

School of Computer Science Senior Thesis
QCNMR: Simulation of a Nuclear Magnetic Resonance Quantum Computer

Matthew W. Anderson

ma@andrew.cmu.edu
Carnegie Mellon University

30/4/04

 2

Abstract

We present the implementation of a nuclear magnetic resonance (NMR)
universal quantum computer (QC) simulator we have named QCNMR. Our
quantum computer simulator uses a pre-existing open source package, GAMMA,
for performing NMR simulation. QCNMR reads in a quantum computation
circuit converts it into a sequences of pulses that can be simulated on an NMR
system, our system then returns the output of the simulated computation to the
user. Our simulator is universal over the space of quantum computation,
analogous to the way a classical computer is “universal”.

I. Introduction

A. Overview

Classical computers have been around for a

large part of a century and for the most part the
computations that they can perform are entirely
deterministic. There exist classes of problems
that are not known to be efficiently solvable (in
O(nk) time) by classical computers, which are
known as non-polynomial (NP) time problems.

In 1996 Grover designed a method to
reduced the computational time by a square root
for searching a set for a marked item on a
quantum computer [Grov96]. Grover’s search
algorithm provided a more efficient way to
solve a NP-hard problem, “hard” refers to the
fact that problem is canonical to the set of NP
problems meaning that a solution for this
problem could be translated into a solution for
any other NP problem. Grover algorithm,
however, did not provide the crucial speedup, as
his algorithm still took NP time in the worst
case.

 In the later in 1997 Peter Shor devised an
algorithm that finds the prime factors of a
number in polynomial (P) time on a quantum
computer. This represents a drastic speedup
over the widely held belief that the problem
takes NP time on a classical computer [Shor97].
There are relatively few other examples of
algorithms where there is an evident speedup
when your computer is allowed to take
advantage of quantum mechanical effects. It is

not known whether allowing use of quantum
effects provides in inherent increase in the
available computational power. It is also
unknown as to whether more algorithms that are
more efficient using a quantum computer do
exist. In either case, it is important that while
one is attempting to devise new algorithms that
one has ready access to implement and run their
algorithm to see how and if it performs.

B. Goals

To that end, the implementation of a
framework to simulate quantum algorithm on
readily available classical hardware would be
important to help researchers study quantum
algorithms. There are several possible different
approaches, each with its own level of accuracy
and practicality. In the first and simplest
approach you assume that you have an ideal
quantum computer and that you can perform
more or less arbitrary operations on the qubits in
your computer. The implementation is just a
series of straightforward matrix operations. It
should be noted that the time to perform the
calculations to simulate the ideal QC is not the
same asymptotic time that a real quantum
computer would take, as each matrix operation
take O(2n) time in the number of qubits.
However, to our knowledge such an ideal
physical system for performing quantum
computation does not exist, it can only be
approximated by other less accurate physical
systems. So, while it is important that the

 3

algorithm function on an ideal quantum, it must
also function on a realistic physical one,
otherwise the algorithm has limited
applicability. The next level of increased
realism is that simulation of a physically based
quantum computation system. This means that
we simulate some physical quantum mechanical
effects and build a framework for quantum
computation on top of the quantum effects.
This is the method that we have chosen to
implement in this paper. This method discards
the assumption that our system is ideal, and
requires that the computation have basis in a
physically realizable system. The third and
most telling method is to actually implement the
computation on a physical quantum system.
This method is by far the most complicated and
expensive in terms of time and money.
Implementing algorithms correctly and
effectively on real systems can take a long
amount of time; weeks or months. In addition,
these systems are by no means widely available
and must be custom built and tailored to the
specific task. There are a number of possible
physical realizations for a physical quantum
computer: NMR, quantum dots, ion trap and
optical photon QCs and others [Cira95, Cory96,
DiVi95, Yann99]. However, it remains to be
seen which physical realization, if any, will be
viable in the end.

The purpose of QCNMR is two-fold. The
first part of its purpose is to allow NMR
quantum computer researchers to simulation
algorithms that they we considering performing
on physical implementation first before they
spend the time to implement them on a real
system. This will hopefully decrease the
amount of turnaround time to study an
algorithm for NMR QCs. It allows basic
implementation without investment of much
time. The second purpose is purely educational;
it will allow students to quickly experiment with
quantum algorithms, view the output and to
hopefully gain a more intuitive understanding of
the algorithm and quantum computation as a
whole.

C. Specific work

Our main contribution in this paper was to
the implement framework for quantum
computation on top of an existing open-source
NMR simulator, GAMMA [Smit94]. QCNMR
exists as a C++ library that has the ability to
create qubits, a quantum circuit and to run the
circuit and return the final state of the system
after the circuit has run its course. QCNMR
first parses the input circuit and then converts
into a sequence of NMR pulses, which
represents the computation we wish to perform.
Pulses are essentially NMR instructions. We
give these pulses over to GAMMA to simulate
the NMR system and then read back
information and interpret it for the user.
The main work in this project was to implement
the generation of pulse sequences on the NMR
system so that we could selectively address
individual qubits and leave the rest of the
system invariant, using a technique know as
refocusing. Time was also taken to make the
graphical interface for a the QCNMR library
that allows the user to quickly construct and run
quantum circuits.

D. Organization of Paper

Section two presents some background
information on NMR, quantum computation and
performing quantum computation operations
through NMR methods. Section three explains
the structure and implementation of QCNMR.
Section four describes using QCNMR to
implement several quantum algorithms and the
results. Section five concludes this paper and
discusses future and related work and
summarizes the results of this project.

 4

II. Background

A. Quantum Computation

Quantum computation is perhaps best
introduced in as an analog to classical
computation. In classical computation, the
object that stores or represents information is
known as the “bit”, it can take only two discrete
values “zero”(0) or “one”(1). The analog for
quantum computation is known as the “qubit”,
the information it stores, however, is not
discrete valued. The qubit is composed of a
linear combination in complex space of at least
two orthonormal basis states |0> and |1>. As a
side note, there exist n-iary qubits that are the
linear combination of n orthonormal basis
states. The value of a general 2-qubit can be
written as:

()1,10 baq +=

where a and b are complex constants and the
norm of |q> is 1. The values of a single qubit
can be thought of as a vector from the origin
Euclidean three-space to the surface of a unit
sphere; this is known as the “Bloch’s sphere”
representation (figure 1). It is clear that the
orientation of a qubit can be parameterized by
two real values, giving it the capacity to store

Figure 1: The Bloch Sphere

real-valued information opposed to the discrete-
valued information that is stored in the classical
bit. However, the information that is stored in
that real-valued state cannot be directly read.
The most telling measurements that can be
performed are ones that measure in orthogonal
basis states, returning the basis state that the
qubit’s state projected into. This is like
measuring a single bit of classical information.
To get more accurate determination of the actual
qubit state more measurements are required,
each providing more information about the
qubit. However, this is a bit of a problem in
many physical realizations as their measurement
operations tend to be destructive, meaning that
the measurement of a qubit disturbs it from its
original state creating hysteresis effects due to
measurement; this makes is difficult to make
more than one measurement in practice.
 Similar to the theory of universal
classical computation by logical circuit, we can
describe an analog for quantum computation:
universal quantum circuits. The wires of our
circuit are qubits and the two directions along
the wire represent the time evolution of the
computation. We can place gates on the wires
that transform qubits analogous to the
transforms on classical bits by classical gates.
The gates in both cases can be though of as
transformation matrices, in classical case the
only values they can contain are zeros and ones;
in the quantum case the transformation matrices
are arbitrary unitary matrices. Classically there
is a notion of universal computation, which is
being able to perform to construct arbitrary
function from n to m bits, with some subset of
all valid gates, (i.e. XOR and AND, are
sufficient for universal computation) [Niel00].
There is the same notion in quantum
computation, the controlled-not operator,
UCNOT, the Hadamard operator, UH, and the
phase shift operator, UP, represents a basis for
universal quantum computation.

 5

()2.
0

01

,

0100

1000

0010

0001

,
11

11

2

1

���

�
���

�
=

��
�
�
�

�

�

��
�
�
�

�

�

=���

�
���

�

−
=

i
U

UU

S

CNOTH

Other useful operators are rotations about the x-
,y-, and z-axis, respectively UX,UY,UZ:

 An additional feature of quantum
computation that does not have an analog in
classical computation is the notation of
entanglement. Entanglement is essentially the
correlation in the states of two or more qubits.
To make this more tangible we will present a
brief example with one of the simplest
entangled states, a Bell pair:

() ()4,1100
2

1
00 +=B

this represents a state in the tensor product space
of 2-qubits. We can make a measure of the state
in the first qubit’s space that will return a |0> or
a |1>, in either of these cases the measurement
of the second qubit in the same basis is fully

determined:
()

() ()

.0
2

1

5110000
2

1

0 00000

b

bbaabbaa

baA

II

BIBM

=

⊗+⊗=

⊗=

()
() ()

.1
2

1

6111001
2

1

1 00001

b

bbaabbaa

baA

II

BIBM

=

⊗+⊗=

⊗=

we see if we measure a |0> for the first qubit
then the second qubit must also measure a |0>, a

similar thing happens for the second qubit.
Most of the power of quantum computation
seems to come from the ability to entangle
qubits, allowing information to be correlated
across time and distance. It allows the state to
exist in the superposition as the linear
combination of multiple states. This allows for
the parallel processing of many states through
the evolution of a couple of qubits. In the end,
this parallel state processing provides the
speedup in most cases of quantum improvement
over classical algorithms. Constructing
entanglement requires at least two-qubit
operations, such as the controlled-not gate, as
seen above.
 One note on terminology, a “density
matrix” is one representation of system.
Suppose we have some state |� > the density
matrix representation of this state is

()7ψψρ =

where � is the outer product of |� > with <� |.
For example:

() ()

() ()

()10.
11

11

2

1

9,11100000
2

1

8,10
2

1

�
	

�
�

−
−

=

+−−==

−=

ρ

ψψρ

ψ

Notice that the diagonal terms of � sum to one;
all density matrices of normalized states have
this property.
 There is one restriction on qubit
operations. It is the so-called “no cloning
theorem”, it simply states that we cannot clone
the state of one qubit to another qubit, unless we
know the input comes from a known set of
orthogonal states. A proof of this theorem may
be found here [Niel00]. This theorem prevents
us from allowing fan-out gates which clones the
probability distributions of qubits, though we
are free to distribute information between the
qubits by entangling them. However, doing so
does not increase the amount of available

()3.
10

01
,

0

0
,

01

10 ��
�

�
���

�

−
=

��
�

�
���

�
−

=
��

�

�
���

�
= XYX U

i

i
UU

 6

information. Thus it is not possible to copy a
state many times in order to extract more
information from a destructive measurement
process.

B. NMR

Nuclear magnetic resonance is a technique
used in a number of fields. It can be used in
analytic chemistry for chemical analysis and is
the technical basis for magnetic resonance
imaging (MRI) procedures for medical
purposes. The nuclei of the isotopes of some
elements have non-zero magnetic moments.
These moments can be thought of as a unit
vector centered at the origin; not surprisingly, it
is very similar to the concept of the Bloch
sphere as shown above in figure 1. If the atom
is placed in an external magnetic field, B0z;
canonically the field is aligned pointing up the
z-axis. The nuclei’s magnetic moment will
begin to rotate about the z-axis at a rate known
as the Larmor frequency:

()11,ˆ0zBγω −=

where � is the gyromagnetic ratio of the nucleus;
shown diagrammatically in figure 2 below. The
frequency of the rotation is linearly proportional
to the strength of the external field. In the
absence of other atoms and other effects the
motion of the single atom is constant.

When we add other atoms in a molecule
with the original atom other effects begin to
appear. One effect is chemical shift, � � , which
represents the shifts from the Larmor frequency
of the atom in isolation, this is due to shielding
effects based on the arrangement of electrons
mediating the bonds between atoms [Keel04].
The chemical shift allows us to differentiate
between atoms in the same molecule of the
same isotope. Another effect of bonds between
atoms is the J-coupling effect, � J; it is simply an
interaction that encourages the moments of the
two nuclei to point in the same or opposite
directions. The J-coupling interaction can be
used to mediate information exchange between
two nuclei. The J-coupling interaction is

anisotropic, however, its effective strength in
the direction of the external magnetic field, far
outweighs it’s strength in the two other
orthogonal directions [Ladd03, Keel04].

Now if we allow multiple copies of the same
molecule to reside in the same area, usually in a
liquid, there can be effects caused by interaction
between molecules. These effects are
collectively known as decoherence. The first
decoherence effect, known as thermal
relaxation, is caused by interaction between the
molecules as a whole, which is like randomly
applying rotations to the molecule [Grze03]. It
has the effect of bringing the system of
molecule to thermal equilibrium, an essentially
random configuration based on the temperature
of the system. It has a characteristic onset time
known as T1. The second decoherence effect is
caused by J-coupling interaction taking place
between atoms on adjacent molecules, which
also disturbs the state of the system. The
characteristic onset time for the second
decoherence effect is known as T2 [Keel04,
Ladd03]. The minimum of T1 and T2 represents
the maximum time before the system decoheres
and loses a substantial amount of information.

Nuclear magnetic resonance systems exist as
a conglomeration of molecules. Usually the
molecule of interest is put into a liquid solution
with some other molecule that is not active in
NMR, has only zero nuclear magnetic moments,
so that the interesting molecule’s properties can
be distinguished from the solution’s properties.
The amalgamation is an ensemble, so that any
measurement is represents the average value of
the measurement. However, since it is an
ensemble, measurements that are taken are not
necessarily as destructive as in other physical
realizations. The measurement action in NMR
system is know and the Free Induction Decay
(FID). The measurement is taken by allowing
the final state of the system to decay to the
thermal state. The change in the orientation of
the nuclear magnetic moments is evident in the
coils that perform the r.f. pulses in the form of
electromagnetic induction. The time-varying

 7

induction, rather the Fourier transform of the
time-varying induction, is used to determine the
final average state of the molecular ensemble
before it began to decay [Keel04].

In physics, one way of describing the time
evolution of some system is through the
Hamiltonian of the system. The Hamiltonian of
the NMR system of the ensemble of molecules
in the frame of the laboratory can be written as:

()12,
1

� � ��
�
�

���
�

+=
+=

n

i

n

ij

j
z

i
zJ

i
zilab JJJH

ij
ωω

where Jiz is the z spin operator of ith nucleus.
The first term represents Zeeman Effect, which
is essentially the Larmor precession of the
nuclear magnetic moment about the external
field axis. The second term, which is the
summation, represents the J-coupling
interactions between all pairs of nuclei. One
should notice that this construction of the
Hamiltonian is time independent, meaning that
way the system evolves is independent of the
amount of time since it started. The time-
dependent formulation removes the
consideration of relaxation effect because their
onset is time-dependent. However, to first-
order, the effects of relaxation can be considered
as maximum runtime cutoffs. The Hamiltonian
in the rotating frame of each isotope is simply
the previous equation with � � i substituted for � i
[Ladd03].

Figure 2: Larmor Precession in the rotating frame

 In order to perform any sort of computation
we have to be able to manipulate the NMR
system. We can manipulate the system through
something known in NMR as a pulse. A pulse
is simply a radio frequency (r.f.) magnetic field
applied to the system in a direction
perpendicular to the external magnetic field. In
order to apply the pulses in a more intuitive
fashion we tend to apply them in the rotating
frame of the isotope. This means if we have m
different isotopes we have m different rotating
frames or “channels”; these channels have a
specific carrier frequency that represents this
frequency of the rotating frame relative the lab
frame. Generally the Larmor frequency of
different isotopes is sufficiently different as to
be able to address each channel separately; to be
able to apply pulses to a channel with out it
affecting the other channels.

The simplest pulse is a one on a single qubit,
it uses a r.f. pulse on the carrier frequency at the
same frequency as the Larmor frequency in the
qubit’s rotating frame (fig 3). In the rotating
frame the effective external magnetic is many
orders of magnitude smaller because the
moments are now only rotating with respect to
the already rotating frame, though they may not
be rotating at all in the rotating frame if their
chemical shift is zero.

Figure 3: Larmor Precession in the rotating frame of the
pulse.

 8

 Therefore the dominant effect is the applied
pulse which causes the qubit’s magnetic
moment to rotate about the axis of the applied
r.f. magnetic field (fig 3 (above)). So in order
to get a ninety degree rotation about the x-axis,
we must apply a pulse on the rotating x-axis for
a time proportional to the Larmor frequency in
the rotating frame about the pulsed axis. It
should be noted that the only pulses that can be
applied are pulse about axis in the x-y plane.
There exists no z-axis pulse because there is
already a large constant magnetic field in the z
direction. In order for the pulse to be selective
the Fourier transform of the pulse must have
negligible value at the frequencies of at atom
you do not wish to affect resonate; this
translates into a constraint on the length of time
you may apply a pulse.

Longer pulses are more highly selective and
shorter pulse time lengths are more
indiscriminate. One important thing to note is
that while a pulse is being applied selectively to
one qubit all the other qubits are continuing to
evolve as they normally would without the
presence of the pulse, this will necessitate the
use of the technique known as “refocusing”,
which we will describe later on. Basic
parameters for defining a pulse are: start time,
pulse time, central resonant frequency and
strength.

C. NMR for QC

In order to perform quantum computation
using an NMR system we need to define a
mapping from qubits and operators to molecules
and pulses. The mapping is mostly obvious.
The separate qubits in the NMR system are
unique atoms in a given molecule with uniquely
addressable spins. If there are two atoms with
very similar resonant frequency it will be
difficult to use them in any way to store or
transfer information. They are still part of the
system and must be refocusing to prevent their
interactions from affecting the rest of the

computations state, so they are more or less
ignored except in refocusing when they are
grouped together and refocused. We will
assume from now on that the only qubits that
are in the system are individually addressable
and will be useful for some stage of the
computation, although the second assumption is
not really necessary. When you wish to perform
a QC on physical NMR equipment, much
thought must go into the engineering of the
specific molecule that you will use. You must
have sufficiently different Larmor frequencies
when meaning likely different isotopes or large
chemical shift for homonuclear systems in order
to reliably address nuclei. You must have the
appropriate molecular structure to both mediate
strong J-coupling interaction, for quicker
information interaction and structure that
increases relaxation times, T1 and T2, to allow
more time for pulses. That is a qualitative
discussion of the requirements of NMR
properties for robust QC; however, a real
quantitative discussion is beyond the scope of
this paper, in the realm of chemical engineering.

The quantum computation operators are
analogous to pulse sequences. Let us consider a
simple molecule with only one atom; this
negates the need for any refocusing because
nothing else is evolving. We can perform a UZ
operation by simple waiting the time required
for the magnetic moment to rotate by � around
the z-axis (or more likely wait for 2� m + �).
We can apply UX and UY by applying r.f. pulse
for the appropriate time about the x- and y-axis
respectively. We can therefore apply any
arbitrary rotation of a qubit on the Bloch sphere.

We can generate the phase shift by
performing a Z(� /2) [Niel00]. And the
Hadamard operator as the sequence as the
combination of Y(� /4)X(�)Y(- � /4). To have a
two-qubit UCNOT now need two qubits, the
UCNOT pulse is constructed using several single
qubit rotations and allowing the J-coupling
operation to evolve (eqn 13).

 9

Thus we now have a basis for of a universal
set of quantum unitary operators available. This
gives us universality of computation in the
realm of unitary quantum operators, analogous
to the universal set in the classical realm.

The final issue that remains is that
measurement of final computational state.
Measurements in NMR cannot be made of
individual atoms. Measurements made in NMR
are ensemble measurements of the average
value of the some state variable, like the
projection of the magnetic moment of the ith
qubit onto the z-axis. Measurements are
determined by the FID measurement as
described before. In general most of the
average final state of the system can be
determine, we can use the FID to generate the
final density operator describing the system.

D. Refocusing

Refocusing is the technique of stopping the
time evolution of certain nuclei in a NMR
system. During a pulse unless a given qubit is
being addressed by the pulse that qubit will
continue to evolve as it normally would. The
evolution of the entire system can be expressed
by the rotational frame Hamiltonian:

()14.
1

� � ��
�
�

���
�

+∆=
+=

n

i

n

ij

j
x

i
zJ

i
zrot JJJH

ij
ωω

What we would ideal like to be able to perform
an arbitrary operator on some subset of qubits
and have the rest remain unchanged. In order to
do this refocusing we must determine a
sequence of auxiliary pulses in order the
unwanted time evolution.
 The technique we used for generating
appropriate refocusing pulse sequences is from
Leung [Leun99]. This technique utilizes the
properties of Hadamard matrices. Hadamard
matrices are boolean n-by-n matrices where n is
an even integer or one. Hadamard matrices
have the property that all pairs of rows and all

pairs of columns differ by n/2 elements. These
matrices are isomorphic under swapping of rows
and swapping of columns and the logical
negation of rows and columns. It is always
possible to make one row and one column of a
Hadamard matrix all TRUE elements. Note,
that in all but the row or column that has all
TRUE elements, the number of TRUE elements
in each row or column must be exactly n/2.
There are several methods for generating
Hadamard matrices, most are fairly complex,
however, there is one simple construction
method for the some (eqn 16):

 However, they are not guaranteed to exist for
all even numbers nor are all Hadamard matrices
of a given dimension necessarily isomorphic
under simple swap and negation operations. In
order to perform efficient refocusing we need a
Hadamard matrix with dimension at least as
great as the number of qubits in our system.
The dimension of the matrix is the same as the
number of discrete refocusing intervals.
The refocusing method is as follows:

1. We transform the Hadamard matrix so
that the first row and the last column
are all TRUE.

2. Each qubit is assigned a row in the
matrix.

3. Each column in the matrix represent a
T/n step in the time evolution, where T
is the total evolution time of spent
refocusing.

4. Assume without loss of generality that
all the elements outside the matrix are
TRUE.

() ()13
222

3

2

�
�
	

�
�
−

�
�
	

�
��

�
	

�
��

�
	

�
�

=> πππππ
jijjjiCNOT YJXZZU

ij

[] ()

()16.

15,

0110

0101

0011

1111

,
01

11
,1

2

421

�
�

��
�

−
=

�

�

�
�
�
�

�

�

=�
�

��
�

==

nn

nn
n HH

HH
H

HHH

 10

5. A 180-degree rotation (pulse) about
the y-axis is applied to the qubit at the
beginning of each time step where the
element in the matrix is FALSE and
the previous element was TRUE.

6. A -180-degree rotation (pulse) about
the y-axis is applied to the qubit at the
beginning of each time step where the
element in the matrix is TRUE and the
previous element was FALSE.

Because of (1.) no refocusing pulses are applied
to qubits assigned the first row of the matrix,
this means that Zeeman evolution is allowed to
continue for this qubit, through the J-coupling
interaction is refocused with qubits assigned to
other rows. Also from (1.) there are no pulses
applied at time T, which is a practical concern
since pulses take a non-zero, finite amount of
time to apply. If any qubits share assigned rows
the J-coupling interaction between them is not
refocused. The reasons this works is a bit
mathematical and would take a bit of time to
example, we direct you to the original paper for
a more insightful explanation [Leun99].
 The intuition, however, is to think that
the value of the element describes the direction
in time the qubit is evolving. TRUE implies
forward time motion and FALSE backward
motion. Because Hadamard matrices have the
property that all but the first row differ by
exactly n/2 elements all the qubits assigned
other rows than the first evolve half the time
going forward and half the time going backward
so the net evolution is zero, this refocuses the
Zeeman/Larmor evolution. The J-coupling is
refocusing similarly, all pairs of unique rows
differ by n/2 elements meaning that half the
time the two qubits are moving in the same
direction and half the time they are moving in
opposite directions effectively stopping the
time-evolution of the interaction between them.
 To make thing more concrete we will
describe how we applied them to construct our
quantum gates. The Zi(�) gate pulse sequence
with refocusing was simple. Assign the qubit

we wish to evolve the first row of the matrix and
all the others unique rows in the matrix. The
total evolution time:

() ()17,2

i
z

m
T

ω
π

θ
θ

∆

+
=

where m is the number of extra full period z-
rotations, this depends on the length of the
refocusing pulses and the number of qubits
being refocusing. The constraint on T can be
formed as

()18,ntT mpl ⋅≥

where tmpl is the maximum pulse length on for
any of the refocusing intervals. Given these two
constraints we can choose a minimum T subject
to both those constraints. One thing to note is
that if the chemical shift is zero the evolution
time is infinite. It is a removable singularity,
however, since the carrier frequency of the
rotation frame is arbitrary, so we can change it
to keep the refocusing times finite and
reasonable.
 The constructions for the Xi(�) and
Y i(�) gates are very similar to the Zi(�) gate.
There are two important changes. The total
evolution time is now:

() () ()19
i

yx

m
TT

ω
θθ

∆
== .

The qubits are assigned rows the same way as
for the Zi(�) gate, and the second constraint is
still in effect. At the beginning of the pulsing
sequence we apply the appropriate pulse to
generate the rotation we want on the active
qubit. The time constraint serves to refocus the
Zeeman interaction for the active qubit. Strictly
this is not necessary, because we can assign the
active qubit a different row in the matrix,
thereby refocusing the Zeeman interaction using
pulses instead of letting the evolution repeat.
This would remove the constraint involving the
chemical shift entirely and let the evolution time
be only dependent on the maximum pulse length
constraint.
 The Jij(�) gate is also very similar. The
ith and jth qubit are assigned same row of the
matrix (not the first though) and all other qubits

 11

are assigned unique rows in the matrix (not the
first row). The time constraint is as follows:

() ()20,2

ijJ
J

m
T

ω
π

θ
θ

+
=

the standard constraint of maximum pulse
length (eqn 18) is also considered in the choice
of evolution time. Note, it is necessary that � Jij

be non-zero for there to exist a finite refocusing
time. This is not removable like the issue for
the Zi(�) gate, the interaction must exist and the
closer to zero it is the longer the it will take to
perform this action.

III. Implementation

A. GAMMA capabilities

GAMMA is an open-source library for
conducting NMR Simulations created by
researchers at ETH in Zurich, Switzerland for
the study of nuclear magnetic resonance
techniques [Smit94]. For our purpose the
GAMMA library provides a means of
constructing spin systems with various
interactions and properties of isotopes. It
provides a means of constructing and applying
pulses to the system. At the end of a run
GAMMA can produce an FID (and more
importantly its Fourier transform) to read the
output of the final system state.

Constructing our molecule for use in
GAMMA is simply a matter of telling GAMMA
the isotopes we would like to use, their chemical
shift values and the J-coupling interaction
strengths that exist between the various nuclei.
We can then choose to set the initial state of the
nuclei to whatever initial state we like by
inputting the initial density matrix to GAMMA.
The capability to automatically generate initial
thermal equilibrium states is provided by the
library.

GAMMA allows us several different types
of pulses to apply to a system of nuclear spins.
The first type of pulse is an ideal pulse, an ideal
pulse which in simulation time instantaneously

occurs and acts on a single isotope rotating all
nuclei of a given isotope by a set amount. The
pulse’s time-strength function is a delta
function. This is neither practical nor realistic.
Pulses must have some finite time duration and
some selectivity. The next type of pulse that
GAMMA provides is a hard pulse. The hard
pulse pulses all nuclei of a certain isotope about
a set angle. The hard pulse length is non-zero in
time, through it is usually quite short. The time-
strength function is a rectangular function.
These sorts of pulses are appropriate when there
exists on one nuclei in the molecule per isotope,
if there exist more than one nuclei in the
channel, they will both be excited by the pulse.
The final type of pulses GAMMA provides is
shaped pulses. Shaped pulses are simply pulses
who’s time-strength function is inputted by the
user. These types of pulses allow the user to
tune the selectivity of the pulse and excite only
nuclei in certain frequency regions of the
channel by varying the pulse strength over time.
The frequencies that are excited by the shaped
pulse are dependent on the Fourier transform of
the time-strength function. One can tune the
shaped pulse to selectively address multiple
nuclei on a given channel without effect other
on the same channel. GAMMA provides some
capability for the construction of the time-
strength function and even has some built-in
functions that are usually used in these types of
pulses (i.e. Gaussian functions).

One thing that GAMMA does not provide is
the ability to apply more than one pulse at the
same time. While it represents some of a
complicated issue to even physically apply two
simultaneous pulses on a single channel; it is not
be a physical restriction that prevents applying
two simultaneous pulses on two different
channels. Applying two pulses at the same time
on different channels is a common occurrence in
everyday NMR, their lack of capacity for it is
likely due to inherent complexity in making an
API that provide for that general. As a result we
will have to implement the ability to do that for
QCNMR.

 12

GAMMA can return output in two ways.
The first is to simply return the density operator
of the final state. The second way is to simulate
the Free Induction Decay and return an array
that stores the current induced as a function of
time. It provides that capability to take the
Fourier transform of the FID. However,
GAMMA stops there, there is little built-in to
the API that allows for analysis of the FID.
There is nothing that attempts to estimate the
final state by analysis the FID, there is nothing
built-in to even find peaks on the FID’s Fourier
transform. With the lack of built-in functional
for analyzing FIDs, producing FIDs is only for
decoration.

GAMMA has several limitations. The first
was already mentioned, the lack of simultaneous
pulses. The second was lack of FID analysis.
The third is that including the T1 and T2
relaxation effects in QCNMR would have been
very difficult; the code for that part of the
library was not fully featured or complete,
though the authors left notes in some of the
source files for means of implementation.
However, it is very simple to construct and run
pulses for simple NMR simulations. Despite
these faults, GAMMA is a very useful library

 Figure 4: QCNMR Design Layout

that made the work of this paper possible, even
though it was not tailored exactly to our needs.

B. Program Structure

The core of QCNMR is its C++ library
kernel. The kernel provides all the capacities
for constructing qubits, circuit gate, executing
the circuit and marshalling the output. The
library is meant to work along side GAMMA
providing extra functionality for quantum
computation tasks. Some of the datatypes that
are return from QCNMR are quantum
computationally useful mathematical types like
matrices and operators, which inherently
provide for more power computation in
QCNMR user’s programs. In addition, there is
a graphical user interface that allows the quick
construction and running of circuits, without the
need to compile a C++ program; its
computational power is limited due to the
complexity of making an interface that can fully
exercise the library under an arbitrary C++
program. However, the graphical interface is
more meant as an educational tool or a toy to
experiment on small circuits with.

 13

i. The Kernel

The kernel consists of three main classes:
1. QCNMRQubit
2. QCNMROperator
3. QCNMRProgram

The respective purpose of each of these classes
is almost obvious, but we will explain it
anyway. The instantiation of the QCNMRQubit
class is the equivalent of a single qubit. It
contains all information about the qubit
including its isotope, chemical shift, J-coupling
interaction strengths, pointers to all the
operators that will operate on it, pointers to all
the other qubits of the same isotope and
information about what types of pulses can be
applied to it. There really is not much work
being done within this class during the course of
the computation, it is really just a glorified
struct.
 The instantiation of the QCNMROperator
class is the equivalent of a single qubit gate. It
store information about which QCNMRQubits
are being operated on, at what time the gate is
applied and the types of pulses that need to
occur at the top level (ignoring refocusing) to
accomplish the request operation. An auxiliary
class QCNMROperatorGen is used to actually
generate instances of QCNMROperators, this is
because some global knowledge must be stored
to determine whether or not that creation of an
operator on certain qubits at a certain time is a
valid thing to do.
 The final kernel class is QCNMRProgram. It
contains most of the meat of the
implementation. It takes in an array of
QCNMRQubits and then allows the addition of
circuit elements in the form of
QCNMROperators. Most of the work happens
in the QCNMRProgram::Run() function, which
actually interfaces with GAMMA to transform
our QCNMRQubits into their GAMMA
representation. Then QCNMRProgram converts
the inputted QCNMROperators in pulse
sequences that it then runs on GAMMA, the
QCNMROperators are destroyed in this process,

though the pulse sequence that they were
converted to can be returned to the user. The
idea was that user would be allowed to perform
some circuit, look at the output and then
proceed from the final state by adding new
elements and running the new circuit.
QCNMRProgram has the power to return pulse
sequences to user or to save them to disk as in a
human readable format. QCNMRProgram can
also output a text-based diagram of the circuit
that it processes to the disk.
 The main computation in
QCNMRProgram is dedicated to generating and
running refocusing pulses. The first part of this
was implementing that refocusing pulse
sequence generation as was fully described in
section II. The second key concern was
allowing GAMMA to run simultaneous pulses.
To understand what was done we must first give
a brief explanation of how pulse sequences are
implemented in GAMMA. A pulse on a single
channel, iso, on a specific resonant chemical
shift frequency, � � , is implemented in the
following fashion (without loss of generality the
pulse is for � radian about the x-axis):

1. Shift the all nuclei of that isotope from
the original rotating frame into the
rotating frame of the resonant chemical
shift frequency, we get a new
Hamiltonian:

()21.
�

∈
∆−=′

isoi

i
zrotrot JHH ω

2. Next we add the magnetic in the
direction of our axis (x-axis). The
strength of the field is determined by the
pulse time length and the angle we wish
to rotation through:

()22.
2

�

∈
+′=

isoi

i
xroteff J

t
HH

π
θ

 14

3. We then leave the system to evolve
under Heff for time t.

4. Since we shifted to another rotating
frame we need to shift back to the
original frame, this can be done by
constructing a Hamiltonian:

()23.
�

∈
∆=

isoi

i
zshift JH ω

5. We evolve the system through again for

time t under Hshift, though this time is not
real time, it is just some mathematical
bookkeeping to put us back in the
original frame.

6. The pulse is complete and we return to
using our original Hrot.

This method performs a hard rectangular pulse
or if the time is long enough a soft rectangular
pulse. In order to perform more complex pulse
this method is used as an atomic operation. To
perform shaped pulse we apply a series of
rectangular pulses with varying strengths. The
shaped pulse is applied through the
discretization of its time-strength function. So
in order to allow pulses to fire simultaneous in a
general sort of way you have to keep track of all
the changes that you have made and all the
changed you need to make to the Hamiltonian.
The discrete time step method for performing
shaped pulses adds even more complexity.
However, when you get down to, it is not a
technically difficult problem, it is just tedious.
We will not go into the implementation of
scheduling and ordering changes to the
Hamiltonian and evolving the state
appropriately as it is just a programming task
and does not add anything interesting to this
discussion.
 QCNMRProgram’s main output is the final
density matrix of the system. This is clearly not
realistic, an NMR machine will not simply give
the final density matrix of the system; you must
compute it from the FID. There are basically
two reasons we choose not to provide the output
via FID. The reason one reads an FID and

converts it to a density matrix was simply
because the density matrix itself is unavailable,
so since GAMMA freely gives us the density
matrix it makes little sense to transform the
density matrix to an FID for the purposes of
transforming it back to an FID. The second
reason is that as we mentioned before GAMMA
does not have much built-in capacity for
analyzing FID, so it would have required
significant extra work to add that on to support
an admittedly dubious process. We did add the
ability to take the partial trace of a density
matrix against some parts of the space to make
it easier to examine the states of subspaces of
the system.

ii. The GUI

The graphical front-end of QCNMR is almost
an afterthought. It has a simple point-click
interface that allows the user to quickly
construct quantum circuits and view the final
output of the system as a graphically expressed
density matrix or as a diagram of pulses. At the
time of writing this paper, the first version of the
GUI is finished, though a few minor bugs still
remain. It makes it very easy to just put down a
few gates and experiment with some small
circuit. The output capabilities are limit to
diagrams and graphs, because large amounts of
textual data are confusing and often not useful.
In the short time we have had to play with it, it
seems as though it would be useful
educationally, even if the fact that it is based on
a nuclear magnetic resonance simulation were
ignored. It is an interesting thing to play with if
nothing else.
Figure 5: Graphical User Interface Screenshot

 15

IV. Results - Quantum Teleportation

One interesting quantum algorithm that we
had a chance to implement using QCNMR, was
the canonical quantum teleportation circuit. The
circuit is shown below in figure XXX. All three
qubits start out in the state |0>. Operations may
be performed on the Q1, state to produce a
different input to the system (step one on the
diagram). Next qubit two and three are
initialized into an entangled Bell state (step two
on the diagram):

() ()241100
2

1 +=ooB

In the original formulation of the problem the
qubit two was given to Alice and qubit three
was given to Bob. Alice started by initializing
qubit one into some state. Then Alice can make
some local measurements on qubit one and
qubit two and send the results classical to Bob,
who may be some distance away. Bob can then
use the classical information that Alice sent him
to decide whether or not to apply certain

Figure 6 (top): Quantum Teleportation Circuit
Figure 7 (bottom): Quantum Teleportation Pulse
Sequence

operations to his qubit three. The end result is
that the final state of Bob’s qubit three is the
same quantum state as initial state that Alice
prepared. Because we have not implemented
classical channels with QCNMR, we have to use
an equivalent circuit with only quantum
operations.

We implemented this circuit on a
heteronuclear three-qubit system. The spin
parameters where more or less arbitrary, the
chemical shift for each nuclei was 200Hz, and
the J-coupling strength between each one was
10Hz. Since we have a heteronuclear system all
pulses are hard pulses on a channel. The
nominal pulse length was one microsecond.
The pulse sequence for the sections two and
three of the teleportation circuit are shown
below in figure XXX. As you can see the total
execution time for the circuit is on the order of
0.3 seconds. Notice the four symmetric open
regions in the pulse diagram. These are the
regions where the J-coupling interaction was
being allowed to evolve. Since the J-coupling

1. Initialize

2. Create Entangled Bell State

3. ‘Local’ Measurements
Hadamard

J-coupling

 16

term is an order of magnitude smaller than the
chemical shift, the time required to perform the
J-coupling over some angle increases by an
order of magnitude. Similarly, the tightly pack
regions of the diagram correspond to the single-
qubit evolution that occur as part of the CNOT
gates and the initial Hadamard gate. The
numerical results themselves are not too
interesting.

The original density matrix after
preparation of the qubit one traced down to
qubit one is almost identical to the final density
matrix traced down to qubit three.
 The interesting thing is that when we
interesting the length of the hard pulses, the
fidelity of the final teleported state to the initial
prepared state decreases dramatically.
However, this is to be expected, one of the
requirements of the refocusing processes was
that the pulse lengths must be kept short
[Leun99]. The time that the pulses are being
applied is larger relative to the total duration of
the refocusing, likely due to the fact that not all
qubits are being pulsed for the same amount of
time during the refocusing sequence; we believe
that this causes the effectiveness of the J-
coupling refocusing between qubits to break
down. The Zeeman refocusing should be
unaffected. This suggests that smaller J-
coupling strengths would improve this problem,
however, that would increase the total
refocusing time required. In the end it is a
balancing effort between pulse length and
refocusing time.
 We did not have a chance to examine as
many quantum circuits as we would like to
have. The main stumbling block other than
time, was that most of the interesting circuits
involve construction of some set of Uf’s that act
as oracles in the Deutsch-Jozsa problem or the
Grover Search problem [Erma03]. It was not
obvious to us how to construct these unitary
functions using the gates we had available.
However, during the early stages of
development of QCNMR, we did test out the
unitaries provided for the three-qubit Deutsch-

Jozsa algorithm [Kim00]. These unitary
functions where not constructed using the
standard gate set, they we constructed using
NMR rotations and interactions. It is in the
realm of QCNMR to perform such operations as
we described in previous sections; that
functionality is privately internal to the kernel
and for design choices was not exposed to the
user. It would be simple to allow the
construction gates that allowed for arbitrary X,
Y and Z rotations, but they were hidden in order
to make the user’s interface cleaner. In future
iterations of the QCNMR, this functionality will
likely be exposed.
 Finally, a note about simulated and
experimental accuracy, QCNMR is not intended
to exactly simulate a nuclear magnetic
resonance computer in complete detail. There
are a number of practical assumptions that had
to be made in order to make this project
tractable. The most important assumption is
that we consider the NMR system as a statistical
ensemble as opposed to a physic n-body system,
which is horribly intractable. Along with that
assumption was the assumption that the
Hamiltonian for our system was time-
independent meaning the bulk relaxation effects
were not being considered either, though they
could be included to zero-th order as a restraint
on total computation time. Another assumption
that we consider was that the only qubits in the
system were nuclei that we involved in the
computation, this is not strictly necessary, the
user can add whatever extra qubits the wish add,
the only cost is that refocusing is performed
uniquely on each one of them. The final,
perhaps somewhat understated assumption, is
that we assumed that refocusing was necessary
for atomic operation, strictly speaking
refocusing is probably not always necessary, in
fact, it is probably wasteful sometimes. The
problem is that it is difficult to quantify the
effectiveness of using refocusing at some point
in the evolution of the circuit. While always
refocusing is good from a correctness point of
view, it can often be dubious from a efficiency

 17

perspective. Again, it is a case where balance
and optimization of parameters comes into play.
We decide to err on the side of correctness a
opposed to the side of efficiency, for it will
likely be easy to approach a optimal solution
from a solution that is already correct.

V. Conclusion

A. Summary

We presented our construction of a nuclear
magnetic resonance quantum computer
simulator, QCNMR. We discussed the
necessary background for a layman to get a
good physical understanding of NMR and
quantum computing at a basic level. Our
algorithms for constructing refocusing
sequences and for performing simultaneous
pulses were also discussed. We examined the
structure and interface to the open-source NMR
simulation library that we used as a backend for
QCNMR’s nuclear magnetic resonance
simulation as well as its technical short-comings
and limitations. The basic structure and classes
in our implementation were briefly described in
their form and function. We have concluded
with a short example circuit that we
implemented on QCNMR. For the most part
this project constructed what it set out to do, to
implement a program that takes a “classical”
quantum circuit and performs it by using NMR
pulses. Finally we commented on a number of
assumptions that were made in the formulation
and implementation of QCNMR. The next
major step from QCNMR is to construct a time-
correctness optimization solver for applying
pulses.

B. Related Work

There are relatively few examples of similar
attempts to implement a nuclear magnetic
resonance quantum computer simulation. One
such example is the Quantum Computer
Emulator (QCE) by a group at the University of

Groningen, Demark [Mich03]. There approach
is at a much lower level, by allowing the user to
choose all the pulses and the parameters of the
pulses. They make this slightly more tractable
to a novice by constructing instruction sets of
basic useful pulses with pre-set parameters.
There implementation, however, seems to focus
on being an ideal quantum computer simulator
as opposed to a NMR based simulator. They to
not seem to provide the automatic construction
of the necessary refocusing pulse for the user; it
is up to the user to implement them however
they choose. This method is allows the user
more control over how their abstract quantum
circuit is implemented in NMR hardware,
though at the cost of considerably more time to
implement any given circuit with the QCE
system. QCNMR provides a quick way for user
to test and examine the basic properties of
circuits that will be on simulated NMR system
at the loss of user control of the pulse
sequencing.

C. Future Work

We would like to have spent more time
testing some example circuits to examine the
effectiveness of QCNMR, but backlogs in the
development schedule hindered the process.
We did not spend much time trying to optimize
the pulse sequences beyond applying multiple
pulses at the same time. Future work could
address optimizing pulse sequences both on a
per-operation basis and on a global scale using
some linear programming techniques. There
was not enough time to compare the results of
the simulated computation and the generated
pulse sequences to the physical implementations
and actual pulse sequences. There is one thing
that remains to be implemented, however, at the
time of publishing this paper, simultaneous
homonuclear soft pulses are not yet
implemented due to complexity issues and time
constraints. We also look to further iterations
on the development of the GUI, in order to add
make it a more powerful tool that allows it to

 18

exercise more features of the QCNMR library.
The issue of swapping qubits (and optimizing
the swapping of qubits) for performing
information exchange on qubits that have zero
or very small J-coupling interaction strength
was not even discussed. There are a number of
simple optimizations that come to our minds as
this paper is being written; mostly optimizations
in the maximum time duration of a refocusing
sequence and the organization of pulses within
each refocusing pulse interval.

D. Acknowledgements

Firstly, thanks to the research at the
University of Florida and in Switzerland that
produced GAMMA and made it openly
available to the public, for without which this
project would have been impossible. Secondly,
thanks to Dr. Arvind, for some useful pointers
and discussion about using NMR for quantum
computation. Thirdly, we would like to thank
Dr. Avrim Blum for signing as co-advisor to
this project and supporting it even though it is
not his area of expertise. Fourthly, we would
like to thank Mark Stehlik for organizing the CS
Senior Thesis program, as well as for some
good advice concerning this thesis and other
aspects of CS undergraduate life. Finally, and
most importantly, we would like to Dr. Robert
Griffiths for being the main advisor of this
research; there were definitely some rough spots
during the past two semesters, but it seems we
made it through no worse for wear having
completed a frustrating, though ultimately
worthwhile, project. Thanks everybody.

 19

VI. Bibliography

Cira95 Cirac I J and Zoller P Quantum computations with cold trapped ions, Phys. Rev.

 Let., 74: 4091-4094, 1995.

Cory96 Cory, D. G., Fahmy, A. F. and Havel, T. F., Nuclear magnetic resonance

spectroscopy: an experimentally accessible paradigm for quantum computing. In
Proceedings of the 4th Workshop on Physics and Computation, Boston: New
England Complex Systems Institute, (1996).

DiVi95 DiVincenzo, D. P., Quantum Computation. Science, pages 270:255, 1995.

Erma03 Ermakov, V., B. M. Fung, Nuclear Magnetic Resonance Implemention of the

Deutsch-Jozsa Algorithm Using Different Initial States,
 arXiv:quantph/0304058 (2003).

Grov96 L. K. Grover, A fast quantum mechanical algorithm for database search,

 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
 Computing, 212-219, Philadelphia, PA, (May, 1996).

Grze03 Grzesiek, S., Notes on Relaxation and Dynamics. Course Notes, EMBO
 Practical Course on NMR, Heidelberg, 2003.

Keel04 Keeler, James. Understanding NMR, http://www-keeler.ch.cam.ac.uk/lectures/

 (2004).

Kim00 Kim, J., J. Lee, S. Lee, C. Cheong, Implementation of the Refined Deutsch-

Jozsa Algorithm on a Three-Bit NMR Quantum Computer. Physical Review A,
62, 022312 (2000).

Ladd03 Ladd, T., NMR Quantum Computation. Course Notes, Quantum Information
 Science and Technology. (2003).

Leun99 Leung, D., I. Chuang. F. Yamaguchi, Y. Yamamoto. Efficient Implementation
of Selective Recoupling in Heteronuclear Spin Systems Using Hadamard
Matrices. arXiv:quant-ph/9904100.

Mich03 Michielsen, K., H. Raedt, QCE: A Simulator for Quantum Computer Hardware,
 University of Groningen, The Netherlands, (2003).

Niel00 Nielson, M., I. Chuang. Quantum Computation and Quantum Information.

 Cambridge University Press, (2000).

 20

Shor97 Shor, Peter W., "Polynomial-Time Algorithms for Prime Factorization and
 Discrete Logarithms on a Quantum Computer", SIAM Journal on

Computing,26,5,pages 1484-1509,1997.

Smit94 S.A. Smith, T.O. Levante, B.H. Meier, and R.R. Ernst, Computer Simulations

in Magnetic Resonance: An Object Oriented Programming Approach, J. Magn.
Reson., 106a,77-104,(1994).

Yann99 Yannoni, C., M. Sherwood, D. Miller, I. Chuang, Nuclear Magnetic Resonance
Quantum Computing Using Liquid Crystal Solvents. arXiv:quant-ph/9907063
(1999).

