-
tation and of the multiplayer game. In Section 3,
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we explain Mercury, a scalable publish-subscribe
system specifically for multiplayer games. Sections
4 through 6 detail our implementation of Mercury,
the framework we created for interfacing Mercury
with an application, and the multiplayer game we
developed. In Section 7 we describe potential cheat-
ing behaviors which could be executed in the system,
present an algorithm to detect when those behaviors
are being used, and evaluate the performance of this
algorithm. Sections 8 and 9 detail future research
directions and our major conclusions.

2 Project Overview

Our first objective in this research was to find a rout-
ing protocol which allows for the distribution of game
state among the nodes participating in a game, with-
out the requirement of a central server or authority.
This protocol must also be able to handle game state
updates at a fast enough rate (i.e. the protocol imple-
mentation must not add a significant amount of over-
head) in order to meet the requirements of a real-time
FPS game, such as Quake3.

The protocol we chose to use in our project is
called Mercury, which is a fully distributed publish-
subscribe routing protocol for Internet games. Mer-
cury has been documented in [3], and uses a novel
content-based routing protocol. The reason we chose
Mercury is for its subscription language, which al-
lows a node to receive publications based on the con-
tents of those publications. The details of Mercury,
as well as a primer on publish-subscribe systems, are
presented in the next section.

Next, we created an implementation of Mercury
in C++, since it has only previously been imple-
mented in a simulation environment. We also eval-
uated it’s performance, using the Emulab network
testbed [4]. Details of the Mercury implementa-
tion, as well as it’s performance evaluation, can be
found in Section 4.

Finally, we sought and found a game environment
for studying cheating and cheating detection, and cre-
ated several algorithms for detecting these behaviors.
The behaviors we were interested in were behaviors
that either exposed more information to a player than
they were privy to, or behaviors which altered the
game state in a way inconsistent with the normal

3The ideal “ping”, or amount of time for a packet of in-
formation to travel from the player’s computer to the server
and back, is less than 50ms. Therefore, the protocol overhead
should not be significantly larger than this number.

course of game events. For example, altering one’s
movements contrary to the rules prescribed by the
game’s physics was a cheating behavior we were pro-
foundly interested in. In order to study and focus
on cheating behaviors and methodologies, the gam-
ing environment we created was rather simplistic in
nature, designed with as few specific implementation
details of game programming as possible. This en-
vironment is discussed in Section 6, and an analysis
of the cheating behaviors we discovered, as well as
algorithms to detect them, can be found in Section 7.

2.1 Project Structure

The environment we developed for studying cheat-
ing detection can be seen in Figure 1 as a three tier
system. On the bottommost layer lies the routing
protocol, which is currently our implementation of
Mercury. One feature of our design is that other
routing protocols can be implemented and swapped
in, in place of Mercury. This allows us to compare
the performance of several different publish-subscribe
systems, all in the same context. In order to accom-
modate this “hot-swappability”, the framework layer
was added to serve as an intermediary between the
application layer and the routing layer. The frame-
work is responsible for the management of game state,
for publishing world objects when they have changed
their state, and for providing a clean interface be-
tween the application and routing layers.

Figure 1: System component diagram

Once the implementation of Mercury and the
framework were complete, we created an application
built on top of this foundation, named Caduceus.
This application is a real-time two-dimensional space
shoot-em-up game, based off of the popular game
“KAsteroids” [9], which is in turn based off of the
classic arcade game “Asteroids”.

Now that we have given an overview of the compo-
nents of this system, we next present a description of
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the Mercury routing protocol.

3 Mercury – Theory

A publish-subscribe system such as Mercury can
be viewed in many different lights; it can be seen
as a distributed database, or as a method of con-
tent delivery. Both of these views are applicable to
our project. For both of these views, we define the
notion of an object as an encapsulated piece of infor-
mation which represents a literal object in the game
world. In a game such as Quake, information regard-
ing a player’s health, location and status would be
encapsulated into a player object. The various pieces
of information which compose an object are known
as the state of that object. There is a special type of
state known as an attribute, which is used as part of
Mercury’s content-based routing scheme.

In a publish-subscribe system, there are two types
of participants: publishers and subscribers. For the
purposes of this example, we consider these two par-
ties to be separate entities, but they can be one and
a same. In the context of a content delivery system,
a publisher is a content-generator, and in the con-
text of a distributed database, he is a database up-
dater. The publisher lets others in the system know
when an object has changed its state, when a new ob-
ject has entered into existence, or when an object has
ceased to exist. A subscriber, on the other hand, is
interested in receiving certain objects when they are
published. The specific criteria for receiving these
objects is up to the subscriber, and is based on the
values of the attributes of an object. For example,
if the objects in the world are pieces of text, a sub-
scriber can choose to receive all objects which have a
“font” attribute of “bold”, or a “color” attribute of
“red”. The Mercury routing system’s main func-
tion is to match publications with subscriptions, in
order to deliver relevant publications to those who
subscribed to them.

3.1 Publications and Subscriptions

To understand how the routing system works, the
concept of a named, typed attribute must first be un-
derstood. In a publish-subscribe system, publishers
publish objects which are collections of state and at-
tributes, and each of these attributes has three com-
ponents: an attribute name, a type, and a value. The
attribute name is what the subscriber uses as their
criteria for receiving publications. The type repre-

sents what kind of attribute the attribute is, and can
be one of {char, int, float, double, string}. These
types correspond to the identically named standard C
primitive types, with the exception of string, which
is the C++ “string” type. Finally, the value is the ac-
tual value of the attribute, and is of the type specified
in type.

Now that the building blocks of a publication are
known, here is an example of a publication, for a very
simple object which represents a player in a 2D game:

State:
  name:  Justin
  health:  100%

Attributes:
  <x-location, int, 50>
  <y-location, int, 25>

Figure 2: Example of a publication in a simple 2D game

In order for my friend, who is also participating
in this simple 2D game, to receive my player object
when I publish it, he needs to create a subscription.
The Mercury subscription language is a subset of
a relational SQL-like query language, and allows for
rich and complex queries. A subscription is a con-
junction of fields of the form: {type, attribute name,
operator, value}. The attribute name, type and value
fields have identical definitions as for publications.
New to subscriptions is the operator field, which can
be one of { <, >, ≤, ≥ and = }. In the case that
the type is a string, the string operators equal, prefix
and postfix are also valid. All operators have their im-
plied meaning, and in the case of strings, prefix (A,B)
means that string B has as it’s first length(A) charac-
ters the string A. Postfix (A,B) means that the string
B has as it’s last length(A) characters the string A.

To continue the example of a 2D game, one sub-
scription which contains the publication shown in
Figure 2 would be as follows4:

3.2 Routing Mechanism

In order to satisfy the needs of a real-time multi-
player game, the routing mechanism must be both
fast and efficient, as well as correct. By correct, we
mean that publications must be delivered to those

4There are many other specific subscriptions which would
“cover” the publication; this is only one such example.
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Subscription:
  <int, x-location, >, 10>
  <int, x-location, <, 60>
  <int, y-location, >, 20>
  <int, y-location, < 70>

(50, 25)

(10, 20)

(60, 70)

Figure 3: Example of a subscription in a simple 2D game

parties who subscribed to them — publications can-
not be dropped for the sake of efficiency5.

Attribute Hubs

Mercury divides publication and subscription rout-
ing responsibility among nodes by partitioning them
into groups called attribute hubs. Each hub is re-
sponsible for a single attribute in the overall schema,
where the schema is the entire list of named, typed
attributes in the system. Let Ha denote the attribute
hub for attribute a.

Nodes inside each attribute hub are logically ar-
ranged in a circle, with every node keeping track of
its successor and predecessor. Each node is respon-
sible for a range of attribute values. For numeric
types, the mapping is straightforward since they have
a bounded range; at worst, it would be bounded by
the size of the data type. Thus, for an attribute a of
integer type (32 bits), each node would be responsi-
ble for an interval of length 232/|Ha|. In practice, the
dynamic range may be much smaller. For example,
in Figure 4, the maximum value of either coordinate
is dictated by the size of the virtual world.

String attributes, on the other hand, can have arbi-
trary length, so partitioning them efficiently requires
making a few trade-offs. By partitioning them on
the basis of first few or last few characters, we can
support either prefix or postfix operators efficiently.
For example, a node can be in charge of all strings
starting with ‘d-f’, and then the subscriptions stored
at this node can match against publications having
a certain string prefix. Because of this, the substring
operator cannot be efficiently supported by the Mer-

5Dropping publications may be an improvement that can be
made in the future, but since this system is being developed
with more than just video games in mind, we currently seek to
ensure correctness.

cury system. This demonstrates the trade-off be-
tween scalability and expressiveness of the selectivity
mechanism. In our implementation of Mercury, we
chose to support string prefixing rather than postfix-
ing.

Routing of Publications and Subscriptions6

Let A denote the set of attributes in the names-
pace. Let n = |A| be the cardinality of the
set. For example, in a FPS game, A could
be { x-coordinate, y-coordinate, z-coordinate,
event-type, player name, team }. Suppose that AS

denotes the set of attributes in a subscription S. Sim-
ilarly, let the set of attributes present in a publication
P be denoted by AP .

The routing of subscriptions and publications is
done in the following manner: A subscription S is
routed to Ha, where a is any attribute chosen from
AS .

Given a publication P , the set of subscriptions
which could match P can reside in any of the at-
tribute hubs Hb where b ∈ AP . Hence the publica-
tion P is sent to all such Hbs. Thus, it is possible
that a publication could be sent to all the n attribute
hubs. However, we believe that in a typical applica-
tion, only a few attributes will be popular, such that
most subscriptions will contain reference to at least
one of the popular attributes. In this case, hubs for
these attributes alone will suffice. In the rare case of
a subscription not containing any of these attributes,
we can send it to all the hubs.

In the most näıve routing scheme, content gets
routed along the circle using successor and prede-
cessor pointers. A node in Ha compares the value
of attribute a in a publication or a subscription to
the range it is responsible for. If the value of a falls
within the node’s range, then that node is said to be
the rendezvous point for that publication or subscrip-
tion. Depending on the results of the comparison, it
stores and/or forwards the message appropriately.

Figure 4 illustrates the routing of subscriptions and
publications. It depicts two hubs Hx and Hy corre-
sponding to the X and Y coordinates of a player.
The minimum and maximum values for the x and y
attributes are 0 and 320 respectively. Accordingly,
the ranges are distributed to various nodes. The sub-
scription enters Hx at node d and gets stored at nodes
b and c. The publication is sent to both Hx and Hy.

6Portions of this section are reproduced from [3] with per-
mission.
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In Hx, it gets routed to node b and matches the ear-
lier subscription, while in Hy, it is thrown away after
getting routed to node e.

x <= 150

int

int

int

int x >= 50

y <= 250

y >= 150

[0,80)

[240,
320)

a

c

d

b
[80,160)

[160,240)

int x 100
int y 200

(subscription)

(publication)

[200, 320)

[100,200)

g

e

f

H

H

x

y
[0,100)

Figure 4: Routing of publications and subscriptions. A

subscription is routed to any one of the attribute hubs Hx

or Hy. In the figure, the subscription is stored at nodes c

and d. The publication is routed to both hubs since any

one of them could have stored the relevant subscriptions.

In this scheme, a publication gets routed to exactly
one rendezvous point since it carries a single attribute
value. A subscription, however, can contain ranges,
and hence, can be stored at any number of rendezvous
points depending on how much attribute space it cov-
ers.

One final feature of the routing protocol which
needs to be discussed is how a node joins the system.
In order to be able to direct a node to the appro-
priate attribute hub, some subset of nodes needs to
collectively know the entire attribute schema. We call
these nodes bootstrap nodes, and they are the primary
source of contact for a node who wishes to join the
system. Learning the address of a bootstrap node can
be done in an out-of-band fashion, and a node only
needs to contact a single bootstrap node in order to
join an attribute hub.

When a node J contacts a bootstrap node to join
the system, the bootstrap node responds with all
of the information required to connect to another
node N within a specifically chosen attribute hub,
along with the specific information about the at-
tribute (absolute minimum and maximum value, at-
tribute name, etc.). Load balancing can be performed
at the bootstrap nodes by biasing how the attribute
space is partitioned, in order to accommodate areas
of the attribute space which are more or less popular.
After J receives the information about N , J contacts
N and sends a request to join. N then splits his at-

tribute space in half, keeps the upper half, and sends
the lower half to J . Then, N sends a message to his
predecessor, informing him of the change in topology,
and N , N ’s predecessor, and J update their prede-
cessor and successor pointers accordingly.

Routing Optimization

There is a routing optimization we consider to en-
hance the performance of the routing protocol. In
the above routing scheme, a publication takes on av-
erage n/2 hops along the circle to get routed to its
rendezvous point. This average can be reduced by
having a rendezvous point send an acknowledgement
(ACK) whenever it matches a publication. This ACK
contains the node range of the rendezvous point, and
is sent to the node which originated the publication.
When an ACK is received from a rendezvous point,
the rendezvous point’s address is cached, such that
future publications can be sent directly to the ren-
dezvous point, without having to travel a great dis-
tance each time.

4 Mercury – Implementation

This section describes our implementation of Mer-
cury, and details the process by which packets are
routed. Mercury has previously been implemented
in a simulation environment, but has not yet been im-
plemented as an actual computer program. Our im-
plementation of Mercury uses the C++ language,
with a very small section of C code used for debugging
purposes. It has been compiled and run successfully
on both Red Hat Linux 7.1 (Seawolf) and 8.0 (Psy-
che).

One notable feature of the implementation is that
it is not dependent on the specific routing mechanism
being used. Thus, many of the C++ classes we cre-
ated can be re-used for a different publish-subscribe
routing scheme, and some of the classes can even be
re-used in other general networked applications.

A description of the network protocol is provided,
followed by documentation of the C++ classes cre-
ated for the implementation. Sections 4.3 through 4.5
discuss the specific process of joining an attribute hub
and routing packets, and Section 4.8 discuss how well
our implementation performs in a real-world bench-
mark.
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4.1 Network Protocol

The Mercury network protocol is built on top of the
TCP/IP protocol stack to ensure reliable, in-order de-
livery of packets. The UDP protocol is used for send-
ing periodic heartbeats in order to maintain network
connections and send status information. Each net-
work message is prefixed by 3 bytes of header data —
one byte is used for determining what kind of message
is being transmitted, and 2 bytes are used to deter-
mine how long the rest of the message is, in bytes.

There are 12 different kinds of messages which can
be sent, and they are:

• INVALID MSG: used to signify that an invalid mes-
sage was read (such as when a connection is
dropped prematurely)

• MERC HEARTBEAT: heartbeat packets are sent pe-
riodically to verify that connections are still ac-
tive, and to update the information at the boot-
strap nodes

• MERC ACK: when caching is being used, acknowl-
edgements are sent whenever a publication is
matched at a rendezvous point

• MERC JOIN REQUEST: this type of packet is sent
when a new node wants to join an existing node
in some attribute hub

• MERC JOIN RESPONSE: when a node receives a
join request, this message is sent in response to
let the node know of either the success or failure
of the join

• MERC UPDATE SUCCESSOR: when a node joins an
attribute hub, the node which is being joined
needs to inform his predecessor that a new node
is joining in between, and should update his suc-
cessor to become the new node

• MERC CHANGING SUCCESSOR: when a node re-
ceives an update successor message, a changing
successor message is sent to the new successor
node

• MERC PUB: this represents a publication of a
world object

• MERC MATCHED PUB: when a publication is
matched against a subscription, the publication
is delivered to the subscriber as a matched
publication, so the subscriber knows to deliver
it to the application

• MERC SUB: this represents a subscription to any
number of world objects based on their at-
tributes

• MERC UNSUB: this represents an “un-
subscription”; when this type of packet is
received, the receiver removes the given sub-
scription from his database

• MERC BOOTSTRAP: this message is sent by the
bootstrap server to a joining node, and contains
information about the attribute hub and host the
node is to join

4.2 Mercury Class Structure

There are six different types of classes used in the im-
plementation, and they are: data, network, routing,
utility, cache and byte conversion.

Data

The data classes are responsible for encapsulating and
storing the actual data which is sent over the network.
Each data class inherits from the same superclass, the
Application Data Unit (ADU). The ADU class keeps
track of what type of data is being stored by the
particular class instance. The classes which inherit
from ADU are:

• AckData: When a publication reaches its ren-
dezvous point, an acknowledgement is sent back
to the originator of the publication. This ac-
knowledgement contains the address of the ren-
dezvous point, as well as the range of attribute
space it is responsible for (its NodeRange).

• BootstrapData: This class is used by the boot-
strap server to tell a joining node the name of the
attribute hub they are joining, the type of the at-
tribute, the address of the host to join, and the
absolute minimum and maximum values of the
attribute.

• HeartbeatData: Each node in the system sends
periodic heartbeats to the bootstrap server.
These heartbeats contain a node’s NodeRange,
which allow the bootstrap server to keep track
of how much attribute space is covered by each
node. This information can be used in the fu-
ture to help the bootstrap server load-balance
attribute hubs when responding to join requests.
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• PubsubData: This class is used to encapsulate
both publication and subscription data, by stor-
ing pointers to the publication and subscription
wrapper classes (see Section 5.1 for more infor-
mation about these wrapper classes). The sender
of a publication/subscription is also stored in
this class.

There are also four data classes which are used
when a node joins an attribute hub:

• JoinRequestData: When a node wishes to join
another node, they send a join request to that
node. This join request simply contains the ad-
dress (IP and port) of the joining node, and is
explicitly provided to work around firewall and
network address translation (NAT) systems.

• JoinResponseData: After a node receives a join
request, it responds with a join response. This
response has an error flag signifying whether the
join was successful or not. If a node tries to join
another node which is not joined, then the error
flag states this condition. The join response also
contains the range of attribute space the joining
node will be responsible for, as well as the ad-
dress of the node who is to become the joining
node’s predecessor.

• UpdateSuccessorData: When a node success-
fully joins another node, it is fit in between two
nodes in an attribute hub’s circular topology.
Thus, in order to keep the structure circular, a
node sends an update successor message to its
predecessor, after it has received a join request.
This update successor message contains the ad-
dress of the joining node, and upon receipt, the
receiving node will update its successor to the
node specified in the message.

• ChangingSuccessorData: After a node receives
an update successor message, it sends a chang-
ing successor message to the new successor node.
This lets the new successor node know that it has
completed its joining process, and is now part of
the attribute hub. This class does not have any
data members, and is just used to signal the join-
ing node that the joining process has completed.

A full example of the joining process is given in
Section 4.4.

Finally, there is one data class which is responsible
for storing all of the information pertaining to an at-
tribute hub, and to a node’s specific role within that
attribute hub. That class is:

• NodeRange: Stores the name of an attribute, the
type of that attribute, the minimum and maxi-
mum values that a node is responsible for, as well
as the absolute minimum and maximum values
the attribute can take. Each node in an attribute
hub has a node range which covers some portion
of that hub’s attribute space.

Network

There are three classes which support network oper-
ations in our implementation. These classes are used
to encapsulate network messages and relevant details
of these messages, as well as manage TCP/IP con-
nections and store information about remote hosts.

• Message: This class is a general-purpose
“packet” class, which stores information about
transmitted messages. The class has a pointer
to an ADU, which stores the actual transmitted
data. The sender of the message is also stored
here, as well as the number of hops this mes-
sage travelled to reach the current node. Finally,
this class stores a timestamp of when the class
was last serialized. This allows our benchmark-
ing utility, discussed in Section 4.8, to track how
long a packet takes to reach its destination.

• Connection: Connections are the most impor-
tant piece in a networked application, and this
class contains all of the necessary information
to establish and maintain a TCP/IP connection.
The socket, IP address, and port are all stored
in this class, as well as information regarding
the number of times connection establishment
should be tried before failing. This class provides
a member function which performs connection
establishment, retrying as necessary.

• Peer: The peer class is used to keep track of
other nodes in the system. Associated with a
peer are the NodeRange it is responsible for, the
IP address and port of the peer, as well as a
Connection which can be used for communi-
cating with the peer. Other information stored
about peers includes a flag indicating whether
or not they have joined an attribute hub, the
timestamp of the last heartbeat received from
the peer, and the time at which they joined the
attribute hub.
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Routing

As shown in Figure 1, the foundation of our system is
the Mercury routing layer. In order to provide an
architecture where multiple types of routing schemes
can be used, we created an abstract Router class
which can be subclassed and implemented in order
to support different routing policies. This class pro-
vides a clean interface to the framework layer, so the
framework layer does not need to know about the
specifics of the routing policy being used. There are
currently two classes which inherit from Router, and
they are:

• FloodRouter: This is a very simple router which
floods all publications to every other node in the
system. This router was developed primarily as
a means of developing the Router interface.

• MercuryRouter: This is where the heart of
Mercury lies. This class is responsible for
reading in packets from the network, forwarding
them to peers, and delivering them to the frame-
work if necessary. This class also reads in pub-
lications and subscriptions from the framework
layer, serializes7 them for network transport, and
routes them as appropriate. The current imple-
mentation of MercuryRouter supports single at-
tribute routing, as well as caching. Multiple at-
tribute routing has also been implemented, but
has not been used for our benchmarks or game.

As for data members, this class keeps track of
a lot of state. The router knows the address
and port it is running on, it keeps track of the
socket being used for listening for new connec-
tions, it stores pointers to its predecessor and
successor nodes, it knows when it has joined an
attribute hub, it keeps track of all of the active
TCP/IP connections, as well as its connection
to the bootstrap server for sending heartbeats.
Subscriptions are also stored in the router, and
are checked whenever a publication is matched.

Utility

A few utility classes were created to ease certain pro-
gramming tasks. None of these classes are instanti-
ated; rather, they are used to bundle together func-
tions which perform similar tasks. These classes are:

7The terms serialize and deserialize are synonymous with
the terms marshall and unmarshall. In this paper, we will
remain consistent and use the former two terms.

• BufferManager: To avoid having to constantly
allocate and deallocate buffers when reading
from a socket, this class was created to manage
a temporary buffer for this purpose.

• UThreadFactory: This class provides static
wrapper methods for some of the common
pthread functions — creating and reaping
threads, as well as initializing, locking, unlocking
and destroying mutexes. These wrapper func-
tions check for any error conditions which may
occur when using these functions.

• UNetworkFactory: This class provides wrap-
per functions for reading and writing data using
sockets. These wrapper functions check for any
error conditions returned when reading or writ-
ing.

• Utils: Miscellaneous functions, such as getting
the current time, and taking the difference be-
tween two times, are stored in this class. Con-
verting between an IP address in integer format
to string format is also part of this class.

Cache

Caching is a major routing optimization we imple-
mented, and as such, a few classes were created to
support different types of caches. Much as with the
Router class, the Cache class provides an interface
for working with a general cache, and this class can
be subsclassed in order to produce different types of
caches with different caching policies. The caching
classes are:

• Cache: Provides an interface from which specific
types of caches can inherit, and stores how many
entries are to be stored in the cache.

• CacheEntry: Each entry in the cache is com-
posed of a node’s address, its NodeRange, and
the timestamp of when the entry was last ac-
cessed in the cache.

• SingleCache: This class inherits from Cache
and provides a very simple queue-style cache,
with new entries pushed to the back, and old
entries popped from the front.

• LRUCache: This class implements an LRU style
cache. New entries are inserted into the cache
until it is full, and then the least recently used
cache entry is evicted in order to make room for
a new entry.
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Byte Conversion

In order to ensure byte-ordering compatibility with
Mercury nodes running on different platforms, the
byte conversion classes provide a mechanism for con-
verting binary data (such as integers and floats) into
network byte order for transmission over the network,
and for converting binary data back to host byte or-
der when it is received. The two classes which per-
form these functions are:

• Swapper: Provides an interface for a byte-
swapping class used to convert binary data to
and from network byte order. The three types of
data which can be converted are short (2 bytes),
int (4 bytes), and float (4 bytes). The actual
class which is used for byte swapping is deter-
mined at runtime, based on a test of what byte-
ordering scheme the host uses, little-endian or
big-endian.

• BigEndianSwapper: This class is used on big-
endian machines.

• LittleEndianSwapper: This class is used on
little-endian machines.

• ByteConverter: This class is the front-end to
the byte conversion service, and uses one of the
swapper subclasses to perform the actual byte
conversion. Primitive types can be either written
to a temporary buffer or read from a given buffer,
with all of the byte swapping taking place behind
the scenes. This class is used whenever a short,
integer, or float must be written to or read
from the network (as is the case when reading
and writing packet headers).

4.3 Bootstrap Server

The bootstrap server is the first point of contact when
a new node wants to join an existing attribute hub.
Because of the specific network topology which needs
to be maintained when nodes join and leave an at-
tribute hub, having one server in charge of managing
the network topology is the easiest way to enforce
the topology. The bootstrap server is implemented
as a separate program, but can be run concurrently
with an instance of a Mercury node. An instance
of the bootstrap server can handle any number of at-
tributes, and in the current implementation, we use
only one bootstrap server instance for all attributes
in the system. Multiple bootstrap servers could be

used in the future, with each responsible for a differ-
ent set of attributes. This would also allow for a more
dynamic attribute space, where the entire schema of
the network is not completely known to any one node.

The bootstrap process is very straightforward —
when a node wants to join the system, they connect
to the bootstrap server. Then, the bootstrap server
picks an attribute hub for the node to join, and tells
the node who to connect to in that hub. In the
current implementation, the bootstrap server keeps
a fixed-size FIFO queue of “current” nodes in each
attribute hub, where “current” is defined as having
recently received a heartbeat message from a node.

4.4 Joining an Attribute Hub

After a node receives the address of another node to
connect to, the joining process begins. This process
is detailed in Figure 5.

"x_coordinate"
double

[0.0, 10.0]

A
1: [0.0, 4.0)
2: [2.0, 4.0)

D
[8.9, 10.0]

C
[6.7, 8.9)

B
[4.0, 6.7)

E
2: [0.0, 2.0)

1.  JOIN_REQUEST

2.  JOIN_RESPONSE: "x_coordinate", double, [0.0, 2.0), B

3. UPDATE_SUCCESSOR: E

4.  CHANGING_SUCCESSOR

Figure 5: The joining process

In Figure 5, node E joins node A. At step 1, node
E sends a JOIN REQUEST packet to node A. At step
2, node A splits his NodeRange in half, and gives
the lower range to node E. Since “x coordinate” is
of type double (i.e. a continuous type), node E’s
range becomes [0.0, 2.0), and node A’s range becomes
[2.0, 4.0). Note the open upper interval for all nodes
in the attribute hub except for D, which must keep
a closed upper interval because it is the attribute’s
absolute maximum value.

Once A has sent the join response to node E, he
sends an UPDATE SUCCESSOR message to node D, in-
forming him that node E will become his new suc-

10



cessor. Node A also updates his predecessor link to
point to node E, instead of node D. Node D now up-
dates his successor link to point to node E, and he
informs node E that his link has been updated by
sending him a CHANGING SUCCESSOR message. After
this message is received by E, the join is complete.

4.5 Routing Packets

Routing packets works exactly as described in Sec-
tion 3.2. There is one slight departure from the rout-
ing protocol which we make in our router, which deals
with delivering packets to subscribers. When a pub-
lication matching our node range is received, we ask
the framework if the application wants to handle the
publication, or if we should deliver the publication to
those who subscribed to it. The framework in turn
asks the application what should be done, and the
application then makes a decision. It can either:

• tell the router to forward the matched publica-
tion to subscribers, which is the normal routing
behavior, or,

• drop the publication entirely, in which case the
subscribers will not receive the publication, or

• drop the publication which was received, but cre-
ate new publications which will be delivered to
subscribers

This last behavior is the most interesting one, and
is the one we perform in Caduceus. Briefly, the rea-
sons for choosing this third path are because the ob-
jects which are published by the players in the game
are not the same objects that get delivered to the
subscribers; rather, the published objects act as mod-
ifiers for other objects which are stored at the ren-
dezvous point, and it is these other objects which get
delivered to the subscribers when a publication is re-
ceived. More information about this design decision
can be found in Section 6.2.

4.6 Debugging Features

In order to vie for the correctness of our implemen-
tation, as well as just figure out how the system is
operating, we implemented a small suite of debug-
ging aids.

Local Logging

Each instance of Mercury creates a log file on
startup. This log file is a dumping ground for all

sorts of debugging information. For example, when
a packet is received, output is written to the log file
detailing what kind of packet it was, and what its
contents were. Or, when a node splits its range as
part of the joining process, the details of the split
are recorded. The details of matching publications
against subscriptions are also logged.

The treatment given to this feature may seem lack-
ing, but it is worth mentioning because the local ap-
plication log has been extremely useful in debugging
and correcting our implementation. Having a sep-
arate place to store the actual contents of packets,
rather than just dumping them all to the console, is
very useful, especially when those contents are not
always needed.

Remote Logging

In contrast to this, the more exciting logging feature
is the remote logger. The remote logger is a separate
program which reads in logging messages on a UDP
port, and outputs their contents to a single log file.
The log file is set up so that messages from different
hosts are segregated and separately labelled, and the
master log file provides a global view of the events
that occur in the system, in order. When debugging
the joining process, for example, the order of events
shown in Figure 5 is clearly displayed in the master
log, along with additional information about the de-
tails of the join. It should be noted that the remote
logger is a tool which is not specific to Mercury,
and can be re-used for other applications.

4.7 Object Storage and Serialization

Now that the specific details of routing messages have
been discussed, it is time to discuss what these mes-
sages are, and how these messages correspond to ob-
jects in some virtual game world. One of the major
difficulties in programming a system to send struc-
tured data over a network is figuring out a good
method for encoding that structured data. For exam-
ple, a C++ class can contain primitive data, point-
ers to other objects, C style structures, and unions.
During the initial phases of implementation, it was
decided that objects would be sent over the network
as a stream of these structures; so if a class was com-
posed of an integer, a character, and a pointer, the
integer, character and pointer would be sent over the
network.

However, this leads to an obvious problem. Point-
ers are just memory addresses, and a pointer which

11



points to some object O on one computer may point
to garbage on another. Therefore, our goal was to fig-
ure out how to serialize complex composite objects in
order to transmit them over the network in a mean-
ingful way.

Note that the term “object” is being used in an
overloaded fashion. From the perspective of the game
world, an “object” is some entity in that world. Using
a previous example, a player in a game would be an
“object” in the world. This object can have one of
several representations, and they can be:

• an object stored in the computer’s memory. This
kind of representation entails that some C++
object has been instantiated in computer mem-
ory. There can be many different instantiations
of the same object, spread across different com-
puters. For example, for a player in a virtual
world, each participant in the virtual world will
have allocated memory to store this player ob-
ject. However, there is really only one player
object in the game world.

• an object stored in the computer’s memory, in se-
rialized form. While this representation is stored
in computer memory, it is not stored in a format
suitable for modification. Rather, it is stored in
a format suitable for network transport, or for
outputting to the console or a log file.

Now that this distinction has been made, the goal
now becomes being able to convert between the mem-
ory representation to the serialized representation
such that the serialized representation can be trans-
mitted over the network to another node, and dese-
rialized back into the memory representation.

In order to achieve this goal, we chose to use the ex-
tensible markup language (XML) [5] for the serialized
representation of world objects. XML is a markup
language for documents containing structured infor-
mation, and as such, it provides a nice mechanism for
representing both simple and complex C++ classes.
The pointer problem is also solved using XML, be-
cause an object A containing pointers to objects B
and C can serialize objects B and C as part of the
serialization of object A.

To give an example of what a serialized object looks
like in XML format, return to the example of a pub-
lication given in Figure 2. A serialized version of this
publication is:

The example above is only one way to serialize an
object, and is in fact much simpler than how objects
are really serialized in our implementation.

<player>
  <name value="Justin">
  <health value="100">
  <attribute>
    <name>x_location</name>
    <typedval type="INT" value="50">
    <name>y_location</name>
    <typedval type="INT" value="25">
  </attribute>
</player>

Figure 6: Example of a serialized object

In order to perform actual XML serialization and
deserialization, we use the Xerces C++ XML Parser
[23] created by the Apache XML Project [24]. Xerces-
C++ is a validating XML parser written in C++, and
is fully open source. A wrapper class for interfacing
with the parser was created, and provides parsing
services to both the framework and routing layers.

4.8 Benchmarking Utility and Results

In order to test the speed of our implementation
of Mercury, as well as correctness, we ran bench-
marks on the Emulab network testbed [4]. Emulab
is a network of computers designed to emulate a real
network, and allows researchers around the world to
run network experiments in a very precise, controlled
manner. Every aspect of an experiment on Emulab
is customizable, from the network topology and link
delays to the operating system each node runs. Thus,
experiments performed on Emulab reflect the actual
performance of a system, independent of any actual
network conditions which may affect results.

For our experiments, we used 30 physical Emulab
nodes with a randomly generated network topology.
All of the link delays were set to 0 in order to ensure
that only the routing and serialization overheads were
being accounted for.

The experiments we performed involved setting up
a single attribute hub for a float value between 0.0
and 1.0, and having a single node send publications
of this attribute chosen from two different probability
distributions: uniform, and Zipf. The uniform dis-
tribution chooses values in the range [0.0, 1.0], with
each value having the same probability of being cho-
sen. The Zipf distribution, on the other hand, chooses
values based on a power law. The Zipf distribution
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Node count Distribution Cache Avg. delay to Avg. hops
match (ms)

50 Zipf no cache 249 18.358
log n 42 3

Uniform no cache 160 13.58
log n 30 2.517

100 Zipf no cache 475 35.8
log n 60.2 4.48

Uniform no cache 312 27.3
log n 42 3.7

150 Zipf no cache 454.18 33.8
log n 106.29 7.6

Uniform no cache 368.77 32
log n — —

Table 1: Emulab benchmark results

is highly skewed, and is used to model popularity.
Some values in this distribution are extremely pop-
ular, and most values are not very popular. For our
experiment, we used a Zipf θ value of 0.95.

We also ran our experiment using either no cache,
or an LRU cache of size log n, where n is the number
of nodes in the attribute hub. This size was chosen
as a tradeoff between cache size and staleness of en-
tries. For each publication, the time taken between
serialization and matching was recorded, as well as
the number of hops the publication travelled to reach
its rendezvous point.

Correctness was evaluated by having each appli-
cation log the publications that were generated, and
by having the routing layer log the publications that
were matched. A Perl script was used to aggregate
results, and see if there were any publications which
were generated but not matched. In all of our tests,
all generated publications were correctly matched in
the system, verifying the correctness of our imple-
mentation. Performance results are presented in Ta-
ble 1.

These results clearly show two things:
• The overhead incurred from routing and

serialization is tolerable for “smaller”
node counts. Between 50 and 100 nodes,
the Mercury overhead added is either below
the 50ms required for real-time FPS games, or
slightly above it. This means that, in its current
implementation, Mercury could be used for a
real-time multiplayer game on a network with
low link delays, and add very little noticeable
lag to the user playing the game. Since current

servers for FPS games top off at around 64 play-
ers [19], our implementation demonstrates that
a distributed architecture can be used to push
the number of simultaneous players to around
double what the current limit is, by incurring a
slight performance hit.

• Caching greatly improves routing effi-
ciency. As mentioned in Section 3.2, caching
is an optimization to the routing protocol de-
signed to reduce the delay in matching publi-
cations, and reduce the average number of hops
each packet takes before it reaches its rendezvous
point. These numbers clearly show that caching
achieves the desired effect, by reducing the aver-
age delay in matching a publication by approx-
imately 82% (for 50 nodes) and 87% (for 100
nodes), and reducing the average number of hops
taken by a publication by 82% (for 50 nodes) and
86% (for 100 nodes).

5 The Framework

The framework was designed to serve as an interme-
diary between an application which wants to use a
publish-subscribe system, and the actual implemen-
tation of that publish-subscribe system. The frame-
work is responsible for keeping track of all of the
world objects in the current view or context, acting as
a local database of objects for the application. Func-
tions are also present in the framework which provide
more direct access to the routing layer, in the event
that an application needs this kind of control.
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5.1 Framework Class Structure

The framework is comprised of several different
classes, and they are:

• RNObject: RNObject stands for replicated,
named object, and this class is the master base
class for all of the objects distributed in the net-
work. Each object has a globally unique iden-
tifier (GUID) in order to ensure that replicated
copies of the object all refer to the same world
object. Globally unique identifiers are a tuple
of {host ip, host port, local ID}, which guaran-
tees that objects created on two separate hosts
will have unique identifications, as long as hosts
don’t assign duplicate local IDs to objects. Ob-
jects also have a replica flag, signifying whether
or not a node owns an object. Replicated objects
are not allowed to be published — only the owner
of an object is allowed to publish it. In the con-
text of a distributed game, this means that only
the owner of a player object can publish that
player object. This makes sense in our context,
since a player would not want other players con-
trolling him. Currently, an object can only have
one owner, but future revisions of Mercury may
allow for multiple owners of an object.

Each object also has a type associated with it,
which allows the object to be typecast to the
appropriate C++ subclass. Finally, each object
has a “dirty” flag signifying when one of the ob-
ject’s data members has changed, and the object
is ready for re-publication.

The RNObject class also provides a unified inter-
face for serializing and deserializing objects, en-
forcing the policy that all objects must be able
to be serialized for delivery over the network,
and deserialized for recovery from the network.
The actual serialization code is left up to the ob-
ject, and can be automatically generated using
a C++ preprocessor by examining an object’s
C++ header files. Currently, we have written
a Python script to implement this preprocessing
step, based on a formal specification of a classes
data members.

• ObjectRegistry: The ObjectRegistry is a
storage container for RNObjects. Any objects
which are received from a subscription are stored
in this class, and any objects which the appli-
cation publishes on the network are published
through this class. For example, in a simple

game, a player object which is published on the
network would be stored in the object registry.
Currently, this class is implemented as a hash
table, using an object’s GUID as the hash key.
This class also supports iteration, so new objects
with unknown GUIDs can be found.

• Controller: The Controller is the heart of the
framework. It provides the means for commu-
nication between the application and the rout-
ing layer, and it is responsible for maintaining
the ObjectRegistry of world objects by pub-
lishing objects when they are dirty, and updat-
ing objects when new publications arrive from
the network. Objects become dirty when they
are modified by the application. The controller
is also responsible for passing subscriptions from
the application to the routing layer.

One special implementation detail about the
controller is that we enforced a policy of having
all nodes first join the attribute hub before send-
ing publications, when running our experiments
in Section 4.8. This policy is strictly an imple-
mentation detail, and is not specific at all to the
Mercury specification. This policy was needed
in order to guarantee accurate benchmarking re-
sults; if nodes were allowed to publish immedi-
ately after joining the attribute hub, then pub-
lications would be routed before all of the nodes
joined the hub. This would introduce incorrect
data into our results, as the hop counts would
be lower for the packets which were sent before
all nodes joined the attribute hub. Thus, we en-
force that no publications are routed until after
all nodes have joined the attribute hub.

The way we enforced this policy was by making
the controller drop all publications from the ap-
plication until the SIGUSR1 signal was received.
This signal can be sent to an application by us-
ing the “kill” command, and a Perl script was
written to iterate through all running Mercury
nodes sending them this signal, after all nodes
had joined the attribute hub. This way, publica-
tions were only routed until after all nodes joined
the attribute hub.

• Value: In order to handle all of the primitive
types which Mercury supports, while at the
same time not having to write separate cases for
each type, the Value class was created. This
class simply serves as a wrapper for the primi-
tive types that Mercury supports (char, int,
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float, double, string). An example of an in-
stance of this class is: {50, int}.
This class also implements comparison opera-
tors, such as less than, greater than, equals, etc.
used for comparing two different instances of the
Value class. Finally, in order to correctly split
an attribute space in half, as is required when
one node joins another, this class implements a
static function which calculates the “distance”
between two values. For all types except string,
the distance between A and B is computed by
abs(B − A). For two strings, str1 and str2, a
different algorithm is used:

1. compute the sum totals s1 and s2 of all
of the letters in the string, by converting
each character to an integer (ASCII deci-
mal value, a = 97, b = 98, . . ., and summing
the integers

2. compute values v1 and v2 by the following
expression, where j ∈ {1, 2}:

vj =
len(strj)−1∑

i=0

2(len(strj)−i) ∗ strj [i]
sj

where strj [i] is the integer value of the ith

character in string strj

3. return abs(v2 − v1)

This algorithm was created in order to judge the
distance of two strings based on the differences
in distances in the individual letters, weighted
by where the letters occur in the string. For
example, the distance between the strings abc
and bcd is only 2.06 × 10−4. The distance be-
tween mercury and caduceus, which intuitively
seem farther apart than the previous example, is
25.14.

• TypedAttrValue: The TypedAttrValue is an
extension of the Value class. Recall from Sec-
tion 3.1 that each attribute in the system has
a name, a type, and a value. This class, there-
fore, is the representation of attributes. This
class contains a string for the name of the at-
tribute, and a Value, which contains both the
type of the attribute, and the actual value of
the attribute. An example of an instance of
this class is: {xcoordinate, [50, int]}, where the
square brackets around “50, int” mean that that
data is an instance of the Value class.

• TypedAttrConstraint: This class represents a
single constraint in a subscription. Each sub-
scription is a conjunction of typed attribute con-
straints, each of which contain a type, attribute
name, operator and value. Thus, this class con-
tains a string for the name of the attribute, and
the operator and Value used for making the con-
straint. An example of an instance of this class
is: {xcoordinate, <, [50, int]}, where the square
brackets around “50, int” mean that that data is
an instance of the Value class.

• Event: An Event is a publication, and is com-
posed of a list of TypedAttrValues. This class is
used to store the publication data inside of the
PubsubData class discussed in Section 4.2.

• Interest: An Interest is a subscription, and is
composed of a list of TypedAttrConstraintss,
as well as a flag signifying whether or not the
subscription is really an “unsubscription”. Re-
call that if a subscription’s unsubscribe flag is
set when matched, any subscriptions matching
that subscription are removed from a node’s sub-
scription list. This class also keeps track of who
created the subscription, so publications which
match the subscription can be delivered to the
subscriber. This class is primarily used to store
the subscription data inside of the PubsubData
class discussed in Section 4.2. The Interest
class also has functions to determine whether
or not a subscription should be routed to the
left, right, or stored at the current node, based
on what a node’s minimum and maximum node
range values are. This makes the process of de-
termining how a subscription should be routed
much easier for the router.

• Handler: In Section 4.5, a slight departure from
traditional Mercury routing was discussed,
whereby an application gained a greater degree
of control over the specific routing of a publi-
cation (or subscription). The Handler class is
the class responsible for passing publications and
subscriptions up to the application, after they
have been matched at the routing layer. This
class has two functions, one which is called when
a publication is matched, and one when a sub-
scription is matched. Both of these functions
return a boolean value, signifying whether the
publication or subscription should be routed nor-
mally, or whether the application took care of it.
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This class is subsclassed and implemented in the
application layer.

• XMLManager: In order to minimize the com-
plexity of using the Xerces C++ parser, the
XMLManager class was created to provide a sim-
ple front-end to XML serialization. The XML
manager contains functions to convert C-style
strings into XML-style strings (XMLCh *), as well
as functions used for parsing XML data.

The way an application interfaces with the con-
troller is very simple. First, the application cre-
ates an instance of the Controller class. The con-
troller constructor then creates an instance of the
MercuryRouter class. When the application is ready
for the routing layer to perform the bootstrap pro-
cess, the application tells the controller to start, and
the controller tells the router to bootstrap. After the
bootstrap process has completed, control returns to
the application. However, publications the applica-
tion generates at this point will not be routed until
the application process receives the signal SIGUSR1.
The reasons for this are discussed in Section 5.1.

Once the SIGUSR1 is received, routing begins.
When the application wants to distribute one of its
objects onto the network, the application registers
that object with the controller. Every so often (as
often as the application wants), the application can
tell the controller to synchronize its state with the
network. Any non-replica objects which have been
locally modified will be serialized and published. Any
publications received from the network will be dese-
rialized, and the object registry will be updated ap-
propriately. New objects will be added to the object
registry, and existing objects will be updated with
the new published values.

This is how the entire system operates, and this
walkthrough shows the interactions between the three
layers of the system. The framework was designed
from the beginning to provide a very simple interface
to the application, freeing the application from the
specifics of dealing with a publish subscribe system.
The system evolved based on unforeseen needs, but
the end result is a very workable framework which a
wide variety of applications can use to interface with
a publish-subscribe routing system.

Now that the fundamental operations of the system
have been discussed, and the connections between ap-
plication, framework and routing have been exposed,
the next section details the implementation of our
real-time multiplayer game, Caduceus.

6 Caduceus

Caduceus is the name of our real-time multiplayer
game. It is based off of the popular KAsteroids [9]
game, and it is built on top of the Qt/X11 Free library
[18]. The Qt library provides a GUI environment for
the game, as well as a sprite toolkit for the display
and animation of game sprites. Using a sprite kit
allowed us to solely focus on the conversion of the
single player KAsteroids game into the multiplayer
game Caduceus, without having to worry about the
intricacies of quickly blitting sprites to the screen, or
dealing with the collision detection between sprites.

KAsteroids is a game where the player flies around
in a space ship, and shoots moving asteroids with a
missile to gain points. The player has to be care-
ful enough not to get hit by an asteroid, otherwise
a life is lost. When the player runs out of lives, the
game is over. There are various powerups which can
be obtained in order to help with this venture, such
as shields, energy (which is consumed by firing mis-
siles and maneuvering the ship with its thrusters),
the ability to shoot more missiles in succession, a tele-
porter and brakes which stop the ship instantly. After
the asteroids on the current level have been cleared,
the player advances to the next level, ad infinitum,
until the player has lost all of their lives8.

In order to transform this single player game into a
multiplayer one, a few changes were made. First, the
notion of “levels” was removed, as the purpose of our
multiplayer game is to fly around shooting at your
opponents; a cooperation mode where players needed
to work together in order to shoot the asteroids would
have also made for an interesting game, but is not
the focus of this work. Second, all of the asteroids,
powerups and shields were removed. This makes the
game much simpler to implement, because there are
less world object types to handle. Finally, the size of
the world map was increased, in order to give space
for the many potential players in this game world.
This latter change was the hardest to implement, as
it involved making many coordinate transformations
in order to get the player’s ship displayed in the center
of the screen, giving the player a view of the world
around their ship (that moves with the ship), rather
than giving the player a fixed view of some portion
of the game world, that does not update when the
player moves.

It should be noted that even though Caduceus

8As hard as I have tried to find one, I am not entirely sure
that there is an end to this game!
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is a 2D game, the underlying routing architecture
used only creates one attribute hub, for the attribute
“x coordinate”. Thus, the world is divided into ver-
tical slices, based on the number of nodes in the at-
tribute hub.

This leaves us with a very nice laboratory to work
with, in order to satisfy two main goals:

• To write an application on top of the framework
in order to verify that the framework provides
an adequate interface to the application layer.

• To learn what cheating behaviors can be ex-
ecuted in a real-time, distributed, multiplayer
game.

We begin with a presentation of the main classes
in Caduceus, and then describe some of the issues
brought out during Caduceus’s implementation.

6.1 Caduceus Class Structure

Caduceus is composed of many different kinds
of classes. Some classes are subclasses of the Qt
QCanvasSprite class, and are responsible for display-
ing different kinds of sprites on screen, such as explo-
sion bits, ships, missiles and ship exhaust. Other
classes deal with the GUI and are responsible for
reading the keyboard state, and for displaying the
main game window. The rest of the classes deal more
directly with the mechanics of the game, and they are:

• KAsteroidsView: This is the main class of Ca-
duceus, and it is the one which instantiates
the Controller class. This class is responsible
for displaying world objects in the current game
view, and for generating publications and sub-
scriptions based on user input.

• KSpawnRequest: Before a player can participate
in the game, they need to send out a spawn re-
quest to a node in the attribute hub. When a
node receives a spawn request, a KShip object
is created and returned back to the requesting
node. This spawn request contains the nickname
with which the player would like to be identified,
as well as the local ID that should be used for the
returned ship. The reason for specifying a local
ID in this class = is described in Section 6.2, and
deals with being able to identify which ship was
returned from the spawn request. Since this class
must be serialized and sent over the network, it
inherits from RNObject.

• KShip: As has been the trend, each layer in our
system has one or two classes fundamental to the
structure of that layer. In this layer, the KShip
class is of this type. Each player in the game has
their own KShip object, since without a ship, a
player wouldn’t be able to play the game! The
KShip class keeps track of a ship’s name, its x
and y location, its velocity and angle, whether
or not it fired or died (and the time of the last
firing), whether or not it is thrusting, the num-
ber of missiles it has in play, and its power level.
All of this information is used to display the ship
on screen, move the ship on screen with some ve-
locity, draw missiles if the ship fired, explode the
ship if it died, determine whether or not a ship is
allowed to fire based on the time of the last fir-
ing, etc. This class must be serialized and sent
over the network, so it inherits from RNObject.

• KMissile: When a ship fires a missile, an in-
stance of this class is created. The KMissile
class is responsible for keeping track of which
ship fired the missile, based on GUID, as well as
the location and velocity of the missile, the age
of the missile, and whether or not the missile is
still active or has expired. Since this class must
also be serialized and sent over the network, as
with the KShip class, it inherits from RNObject.

• KKeyboardState: A player’s ship moves based
on the keyboard keys that are pressed. This class
captures the state of the keyboard, and allows it
to be serialized for transport over the network.
Relevant keys are: ship turning left and right,
thrusting, firing, and committing suicide. While
the practicality of having a suicide key which in-
stantly explodes one’s ship might be question-
able, this feature was implemented as a means
of testing ship explosions without requiring more
than one ship in the game.

• KGameWorld: As is discussed in Section 6.2, the
KGameWorld class is responsible for running a
slice of the game world. This class has its own
ObjectRegistry as well as game window (called
KGameWindow, which simply contains a canvas for
drawing, to perform collision detection). This
class is a subclass of the Handler class, and
implements the required methods for intercept-
ing publications and subscriptions when they are
matched.

17



6.2 Application Details

The process of playing Caduceus from the applica-
tion layer perspective is presented in Figure 7.

Caduceus is
launched

Controller
instantiated

Send
KSpawnRequest to

a random node

Receive our KShip

Update controller's
object registry,

publish our
KKeyboardState

Update our local
view of the game

world based on the
ObjectRegistry

Update our
KKeyboardState

from the keyboard

Figure 7: Caduceus flow diagram

When the application first starts up, the controller
is instantiated. The user is then presented with a
textual message stating that they must press the “J”
key to join the game. Upon doing so (and after send-
ing the SIGUSR1 signal to the application), the con-
troller causes the routing layer to bootstrap. When
bootstrap is completed, the application creates and
sends a KSpawnRequest to a random node in the at-
tribute hub. This is accomplished by assigning a ran-
dom value to the “x coordinate” attribute, and send-
ing the publication on its way.

When the rendezvous point creates our KShip ob-
ject, it also creates and injects a subscription into the
network for the ship’s visible portion of the world.
Thus, the ship object will be returned to its owner,
and because the owner was thoughtful enough to tell
the rendezvous point what the local oid field of the
GUID should be, the owner knows which ship is his,
out of all the other ship objects he may have.

Now that our player has his ship, the time comes
for the player to control his ship. At every iteration
of the main loop, the state of the keyboard is read in
and stored in a KKeyboardState object. This object

is then published (as long as there is at least one
key pressed), and sent to the appropriate rendezvous
point (i.e. game server) by adding in the current
coordinates of the player’s ship object.

This now brings us to the events which occur at the
rendezvous point when a keyboard state is read. In
Section 3, we presented two different ways for think-
ing about the role of a publish-subscribe system. To
recap, a publish-subscribe system can be seen as a
distributed database, with each node in charge of ob-
jects that have attribute values falling in a certain
range. The second view is to think of a publish-
subscribe system as a method of content delivery.
However, given that we are creating a game on top
of a publish-subscribe system, there is a third way in
which this system can be viewed. Each rendezvous
point in the attribute hub can be seen as a miniature
game server, responsible for only a certain portion of
the game world. This view makes it clear what the
role of the rendezvous point is in determining the cor-
rect course of events in the game, and this is exactly
how consistency in game state is achieved.

Maintaining Game Consistency

Consistency is defined as having multiple views of
the game world agree with one another. For example,
if two players participate in a game world, and both
players agree upon the locations of themselves and
the other, then that game world is said to be consis-
tent. If, however, one or both players do not agree
on their respective locations, then that game world
is said to be inconsistent. From the perspective of a
multiplayer game, it is highly important to present a
consistent view of the game world to each player, as
their decisions in the game world are directly depen-
dent on their perceptions of the game world. Games
are sometimes said to go “out-of-sync” when the con-
sistency of the game world has been lost.

In an early version of Caduceus, the entire pro-
cess depicted in Figure 7 was non-existent. Rather,
a player simply published their own ship object each
time it became dirty. The early versions of the cheat-
ing detection algorithm presented in Section 7 were
based upon the fact that each player would be pub-
lishing their own ship object.

However, allowing each player to dictate the loca-
tion of their ship, along with the state of their ship,
causes many difficulties for maintaining consistent
game state. For example, because of the delays inher-
ent in any networked application, one player may see
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Figure 8: Caduceus action shot!

that ship A shot a missile and hit ship B before a mis-
sile shot from ship B was able to hit ship A, whereas
another player may see the exact opposite. This is a
problem because A and B’s actions are dependent on
what they perceive in the game world. Both A and B
expect that their actions will have a predictable con-
sequence, and a lack of game consistency prevents A
and B’s actions from being predictable, since there
are two inconsistent views of the game world.

In light of this problem, maintaining game consis-
tency in our implementation quickly became the top
priority. In order to maintain game consistency, we
adopted the view of having each rendezvous point act
like a miniature game server, and give authoritative
control of all world objects to the rendezvous point.
This led to the creation of the KGameWorld class, re-
sponsible for keeping track of the actions occurring
in the section of the world controlled by the ren-
dezvous point. This also led to the decision to have
each player send keystrokes to the rendezvous points,
rather than entire ship objects. As it turns out, this
is also how Quake works; players send keystrokes to
the server, and it is the server’s job to run the game
world, and move all of the objects around.

Thus, due to the different types of communication
among nodes in the game environment, either send-

ing keystrokes or the positions of ships, we studied
cheating behaviors and cheating detection in both of
these environments. Section 7 discusses the cheating
behaviors we identified in these environments, and
presents algorithms for detecting when these behav-
iors are occurring.

With the rationale for sending keystrokes estab-
lished, the process for updating a ship object at the
rendezvous point given a keyboard state is as follows.
Once the keyboard state for a particular ship has been
read in, that ship object’s location, speed and an-
gle are simply updated at the rendezvous point (in
the KGameWorld, at the application layer). The ren-
dezvous point is responsible for applying physics of
movement to the ship, as well as creating any new
KMissile objects if the ship has fired. Also, if a ship
has committed suicide, the rendezvous point will up-
date the appropriate flag in the ship object.

After these updates, the rendezvous point will up-
date its own sprite world, moving all ships and mis-
siles based on their velocities, and then determining
if any ships were hit by missiles using the collision
detection functions present in the Qt canvas class.
If this event has occurred, the affected ship objects
are marked as dead, and all changed objects are pub-
lished directly to their subscribers.
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The rendezvous point also checks to see if any ob-
jects moved out of its range, and if so, it removes
them from its object registry. When the rendezvous
point publishes an object out of its range, it will sim-
ply be routed to the correct rendezvous point for that
object, and that object will be added to the new ren-
dezvous point’s object registry. This is an implicit
handover scheme which can be easily exploited, such
as when a node generates its own KShips directly
(without making a spawn request), and handing them
over to his Mercury predecessor or successor. This
situation is discussed in more detail in Section 7.2.

The game view presented to a player is of a fixed
size, yet the actual game world they participate in
is much larger. Subscriptions are used to both filter
out information not relevant to a ship’s current view,
and filter in information which is relevant. Thus,
when a player’s ship object moves in the world, the
player’s subscription to the game world must also
change along with the movement. The KGameWorld
keeps track of the world subscription for each ship,
and sends an “unsubscription” message (for the old
view) and subscription message (for the new view)
each time a player’s ship object moves. The unsub-
scription message is just a subscription with it’s un-
subscribe flag set, signifying that the subscription is
to be deleted from the rendezvous point.

Finally, after the new ship is published, and the
ship’s new subscription is sent, the cycle repeats it-
self; the player can send more keystrokes, and the
rendezvous point will update the game world accord-
ingly.

Since there is one central authority responsible for
running a small subsection of a world, consistency is
achieved. However, this central authority has a player
on the same node, with a vested interest in the course
of game actions. Thus, there are many ways in which
this player can act abuse his authority and act in
a dishonest fashion, bending the rules of the game
for his own benefit. These cheating behaviors, and
methods for detecting when they are occurring, are
detailed in Section 7.

6.3 The Pitfalls of Relying on Other
People’s Software

An example screenshot of Caduceus is shown in Fig-
ure 8. This screenshot was taken from an earlier ver-
sion of Caduceus which did not address the con-
sistency issue. The current implementation of Ca-
duceus addresses these issues, but suffers from a few
bugs and currently does not work as well as the pre-

vious version did. The source of these bugs are either
in the Xerces library itself9, or in how we are using
the library. Thus, as we are dependent on other peo-
ple’s software, we are currently looking into how to
work around these bugs.

7 Cheating and Cheating
Detection

With the complete gaming platform established, we
consider two situations in which cheating behaviors
can occur; the first is player-centric, in which the
game world does not possess a globally consistent
state, and the second is server-centric, in which the
game world does possess a globally consistent state.
In the server-centric case, the “server” refers to the
rendezvous point to which publications are routed, to
establish a view of a subsection of the entire game
world. While the current implementation of Ca-
duceus uses a consistency preserving structure, we
feel it is beneficial to examine both approaches to
cheating detection.

When developing any algorithm for detecting ma-
licious behavior, it is important to know who the al-
gorithm is being designed for, and where the algo-
rithm will be run. In any multiplayer game, where
there are any number of human players participating
in the virtual game world, the parties most affected
by cheating are individual players (as opposed to, say,
the operator of the game server who is not playing in
the game). Thus, because each player has a vested
interest in making sure that other players are not
cheating in order to gain advantage over them, we
placed cheating detection in the hands of the players.

7.1 Player-centric cheating:
Cheating in the Absence of Game
Consistency

In this situation, the publication of a player’s ship10

is controlled by the player. Subscriptions are also
controlled by the player, since they must know what
events occur in their game view.

9During the course of implementation, we have found bugs
in Xerces, and later discovered that newer versions of the li-
brary fixed these bugs. It may be the case that the bugs we
are experiencing here are currently being fixed, but as we are
not entirely sure what the specific problem is, we have been
unable to determine what the fix is.

10In Caduceus, each player is represented as a ship, but this
analysis is relevant to any player object having an x and y (and
z) location in a game world.
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Under the assumption that a player has full control
of the publications and subscriptions that are sent
out, this situation allows for some very interesting
behaviors:

• A player can forge publications. There are
two ways in which this behavior can be disrup-
tive. The first is when a player forges publica-
tions of their ship which violate the constrain-
ing physics of the game world. This allows a
player to travel at a speed faster than the max-
imum allowed, or even teleport (move instanta-
neously) to any arbitrary location in the game
world. A clever cheating player could even care-
fully craft a violation of the game’s physics in
such a way as to make it indistinguishable from
a high-latency situation in which game updates
are sporadic and non-constant.

Forged publications would also allow a player to
“clone” themselves, potentially causing a repli-
cation of their ship object across different ren-
dezvous points. Since the rendezvous points do
not have any control over the actual game world
in this situation, a cheating player with con-
trol over his publications has a lot of freedom
to gain advantages over other players, such as:
appearing and disappearing at whim, or present-
ing clones of their ship in front of every opponent
in the game, firing missiles from all cloned ships
simultaneously. This type of cheating, while cer-
tainly possible, has not yet been seen in multi-
player games, and as such may be novel to our
particular game architecture.

• Faulty subscriptions. A player can make and
send subscriptions for parts of the game world
that are not visible in their current game view.
Since there is no authority validating the sub-
scriptions that are sent out, a player can simply
subscribe to the entire game world, and receive
the information needed to launch a successful at-
tack against the entire game world. In other mul-
tiplayer games, this cheat is known as a “wall-
hack” or “map-hack”, because it allows players
to see through walls, or to view the entire world
map.

The specific mechanics of a traditional wall-hack
are different in FPS games than in this situa-
tion, but the end result is the same — the player
is exposed to more information about the game
environment than they are privy to.

Detecting Violations in Game World Physics

Detecting when a player is cheating by manipulating
the publishing process, such as having clones in mul-
tiple locations at once, reduces to a problem of veri-
fying that a particular player is obeying the physics
of the game world. Thus, the cloning behavior can be
detected because a player cannot be at more than one
location simultaneously, since being in two or more
places at once is a clear violation of the game world’s
physics.

We present the following algorithm for detecting
when a player C (potential cheater) is violating the
physics of the game world:

1. On some trigger for a player C,

2. Compile a list of the recent publication history
of C and,

3. Run this list through an artificial neural network
(ANN) which has been trained to detect suspi-
cious behavior.

4. If the neural network classifies the publication
history as suspicious, increment a counter for
player C, and report this change to the player
who is running this algorithm.

Call the player who runs this algorithm D (detec-
tor). In the first step, it is up to D to determine
when to run the algorithm on player C, to determine
if C is cheating. There are a few different choices for
this trigger, and each choice is able to detect certain
types of behaviors, but may miss others. They are:

• Trigger the algorithm on player C after n
seconds have elapsed: Like polling, this solu-
tion is not ideal as it can use enormous amounts
of CPU time and consume too much network
bandwidth if run too frequently (when n is on the
order of milliseconds), or alternatively, cheating
behaviors may be missed if n is too large (on the
order of seconds).

• Trigger the algorithm on player C after he
kills D: This solution seems to avoid the errors
of the previous one, assuming that the time be-
tween D’s deaths is large enough. However, this
does not prevent a situation in which a player
simply violates the physics of the world without
killing anyone. For example, a player could in-
stantly teleport into D’s view, and not be caught
(by the cheating detection algorithm, since D
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might just see that something suspicious hap-
pened in his game).

• Trigger the algorithm on player C when he
enters D’s game view: This situation allows
for detecting a player who has broken the laws
of physics when entering another player’s view.
However, it still does not prevent a player from
violating the game’s physics when there are no
other players in the cheating player’s view. This
scheme could also consume enormous amounts
of CPU time and network bandwidth if there
are many players entering D’s view in a short
amount of time.

The next step in the algorithm is to compile a list
of the publication history of player P . In order to
create a full publication history, each node in the at-
tribute hub11 would have to be queried for its pub-
lication history of player P . This also implies that
each node in the attribute hub needs to store some
amount of publication history for each player. Since
our cheating detection is only concerned with the vi-
olations of game physics, this history can be of the
form {timestamp, x location, y location, ship angle},
and storage of this information should not be a major
factor. It should be noted that compiling a full pub-
lication list (from every node in the attribute hub) is
the only way to guarantee that a player hasn’t pub-
lished their ship object in multiple locations simul-
taneously. However, requesting and receiving all of
this information is a O(n) operation, where n is the
number of nodes in the attribute hub.

Assuming that the first two steps in this algorithm
can be performed in a reasonable amount of time,
the next step is to determine whether or not a given
publication sequence is valid. A neural network was
selected for this step because neural networks are able
to capture patterns in large amounts of data without
having any knowledge of the domain the data came
from.

In order to feed the data into the neural net-
work, there is one preprocessing step which must
be performed. Each actual data point is a tuple of
{timestamp, x location, y location, ship angle}. Since
we want to learn what kinds of movement sequences
are valid in a given amount of time, the actual data
point is converted to a delta data point, of the form
{change in time, change in x distance, change in y

11We assume only a single attribute in this example,
“x coordinate”.

distance, change in ship angle}. After this prepro-
cessing step, we run the data through the trained
neural network, which reports back a classification as
to whether or not the data point is valid, based on
the rules the network learned during training. More
information on the actual training of a neural net can
be found in Section 7.3.

The final step in this algorithm is to present the
results to the player who ran this algorithm. Because
neural networks have some measure of statistical un-
certainty, we expect the misclassification percentage
to be strictly positive. Thus, a non-cheating player
may be classified as cheating because of missing pub-
lication data. To avoid this situation, a player can
be presented information with the number of times
a player has been classified as cheating. This infor-
mation can be presented to the user in a separate
window, using a graphical histogram format. Players
who are cheating will then stand out among players
who are not cheating in this way, since the histogram
bar will be significantly higher for cheating players.

This strategy provides results in a global fashion as
well. If a significant portion of users all notice that
a certain player has been classified as cheating, this
provides strong justification for those players to take
action against that player, such as kicking him out of
the game.

Preventing Faulty Subscriptions

In any game environment, a player should only be
allowed to see what is immediately visible to him. In
our environment, a player’s field of vision is a fixed
sized rectangular area centered on the player (or flush
with the edges of the game world in the case where
a player is at the edge of the world). When players
are allowed to create their own subscriptions to the
world, they can arbitrarily subscribe to any section
of the world they choose, or multiple sections of the
world, or even the entire world itself.

To prevent against this, there needs to be an au-
thority who checks the subscriptions which are sent
out, accepting them only if they are centered on the
player, and are a fixed size. This can be accomplished
by borrowing an idea from our implementation of Ca-
duceus, by giving a small amount of authoritative
power to the rendezvous points.

When a subscription from player P is received at a
rendezvous point R, R can check to see if P has pub-
lished himself as being at R (since R stores the recent
publication history of P in accordance with the previ-
ous cheating detection algorithm). If R does not have
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P in its publication history, then P is trying to sub-
scribe to a part of the world which he is not privy to,
and the subscription should be rejected. Otherwise,
R can verify that the received subscription meets the
requirements for validity, and either accept or reject
the subscription. R can also generate unsubscription
messages when a new subscription is received, to en-
sure that any one player only has one subscription in
the network at any given time.

This concludes the discussion of cheating detection
in a world where players are responsible for sending
updates regarding their status and location. While
algorithms for dealing with the two primary cheating
behaviors in this environment have been created, it
should be noted that cheating detection in this en-
vironment is not an easy venture, and if it is to be
done in a reasonable manner (with regards to finite
computing resources), it appears that in practice the
results can only be described as a “best-effort” so-
lution that may reduce, but may not eliminate all
cheating behaviors.

7.2 Server-centric cheating:
Cheating in the Presence of Game
Consistency

In this situation, a player is not responsible for
sending updates regarding his status and location.
Rather, there is an authority that controls the state
of the world, in order to provide a consistent environ-
ment for all players. This authority is the rendezvous
point, the node responsible for matching publications
with subscriptions for a certain portion of the at-
tribute space.

Each rendezvous point is just a node in an at-
tribute hub. Going back to Figure 5, node D is
the rendezvous point for all publications with an
“x coordinate” in the range of [8.9, 10.0]. Thus, node
D is responsible for keeping track of all events which
occur in this space. Let this space be known as a
game slice, the portion of a world controlled by a
rendezvous point.

To control his actions — in essence, to play the
game — a player sends the state of their keyboard
to the rendezvous point, and the rendezvous point
performs the actions dictated by the keyboard state.
For example, when the rendezvous point notices that
a player has pushed the “up” key, the rendezvous
point moves the ship forward, and republishes the
ship object.

This leads to a very interesting scenario in terms of

what behaviors are possible by malicious players. No
longer can a player directly publish their ship object
as in the previous scenario12 Players are also not re-
sponsible anymore for the creation of subscriptions,
as the rendezvous point will do this automatically as
part of its world updating process. Therefore, the
player has no powers whatsoever in altering the
game state of a rendezvous point, unless they alter
the game state of their own rendezvous point.

Recall from Figure 1 that each node in an attribute
hub is comprised of three layers — routing, frame-
work and application. Sitting on top of each ren-
dezvous point is an instance of the game, in which the
player participates. Thus, a player who compromises
their instance of Caduceus can gain full, complete
control over the entire workings of their game slice.

A malicious player could conceivably alter many
things within their game slice. Examples of what a
malicious player could do are:

1. Modify the movements of other ships, and/or
prevent them from entering other game slices.

2. Violate the game world’s physics, as discussed in
the previous section.

3. Kill everything in the game slice, taking full
credit for the kills.

These behaviors can still be detected, albeit not
prevented, using the same techniques presented in the
previous section.

The first and third types of cheating are easily de-
tected by the player himself. When a player’s ship
ceases to respond to the keys he is pressing, it is clear
that something non-kosher is occurring at the ren-
dezvous point. Likewise, when a player notices that
they have been killed without any apparent cause, it
is a likely deduction that the rendezvous point has
been tampered with.

This leaves the second type of cheating behav-
ior, which is a violation of the game world’s physics.
There is a distinction though, between what is meant
by “violation” in this section, and “violation” in the
previous section. In the previous section, players were

12This is not entirely true in the current implementation.
One weakness that could be exploited related to how the han-
dover of objects is performed; no checks are made to ensure
that the publication came from a predecessor or successor node.
Thus, a player could directly publish a KShip object to a spe-
cific rendezvous point, and it would be blindly accepted. Fu-
ture work includes creating a stronger object handover method
to prevent this type of behavior from occurring.
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able to arbitrarily publish their ship in multiple loca-
tions at once. This behavior cannot happen in this
situation, as players do not publish their ship objects.
Rather, to simulate the cloning behavior in this sit-
uation, a player can send multiple spawn requests to
different rendezvous points. However, this behavior
amounts to simply running multiple instances of the
game simultaneously, and is not a type of behavior
we classify as cheating.

In contrast, a player can in fact teleport their ship
objects into and within their own game slice, which
is representative of the type of cheating previously
discussed. The algorithm presented in the previous
section can be modified slightly to track players inside
the current game view, and verify that the game’s
physics are being adhered to. This new algorithm is:

1. When player P moves,

2. Take the difference in times, x position, y posi-
tion and angle,

3. Run this instance through the neural network,

4. If the neural network classifies the publication
history as suspicious, increment a counter for
player P , and report this change to the player
running this algorithm.

This algorithm is a lot simpler than the previous
one, because checking for multiple publications of a
single ship object throughout an entire attribute hub
is unnecessary. The next section details an experi-
ment performed to evaluate just how well a neural
network can learn the physical laws of a game world,
and detect movements contrary to the physical move-
ments permitted by those laws.

The greatest drawback in using the Mercury sys-
tem for multiplayer games is that it leaves some au-
thoritative control of the game world in the hands
of those who have a vested interest in abusing that
power. The entire game world is run on machines
belonging to the players participating in the game
world; thus, players who wish to gain an upper hand
on their opponents may be able to abuse their powers,
in their own little corner of the world. Several algo-
rithms designed to detect when these behaviors are
occurring have been presented, but these algorithms
do little else to actually prevent such behavior from
occurring.

To fulfill the goal of designing a large-scale dis-
tributed game system not controlled by one central
authority, these authoritative powers must fall into

the hands of the players using this system. But, this
leaves the system vulnerable to the whims of mali-
cious players who would abuse these powers. Thus,
the algorithms presented in the previous sections seek
to find a middle ground to this dilemma, by allowing
honest players to detect when they are being abused
by malicious players, and giving them the informa-
tion they need to decide if they should take corrective
action or not.

7.3 Neural Network Evaluation

To determine how well a neural network can detect
violations of our game’s physics, the following experi-
ment was performed. Movement traces were obtained
from a virgin copy of KAsteroids, where each trace
was a list of {frame number, x position, y position,
ship angle}13 As mentioned earlier, these data points
are the actual data points. Two categories of traces
were created, valid and invalid, where the invalid
traces contain violations of a game world’s physics.

Valid traces were created from the actual data
points in the following fashion:

• Random lines from the movement traces were
removed, to create uneven movement and losses
similar to what would be seen in a game with
high latency.

Invalid traces were created from the actual data
points in the following fashion:

• Lines were permuted randomly to create a tele-
portation effect.

• Data points in the traces (x, y, angle) were
changed by small random amounts to give the
effect of an increase in ship speed which would
cause the ship to move faster than the actual
limit imposed by the game’s physics.

All traces were then postprocessed to create a list
of the form {change in time, change in x position,
change in y position, change in angle}. As mentioned
earlier, these data points are the delta data points,
and are the data points which are used when training
and testing the neural network. Data was partitioned
into three sets: one for training, one for validation

13KAsteroids updates the game view in a loop. At each iter-
ation of this loop, the ship, rock, powerup and missile sprites
are moved. Each iteration of this loop is known as a frame,
and information about the ship’s position is captured to a file
for each frame.
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Correct classifications 9890 80.9%
Incorrect classifications 2330 19.1%
Total: 12220 100%

Table 3: Classification results of the neural net-
work on the training data.

during training, and one for testing. The validation
set was used to determine when training the network
should cease, based on the network’s performance on
the validation set. A breakdown of the sizes of each
data set is given in Table 2. More information about
neural network training, the problem of overfitting,
and how the use of a validation set prevents overfit-
ting can be found in [1, 21].

In order to train and test a neural network, we
used the MATLAB r© neural net toolbox [11]. We
used a feedforward, backpropogation network with 3
layers, one for input, one hidden layer, and one for
output. A sample diagram of the network we used is
shown in Figure 9. The input layer contains four in-
puts, one for each piece of information in a delta data
point. The hidden layer has 20 units. This number
was found experimentally, based on training and test-
ing networks with different hidden layer sizes. Choos-
ing the correct number of hidden units for a neural
network is still an open problem, and is discussed in
further detail in [6].

Figure 9: Neural network layout. This network has four

inputs, one for each item in a delta data point, 20 hid-

den nodes, and one output. The traingdx method was

used for training; GDX combines gradient descent with

an adaptive learning rate and momentum training. This

method typically converges more slowly than other train-

ing methods, and can help prevent overfitting when using

an early stopping mechanism. More information about

this method can be found in Chapter 5 of [11]. A tan-

sigmoid transfer function was used at the hidden layer,

and a pure linear transfer function was used at the out-

put node.

A graph of the neural net training performance can
be found in Figure 10, and the results of the neu-
ral network’s performance on the testing data can be
found in Table 3. Since the network’s output unit can
produce any value, a binary threshold was applied to
the ouput value. Negative outputs were mapped to 0,
and positive outputs were mapped to 1. This has the
same effect of using a tan-sigmoid transfer function
in the output layer, so our choice of transfer function
does not affect the results.

Figure 10: Neural network training performance. The

blue line (middle) represents the mean squared error

(MSE) of the learned weights on the training data; the

green line (bottom) represents the MSE on the validation

data, and the red line (top) represents the MSE on the

test data. MATLAB r© allows the testing data to be used

during training as a method of estimating generalizability,

and this was found to produce networks which performed

better at classifying the testing data.

In classifying the testing data, the network cor-
rectly classified 80.9% of the testing examples, and
mis-classified 19.1% of the examples. Unfortunately,
this network does not perform as well as we expected,
and implies that there may be several problems with
our experiment. Potential hazards are:

• Cheating behaviors may not have been ac-
curately captured in the invalid data. Re-
call that the invalid training examples were cre-
ated by adding or subtracting small random val-
ues from each actual data point. This may not
have been enough to produce a significant mod-
ification to the game’s physics, so a permuta-
tion of actual data points was performed as well.
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Training data Valid 9986 data points
Invalid 10289 data points
Total: 20275 data points

Validation data Valid 7185 data points
Invalid 7809 data points
Total: 14994 data points

Testing data Valid 6171 data points
Invalid 6049 data points
Total: 12220 data points

Table 2: Data set sizes. Each data point is a tuple of {change in time, change in x position, change in
y position, change in angle}. Changes in time are calculated as the difference in the frame numbers
between two actual data points.

While these techniques were created to produce
movement which would be impossible to pro-
duce when constrained to the game’s physics,
they might still have produced movements which
would be valid within the game. Thus, this
would create training examples which are incor-
rectly identified as being invalid, causing the net-
work to classify future similar (and valid) exam-
ples as being invalid. Even though neural net-
works are robust in the presence of noise, a sig-
nificant number of these “mis-labeled” examples
could cause the network to learn a function dif-
ferent from the one we intend it to learn.

• Incorrect neural network parameters
could cause an inefficiency in learning.
It may be the case that the training method,
or transfer function, or the specific parame-
ters MATLAB r© uses when performing network
training were not optimal for the data we pre-
sented to the network. Since different network
types perform better under different problem do-
mains, further experimentation is needed in or-
der to determine what type of network best fits
our needs.

• The full physics of the system may not
have been captured in the delta data
points. Each delta data point represents a
change in position over a change in time. How-
ever, a ship also has a velocity at every time
point, implying that there is some amount of in-
ertia which keeps the ship travelling in the same
direction, until the player turns the ship in an-
other direction and applies thrust to change the
course of the ship. Future experiments could
capture the changes in velocity in between time

points, and see if this affects neural network clas-
sification at all.

In summary, we have trained a neural network
to recognize inconsistencies in movement data. Our
data was taken from actual gameplay in the physics
environment used by KAsteroids and Caduceus.
Some of this data was modified in order to produce
movements which violate the physics of the game en-
vironment, but this modification may still have pro-
duced valid movements, adding noise into the data
set, and leading to a degradation in the performance
of the neural net in classifying new data. Future work
is needed to determine whether the network’s poor
classification performance is due to either poor gen-
eration of cheating data, or an inappropriateness of
using a neural network to learn movement physics.

8 Future Work

Future work needs to be done in each of the following
areas:

• Leaving: Nodes need to be able to leave an at-
tribute hub after they have joined, with the other
nodes in the system sensing the break in connec-
tion, and automatically reconfiguring themselves
to maintain the circular topography required by
Mercury. This also means that nodes need to
be able to reclaim the lost attribute space when
a node leaves the system.

• Multiple attributes: Multiple attribute rout-
ing has been implemented, but work needs to
be done to determine how authoritative control
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over objects is delegated in a system with mul-
tiple attributes. One thought is to give authori-
tative control to the attribute hub with the low-
est value when lexicographically sorted, although
this scheme has not yet been tried.

• Caduceus: The implementation of Caduceus
suffers from bugs described at the end of Sec-
tion 6.2. Ultimately, these bugs should be fixed,
giving us a working, playable version of Ca-
duceus.

• Routing layer: Many multiplayer games have
the notion of a team game, where players form
some number of teams which work cooperatively
against members of the opposing teams. Future
work could examine how to use Mercury to dis-
tribute sensitive information to teammates while
keeping it hidden from opponents.

• Object handover: When a rendezvous point
moves an object outside of its bounds, this object
is handed over to the rendezvous point’s prede-
cessor or successor, depending on the new value
of the object’s attribute. This handover process
is currently insecure, allowing a malicious player
to create arbitrary world objects and hand them
over to unsuspecting rendezvous points. Future
work involves creating a more secure handover
method which would prevent this behavior.

• Cheating data collection: One of the limita-
tions of the current study is that actual cheating
data was not used in training the neural network.
It would be more beneficial if movement data
could be collected from an actual FPS game. For
example, Quake 2 is an open source project [13]
and can be modified to give players the ability
to violate game physics, by teleporting randomly
across the map, and by running faster than nor-
mally allowed. This would guarantee that all
data which should be in violation of game physics
is actually in violation of game physics.

9 Summary and Conclusions

The recent trends in the video game industry suggest
that systems will need to be developed in order to
handle more concurrent users than current technol-
ogy is able to accommodate. Presented in this pa-
per is the publish-subscribe routing protocol Mer-
cury, which can be used to scale real-time multi-

player games past the current limits, while maintain-
ing the property that the game world is not controlled
by one central authority.

In order to build a game on top of the Mercury
system, a framework has been created to serve two
purposes: to interface between Mercury and an ap-
plication, and to store relevant world state, publish-
ing objects when they are modified from the appli-
cation, and updating objects as they are published
from other sources. Using this framework, an imple-
mentation of Mercury and a benchmarking utility
were created, and results indicate that the overhead
incurred by using Mercury routing is acceptable for
a real-time multiplayer game.

Finally, because of the problems in current multi-
player games regarding cheating, a real-time multi-
player game Caduceus was created to study what
cheating behaviors were possible in our system, and
if there was any way for a player to detect when an-
other player was cheating. Two different approaches
to the management of game state are discussed, ei-
ther by having players publish their own location and
state, or by giving authoritative control of the game
world to a separate entity. Several different types of
cheating behaviors are exposed for each different ap-
proach, and the implications for cheating in both of
these situations are examined. Algorithms have been
presented to allow players to determine when other
players are executing each of these cheating behav-
iors.

Preliminary results show that the neural network
designed to classify a player’s movement as either
valid or invalid is correct in classifying such move-
ment approximately 80% of the time. In its cur-
rent state, this network is not suitable for deploy-
ment in Caduceus, as it would perform many mis-
classifications, confusing the player as to whether or
not his opponents are cheating. However, the poor
performance of this network may be due to flaws in
the method for creating data which violates game
physics, and future work is needed to more accurately
determine if a neural network is an appropriate mech-
anism for learning the physics of a game environment.

Due to the design of the system, which gives in-
dividual players authoritative control over a game
slice, it is impossible to prevent players from abusing
that authority. However, certain cheating behaviors
are obvious enough to a player that they can choose
to take corrective actions. Other cheating behaviors
are harder to detect, such as disobeying of the game
world’s physics, and as such, the classification algo-
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rithm presents its results to the user in a form which
allows the user, at quick glance, to determine if every-
one in the game world is obeying the game physics.
In this situation, individual players can be singled out
and avoided, or disconnected from the system.

Thus, one of the most important aspects of cheat-
ing detection is to make efforts to assist, and then
engage a human to solve a human problem.
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