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Abstract 
 

We present the implementation of a nuclear magnetic resonance (NMR) 
universal quantum computer (QC) simulator we have named QCNMR.  Our 
quantum computer simulator uses a pre-existing open source package, GAMMA, 
for performing NMR simulation.  QCNMR reads in a quantum computation 
circuit converts it into a sequences of pulses that can be simulated on an NMR 
system, our system then returns the output of the simulated computation to the 
user.  Our simulator is universal over the space of quantum computation, 
analogous to the way a classical computer is “universal”.   

 
 

I. Introduction 
 
A. Overview 

 
Classical computers have been around for a 

large part of a century and for the most part the 
computations that they can perform are entirely 
deterministic.  There exist classes of problems 
that are not known to be efficiently solvable (in 
O(nk) time) by classical computers, which are 
known as non-polynomial (NP) time problems.  

In 1996 Grover designed a method to 
reduced the computational time by a square root 
for searching a set for a marked item on a 
quantum computer [Grov96].  Grover’s search 
algorithm provided a more efficient way to 
solve a NP-hard problem, “hard” refers to the 
fact that problem is canonical to the set of NP 
problems meaning that a solution for this 
problem could be translated into a solution for 
any other NP problem.  Grover algorithm, 
however, did not provide the crucial speedup, as 
his algorithm still took NP time in the worst 
case.   

 In the later in 1997 Peter Shor devised an 
algorithm that finds the prime factors of a 
number in polynomial (P) time on a quantum 
computer.  This represents a drastic speedup 
over the widely held belief that the problem 
takes NP time on a classical computer [Shor97].  
There are relatively few other examples of 
algorithms where there is an evident speedup 
when your computer is allowed to take 
advantage of quantum mechanical effects.  It is 

not known whether allowing use of quantum 
effects provides in inherent increase in the 
available computational power.  It is also 
unknown as to whether more algorithms that are 
more efficient using a quantum computer do 
exist.  In either case, it is important that while 
one is attempting to devise new algorithms that 
one has ready access to implement and run their 
algorithm to see how and if it performs. 

 
B. Goals 
 

To that end, the implementation of a 
framework to simulate quantum algorithm on 
readily available classical hardware would be 
important to help researchers study quantum 
algorithms.  There are several possible different 
approaches, each with its own level of accuracy 
and practicality.  In the first and simplest 
approach you assume that you have an ideal 
quantum computer and that you can perform 
more or less arbitrary operations on the qubits in 
your computer.  The implementation is just a 
series of straightforward matrix operations.  It 
should be noted that the time to perform the 
calculations to simulate the ideal QC is not the 
same asymptotic time that a real quantum 
computer would take, as each matrix operation 
take O(2n) time in the number of qubits. 
However, to our knowledge such an ideal 
physical system for performing quantum 
computation does not exist, it can only be 
approximated by other less accurate physical 
systems.  So, while it is important that the 
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algorithm function on an ideal quantum, it must 
also function on a realistic physical one, 
otherwise the algorithm has limited 
applicability.  The next level of increased 
realism is that simulation of a physically based 
quantum computation system.  This means that 
we simulate some physical quantum mechanical 
effects and build a framework for quantum 
computation on top of the quantum effects.  
This is the method that we have chosen to 
implement in this paper.  This method discards 
the assumption that our system is ideal, and 
requires that the computation have basis in a 
physically realizable system.  The third and 
most telling method is to actually implement the 
computation on a physical quantum system.  
This method is by far the most complicated and 
expensive in terms of time and money.  
Implementing algorithms correctly and 
effectively on real systems can take a long 
amount of time; weeks or months.  In addition, 
these systems are by no means widely available 
and must be custom built and tailored to the 
specific task.  There are a number of possible 
physical realizations for a physical quantum 
computer: NMR, quantum dots, ion trap and 
optical photon QCs and others [Cira95, Cory96, 
DiVi95, Yann99].  However, it remains to be 
seen which physical realization, if any, will be 
viable in the end.   

The purpose of QCNMR is two-fold.  The 
first part of its purpose is to allow NMR 
quantum computer researchers to simulation 
algorithms that they we considering performing 
on physical implementation first before they 
spend the time to implement them on a real 
system.  This will hopefully decrease the 
amount of turnaround time to study an 
algorithm for NMR QCs.  It allows basic 
implementation without investment of much 
time. The second purpose is purely educational; 
it will allow students to quickly experiment with 
quantum algorithms, view the output and to 
hopefully gain a more intuitive understanding of 
the algorithm and quantum computation as a 
whole. 

 
 

C. Specific work 
 

Our main contribution in this paper was to 
the implement framework for quantum 
computation on top of an existing open-source 
NMR simulator, GAMMA [Smit94].  QCNMR 
exists as a C++ library that has the ability to 
create qubits, a quantum circuit and to run the 
circuit and return the final state of the system 
after the circuit has run its course.  QCNMR 
first parses the input circuit and then converts 
into a sequence of NMR pulses, which 
represents the computation we wish to perform.  
Pulses are essentially NMR instructions.  We 
give these pulses over to GAMMA to simulate 
the NMR system and then read back 
information and interpret  it for the user.  
The main work in this project was to implement 
the generation of pulse sequences on the NMR 
system so that we could selectively address 
individual qubits and leave the rest of the 
system invariant, using a technique know as 
refocusing.  Time was also taken to make the 
graphical interface for a the QCNMR library 
that allows the user to quickly construct and run 
quantum circuits. 

 
 

D. Organization of Paper 
 

Section two presents some background 
information on NMR, quantum computation and 
performing quantum computation operations 
through NMR methods.  Section three explains 
the structure and implementation of QCNMR. 
Section four describes using QCNMR to 
implement several quantum algorithms and the 
results.  Section five concludes this paper and 
discusses future and related work and 
summarizes the results of this project. 
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II. Background 
 
A. Quantum Computation 
 

Quantum computation is perhaps best 
introduced in as an analog to classical 
computation.  In classical computation, the 
object that stores or represents information is 
known as the “bit”, it can take only two discrete 
values “zero”(0) or “one”(1).  The analog for 
quantum computation is known as the “qubit”, 
the information it stores, however, is not 
discrete valued.  The qubit is composed of a 
linear combination in complex space of at least 
two orthonormal basis states |0> and |1>.  As a 
side note, there exist n-iary qubits that are the 
linear combination of n orthonormal basis 
states.  The value of a general 2-qubit can be 
written as: 

( )1,10 baq +=  

where a and b are complex constants and the 
norm of |q> is 1.  The values of a single qubit 
can be thought of as a vector from the origin 
Euclidean three-space to the surface of a unit 
sphere; this is known as the “Bloch’s sphere” 
representation (figure 1).  It is clear that the 
orientation of a qubit can be parameterized by 
two real values, giving it the capacity to store 
 
Figure 1: The Bloch Sphere 

real-valued information opposed to the discrete-
valued information that is stored in the classical 
bit.  However, the information that is stored in 
that real-valued state cannot be directly read.  
The most telling measurements that can be 
performed are ones that measure in orthogonal 
basis states, returning the basis state that the 
qubit’s state projected into.  This is like 
measuring a single bit of classical information.  
To get more accurate determination of the actual 
qubit state more measurements are required, 
each providing more information about the 
qubit.  However, this is a bit of a problem in 
many physical realizations as their measurement 
operations tend to be destructive, meaning that 
the measurement of a qubit disturbs it from its 
original state creating hysteresis effects due to 
measurement; this makes is difficult to make 
more than one measurement in practice. 
 Similar to the theory of universal 
classical computation by logical circuit, we can 
describe an analog for quantum computation: 
universal quantum circuits.  The wires of our 
circuit are qubits and the two directions along 
the wire represent the time evolution of the 
computation.  We can place gates on the wires 
that transform qubits analogous to the 
transforms on classical bits by classical gates.  
The gates in both cases can be though of as 
transformation matrices, in classical case the 
only values they can contain are zeros and ones; 
in the quantum case the transformation matrices 
are arbitrary unitary matrices.  Classically there 
is a notion of universal computation, which is 
being able to perform to construct arbitrary 
function from n to m bits,  with some subset of 
all valid gates, (i.e. XOR and AND, are 
sufficient for universal computation) [Niel00].  
There is the same notion in quantum 
computation, the controlled-not operator, 
UCNOT, the Hadamard operator, UH, and the 
phase shift operator, UP, represents a basis for 
universal quantum computation. 
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Other useful operators are rotations about the x-
,y-, and z-axis, respectively UX,UY,UZ: 
 
 
 
 
 An additional feature of quantum 
computation that does not have an analog in 
classical computation is the notation of 
entanglement.  Entanglement is essentially the 
correlation in the states of two or more qubits.  
To make this more tangible we will present a 
brief example with one of the simplest 
entangled states, a Bell pair: 

( ) ( )4,1100
2

1
00 +=B

this represents a state in the tensor product space 
of 2-qubits.  We can make a measure of the state 
in the first qubit’s space that will return a |0> or 
a |1>, in either of these cases the measurement 
of the second qubit in the same basis is fully 

determined: 
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we see if we measure a |0> for the first qubit 
then the second qubit must also measure a |0>, a 

similar thing happens for the second qubit.  
Most of the power of quantum computation 
seems to come from the ability to entangle 
qubits, allowing information to be correlated 
across time and distance.  It allows the state to 
exist in the superposition as the linear 
combination of multiple states.  This allows for 
the parallel processing of many states through 
the evolution of a couple of qubits.  In the end, 
this parallel state processing provides the 
speedup in most cases of quantum improvement 
over classical algorithms.   Constructing 
entanglement requires at least two-qubit 
operations, such as the controlled-not gate, as 
seen above. 
 One note on terminology, a “density 
matrix” is one representation of system.  
Suppose we have some state |� > the density 
matrix representation of this state is      

( )7ψψρ =  

where �  is the outer product of |� > with <� |.  
For example: 
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Notice that the diagonal terms of �  sum to one; 
all density matrices of normalized states have 
this property.   
 There is one restriction on qubit 
operations.  It is the so-called “no cloning 
theorem”, it simply states that we cannot clone 
the state of one qubit to another qubit, unless we 
know the input comes from a known set of 
orthogonal states.   A proof of this theorem may 
be found here [Niel00].  This theorem prevents 
us from allowing fan-out gates which clones the 
probability distributions of qubits, though we 
are free to distribute information between the 
qubits by entangling them.  However, doing so 
does not increase the amount of available 

( )3.
10

01
,

0

0
,

01

10 ��
�

�
���

�

−
=

��
�

�
���

�
−

=
��

�

�
���

�
= XYX U

i

i
UU



 6 

information.   Thus it is not possible to copy a 
state many times in order to extract more 
information from a destructive measurement 
process.  

 
B. NMR 
 

Nuclear magnetic resonance is a technique 
used in a number of fields.  It can be used in 
analytic chemistry for chemical analysis and is 
the technical basis for magnetic resonance 
imaging (MRI) procedures for medical 
purposes.  The nuclei of the isotopes of some 
elements have non-zero magnetic moments.  
These moments can be thought of as a unit 
vector centered at the origin; not surprisingly, it 
is very similar to the concept of the Bloch 
sphere as shown above in figure 1.  If the atom 
is placed in an external magnetic field, B0z; 
canonically the field is aligned pointing up the 
z-axis. The nuclei’s magnetic moment will 
begin to rotate about the z-axis at a rate known 
as the Larmor frequency:   

( )11,ˆ0zBγω −=  

where �  is the gyromagnetic ratio of the nucleus; 
shown diagrammatically in figure 2 below.  The 
frequency of the rotation is linearly proportional 
to the strength of the external field.  In the 
absence of other atoms and other effects the 
motion of the single atom is constant. 

When we add other atoms in a molecule 
with the original atom other effects begin to 
appear.  One effect is chemical shift, � � , which 
represents the shifts from the Larmor frequency 
of the atom in isolation, this is due to shielding 
effects based on the arrangement of electrons 
mediating the bonds between atoms [Keel04].  
The chemical shift allows us to differentiate 
between atoms in the same molecule of the 
same isotope.  Another effect of bonds between 
atoms is the J-coupling effect, � J; it is simply an 
interaction that encourages the moments of the 
two nuclei to point in the same or opposite 
directions.  The J-coupling interaction can be 
used to mediate information exchange between 
two nuclei.  The J-coupling interaction is 

anisotropic, however, its effective strength in 
the direction of the external magnetic field, far 
outweighs it’s strength in the two other 
orthogonal directions [Ladd03, Keel04].  

Now if we allow multiple copies of the same 
molecule to reside in the same area, usually in a 
liquid, there can be effects caused by interaction 
between molecules.  These effects are 
collectively known as decoherence.  The first 
decoherence effect, known as thermal 
relaxation, is caused by interaction between the 
molecules as a whole, which is like randomly 
applying rotations to the molecule [Grze03].  It 
has the effect of bringing the system of 
molecule to thermal equilibrium, an essentially 
random configuration based on the temperature 
of the system.  It has a characteristic onset time 
known as T1.  The second decoherence effect is 
caused by J-coupling interaction taking place 
between atoms on adjacent molecules, which 
also disturbs the state of the system.  The 
characteristic onset time for the second 
decoherence effect is known as T2 [Keel04, 
Ladd03].  The minimum of T1 and T2 represents 
the maximum time before the system decoheres 
and loses a substantial amount of information.    

Nuclear magnetic resonance systems exist as 
a conglomeration of molecules.  Usually the 
molecule of interest is put into a liquid solution 
with some other molecule that is not active in 
NMR, has only zero nuclear magnetic moments, 
so that the interesting molecule’s properties can 
be distinguished from the solution’s properties.  
The amalgamation is an ensemble, so that any 
measurement is represents the average value of 
the measurement.  However, since it is an 
ensemble, measurements that are taken are not 
necessarily as destructive as in other physical 
realizations.  The measurement action in NMR 
system is know and the Free Induction Decay 
(FID).  The measurement is taken by allowing 
the final state of the system to decay to the 
thermal state.  The change in the orientation of 
the nuclear magnetic moments is evident in the 
coils that perform the r.f. pulses in the form of 
electromagnetic induction.  The time-varying 
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induction, rather the Fourier transform of the 
time-varying induction, is used to determine the 
final average state of the molecular ensemble 
before it began to decay [Keel04]. 

In physics, one way of describing the time 
evolution of some system is through the 
Hamiltonian of the system.  The Hamiltonian of 
the NMR system of the ensemble of molecules 
in the frame of the laboratory can be written as: 

( )12,
1
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where Jiz is the z spin operator of ith nucleus.  
The first term represents Zeeman Effect, which 
is essentially the Larmor precession of the 
nuclear magnetic moment about the external 
field axis.  The second term, which is the 
summation, represents the J-coupling 
interactions between all pairs of nuclei.  One 
should notice that this construction of the 
Hamiltonian is time independent, meaning that 
way the system evolves is independent of the 
amount of time since it started.  The time-
dependent formulation removes the 
consideration of relaxation effect because their 
onset is time-dependent.  However, to first-
order, the effects of relaxation can be considered 
as maximum runtime cutoffs.  The Hamiltonian 
in the rotating frame of each isotope is simply 
the previous equation with � � i substituted for � i 
[Ladd03]. 
 
Figure 2: Larmor Precession in the rotating frame

         In order to perform any sort of computation 
we have to be able to manipulate the NMR 
system.  We can manipulate the system through 
something known in NMR as a pulse.  A pulse 
is simply a radio frequency (r.f.) magnetic field 
applied to the system in a direction 
perpendicular to the external magnetic field.   In 
order to apply the pulses in a more intuitive 
fashion we tend to apply them in the rotating 
frame of the isotope.  This means if we have m 
different isotopes we have m different rotating 
frames or “channels”; these channels have a 
specific carrier frequency that represents this 
frequency of the rotating frame relative the lab 
frame.  Generally the Larmor frequency of 
different isotopes is sufficiently different as to 
be able to address each channel separately; to be 
able to apply pulses to a channel with out it 
affecting the other channels.   

The simplest pulse is a one on a single qubit, 
it uses a r.f. pulse on the carrier frequency at the 
same frequency as the Larmor frequency in the 
qubit’s rotating frame (fig 3).  In the rotating 
frame the effective external magnetic is many 
orders of magnitude smaller because the 
moments are now only rotating with respect to 
the already rotating frame, though they may not 
be rotating at all in the rotating frame if their 
chemical shift is zero.   
 
 
 
Figure 3: Larmor Precession in the rotating frame of the 
pulse.
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 Therefore the dominant effect is the applied 
pulse which causes the qubit’s magnetic 
moment to rotate about the axis of the applied 
r.f. magnetic field (fig 3 (above)).   So in order 
to get a ninety degree rotation about the x-axis, 
we must apply a pulse on the rotating x-axis for 
a time proportional to the Larmor frequency in 
the rotating frame about the pulsed axis. It 
should be noted that the only pulses that can be 
applied are pulse about axis in the x-y plane.  
There exists no z-axis pulse because there is 
already a large constant magnetic field in the z 
direction.  In order for the pulse to be selective 
the Fourier transform of the pulse must have 
negligible value at the frequencies of at atom 
you do not wish to affect resonate; this 
translates into a constraint on the length of time 
you may apply a pulse.   

Longer pulses are more highly selective and 
shorter pulse time lengths are more 
indiscriminate. One important thing to note is 
that while a pulse is being applied selectively to 
one qubit all the other qubits are continuing to 
evolve as they normally would without the 
presence of the pulse, this will necessitate the 
use of the technique known as “refocusing”, 
which we will describe later on.  Basic 
parameters for defining a pulse are: start time, 
pulse time, central resonant frequency and 
strength.   

  
 
C. NMR for QC 
 

In order to perform quantum computation 
using an NMR system we need to define a 
mapping from qubits and operators to molecules 
and pulses.  The mapping is mostly obvious.  
The separate qubits in the NMR system are 
unique atoms in a given molecule with uniquely 
addressable spins.  If there are two atoms with 
very similar resonant frequency it will be 
difficult to use them in any way to store or 
transfer information.  They are still part of the 
system and must be refocusing to prevent their 
interactions from affecting the rest of the 

computations state, so they are more or less 
ignored except in refocusing when they are 
grouped together and refocused.  We will 
assume from now on that the only qubits that 
are in the system are individually addressable 
and will be useful for some stage of the 
computation, although the second assumption is 
not really necessary.  When you wish to perform 
a QC on physical NMR equipment, much 
thought must go into the engineering of the 
specific molecule that you will use.  You must 
have sufficiently different Larmor frequencies 
when meaning likely different isotopes or large 
chemical shift for homonuclear systems in order 
to reliably address nuclei.  You must have the 
appropriate molecular structure to both mediate 
strong J-coupling interaction, for quicker 
information interaction and structure that 
increases relaxation times, T1 and T2, to allow 
more time for pulses.  That is a qualitative 
discussion of the requirements of NMR 
properties for robust QC; however, a real 
quantitative discussion is beyond the scope of 
this paper, in the realm of chemical engineering.   

The quantum computation operators are 
analogous to pulse sequences.  Let us consider a 
simple molecule with only one atom; this 
negates the need for any refocusing because 
nothing else is evolving.  We can perform a UZ 
operation by simple waiting the time required 
for the magnetic moment to rotate by �  around 
the z-axis (or more likely wait for 2� m + � ).  
We can apply UX and UY by applying r.f. pulse 
for the appropriate time about the x- and y-axis 
respectively.  We can therefore apply any 
arbitrary rotation of a qubit on the Bloch sphere. 

We can generate the phase shift by 
performing a   Z(� /2) [Niel00].  And the 
Hadamard operator as the sequence as the 
combination of Y(� /4)X(� )Y(- � /4).  To have a 
two-qubit UCNOT now need two qubits, the 
UCNOT pulse is constructed using several single 
qubit rotations and allowing the J-coupling 
operation to evolve (eqn 13).  
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Thus we now have a basis for of a universal 
set of quantum unitary operators available.  This 
gives us universality of computation in the 
realm of unitary quantum operators, analogous 
to the universal set in the classical realm. 

The final issue that remains is that 
measurement of final computational state.  
Measurements in NMR cannot be made of 
individual atoms.  Measurements made in NMR 
are ensemble measurements of the average 
value of the some state variable, like the 
projection of the magnetic moment of the ith 
qubit onto the z-axis.  Measurements are 
determined by the FID measurement as 
described before.  In general most of the 
average final state of the system can be 
determine, we can use the FID to generate the 
final density operator describing the system.   

 
D. Refocusing 
 

Refocusing is the technique of stopping the 
time evolution of certain nuclei in a NMR 
system.  During a pulse unless a given qubit is 
being addressed by the pulse that qubit will 
continue to evolve as it normally would.  The 
evolution of the entire system can be expressed 
by the rotational frame Hamiltonian:   
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What we would ideal like to be able to perform 
an arbitrary operator on some subset of qubits 
and have the rest remain unchanged.  In order to 
do this refocusing we must determine a 
sequence of auxiliary pulses in order the 
unwanted time evolution. 
        The technique we used for generating 
appropriate refocusing pulse sequences is from 
Leung [Leun99].  This technique utilizes the 
properties of Hadamard matrices.  Hadamard 
matrices are boolean n-by-n matrices where n is 
an even integer or one.  Hadamard matrices 
have the property that all pairs of rows and all 

pairs of columns differ by n/2 elements.  These 
matrices are isomorphic under swapping of rows 
and swapping of columns and the logical 
negation of rows and columns.  It is always 
possible to make one row and one column of a 
Hadamard matrix all TRUE elements.  Note, 
that in all but the row or column that has all 
TRUE elements, the number of TRUE elements 
in each row or column must be exactly n/2.  
There are several methods for generating 
Hadamard matrices, most are fairly complex, 
however, there is one simple construction 
method for the some (eqn 16): 
 
 
 
 
 
 
 
 
 

 
 However, they are not guaranteed to exist for 
all even numbers nor are all Hadamard matrices 
of a given dimension necessarily isomorphic 
under simple swap and negation operations.  In 
order to perform efficient refocusing we need a 
Hadamard matrix with dimension at least as 
great as the number of qubits in our system.  
The dimension of the matrix is the same as the 
number of discrete refocusing intervals.  
The refocusing method is as follows: 
 

1. We transform the Hadamard matrix so 
that the first row and the last column 
are all TRUE. 

2. Each qubit is assigned a row in the 
matrix. 

3. Each column in the matrix represent a 
T/n step in the time evolution, where T 
is the total evolution time of spent 
refocusing. 

4. Assume without loss of generality that 
all the elements outside the matrix are 
TRUE. 
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5. A 180-degree rotation (pulse) about 
the y-axis is applied to the qubit at the 
beginning of each time step where the 
element in the matrix is FALSE and 
the previous element was TRUE. 

6. A -180-degree rotation (pulse) about 
the y-axis is applied to the qubit at the 
beginning of each time step where the 
element in the matrix is TRUE and the 
previous element was FALSE. 

 
Because of (1.) no refocusing pulses are applied 
to qubits assigned the first row of the matrix, 
this means that Zeeman evolution is allowed to 
continue for this qubit, through the J-coupling 
interaction is refocused with qubits assigned to 
other rows.  Also from (1.) there are no pulses 
applied at time T, which is a practical concern 
since pulses take a non-zero, finite amount of 
time to apply.  If any qubits share assigned rows 
the J-coupling interaction between them is not 
refocused.  The reasons this works is a bit 
mathematical and would take a bit of time to 
example, we direct you to the original paper for 
a more insightful explanation [Leun99].   
 The intuition, however, is to think that 
the value of the element describes the direction 
in time the qubit is evolving.  TRUE implies 
forward time motion and FALSE backward 
motion.  Because Hadamard matrices have the 
property that all but the first row differ by 
exactly n/2 elements all the qubits assigned 
other rows than the first evolve half the time 
going forward and half the time going backward 
so the net evolution is zero, this refocuses the 
Zeeman/Larmor evolution.  The J-coupling is 
refocusing similarly, all pairs of unique rows 
differ by n/2 elements meaning that half the 
time the two qubits are moving in the same 
direction and half the time they are moving in 
opposite directions effectively stopping the 
time-evolution of the interaction between them.   
 To make thing more concrete we will 
describe how we applied them to construct our 
quantum gates.  The Zi(� ) gate pulse sequence 
with refocusing was simple.   Assign the qubit 

we wish to evolve the first row of the matrix and 
all the others unique rows in the matrix.  The 
total evolution time: 

( ) ( )17,2

i
z

m
T

ω
π

θ
θ

∆

+
=  

where m is the number of extra full period z-
rotations, this depends on the length of the 
refocusing pulses and the number of qubits 
being refocusing.  The constraint on T can be 
formed as 

( )18,ntT mpl ⋅≥  

where tmpl is the maximum pulse length on for 
any of the refocusing intervals.  Given these two 
constraints we can choose a minimum T subject 
to both those constraints.   One thing to note is 
that if the chemical shift is zero the evolution 
time is infinite. It is a removable singularity, 
however, since the carrier frequency of the 
rotation frame is arbitrary, so we can change it 
to keep the refocusing times finite and 
reasonable.   
 The constructions for the Xi(� ) and 
Y i(� ) gates are very similar to the Zi(� ) gate.  
There are two important changes.  The total 
evolution time is now: 

( ) ( ) ( )19
i
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m
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ω
θθ
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The qubits are assigned rows the same way as 
for the Zi(� ) gate, and the second constraint is 
still in effect.   At the beginning of the pulsing 
sequence we apply the appropriate pulse to 
generate the rotation we want on the active 
qubit.  The time constraint serves to refocus the 
Zeeman interaction for the active qubit.  Strictly 
this is not necessary, because we can assign the 
active qubit a different row in the matrix, 
thereby refocusing the Zeeman interaction using 
pulses instead of letting the evolution repeat.  
This would remove the constraint involving the 
chemical shift entirely and let the evolution time 
be only dependent on the maximum pulse length 
constraint.   
 The Jij(� ) gate is also very similar.  The 
ith and jth qubit are assigned same row of the 
matrix (not the first though) and all other qubits 



 11 

are assigned unique rows in the matrix (not the 
first row).  The time constraint is as follows: 

( ) ( )20,2

ijJ
J
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π

θ
θ

+
=  

the standard constraint of maximum pulse 
length (eqn 18) is also considered in the choice 
of evolution time.  Note, it is necessary that � Jij 

be non-zero for there to exist a finite refocusing 
time.  This is not removable like the issue for 
the Zi(� ) gate, the interaction must exist and the 
closer to zero it is the longer the it will take to 
perform this action. 

 
III. Implementation 
 
A. GAMMA capabilities 
 

GAMMA is an open-source library for 
conducting NMR Simulations created by 
researchers at ETH in Zurich, Switzerland for 
the study of nuclear magnetic resonance 
techniques [Smit94].  For our purpose the 
GAMMA library provides a means of 
constructing spin systems with various 
interactions and properties of isotopes.  It 
provides a means of constructing and applying 
pulses to the system.  At the end of a run 
GAMMA can produce an FID (and more 
importantly its Fourier transform) to read the 
output of the final system state. 

Constructing our molecule for use in 
GAMMA is simply a matter of telling GAMMA 
the isotopes we would like to use, their chemical 
shift values and the J-coupling interaction 
strengths that exist between the various nuclei.  
We can then choose to set the initial state of the 
nuclei to whatever initial state we like by 
inputting the initial density matrix to GAMMA.  
The capability to automatically generate initial 
thermal equilibrium states is provided by the 
library.   

GAMMA allows us several different types 
of pulses to apply to a system of nuclear spins.  
The first type of pulse is an ideal pulse, an ideal 
pulse which in simulation time instantaneously 

occurs and acts on a single isotope rotating all 
nuclei of a given isotope by a set amount.  The 
pulse’s time-strength function is a delta 
function.  This is neither practical nor realistic.  
Pulses must have some finite time duration and 
some selectivity.  The next type of pulse that 
GAMMA provides is a hard pulse.  The hard 
pulse pulses all nuclei of a certain isotope about 
a set angle.  The hard pulse length is non-zero in 
time, through it is usually quite short.  The time-
strength function is a rectangular function.  
These sorts of pulses are appropriate when there 
exists on one nuclei in the molecule per isotope, 
if there exist more than one nuclei in the 
channel, they will both be excited by the pulse.  
The final type of pulses GAMMA provides is 
shaped pulses.  Shaped pulses are simply pulses 
who’s time-strength function is inputted by the 
user.   These types of pulses allow the user to 
tune the selectivity of the pulse and excite only 
nuclei in certain frequency regions of the 
channel by varying the pulse strength over time.  
The frequencies that are excited by the shaped 
pulse are dependent on the Fourier transform of 
the time-strength function.  One can tune the 
shaped pulse to selectively address multiple 
nuclei on a given channel without effect other 
on the same channel.  GAMMA provides some 
capability for the construction of the time-
strength function and even has some built-in 
functions that are usually used in these types of 
pulses (i.e. Gaussian functions).   

One thing that GAMMA does not provide is 
the ability to apply more than one pulse at the 
same time.  While it represents some of a 
complicated issue to even physically apply two 
simultaneous pulses on a single channel; it is not 
be a physical restriction that prevents applying 
two simultaneous pulses on two different 
channels.  Applying two pulses at the same time 
on different channels is a common occurrence in 
everyday NMR, their lack of capacity for it is 
likely due to inherent complexity in making an 
API that provide for that general.  As a result we 
will have to implement the ability to do that for 
QCNMR. 
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GAMMA can return output in two ways.  
The first is to simply return the density operator 
of the final state.  The second way is to simulate 
the Free Induction Decay and return an array 
that stores the current induced as a function of 
time.  It provides that capability to take the 
Fourier transform of the FID.  However, 
GAMMA stops there, there is little built-in to 
the API that allows for analysis of the FID.  
There is nothing that attempts to estimate the 
final state by analysis the FID, there is nothing 
built-in to even find peaks on the FID’s Fourier 
transform.  With the lack of built-in functional 
for analyzing FIDs, producing FIDs is only for 
decoration.   

GAMMA has several limitations.  The first 
was already mentioned, the lack of simultaneous 
pulses.  The second was lack of FID analysis.  
The third is that including the T1 and T2 
relaxation effects in QCNMR would have been 
very difficult; the code for that part of the 
library was not fully featured or complete, 
though the authors left notes in some of the 
source files for means of implementation.  
However, it is very simple to construct and run 
pulses for simple NMR simulations.  Despite 
these faults, GAMMA is a very useful library 
 
                Figure 4: QCNMR Design Layout

that made the work of this paper possible, even 
though it was not tailored exactly to our needs. 
 
 
B. Program Structure 
 

The core of QCNMR is its C++ library 
kernel.  The kernel provides all the capacities 
for constructing qubits, circuit gate, executing 
the circuit and marshalling the output.  The 
library is meant to work along side GAMMA 
providing extra functionality for quantum 
computation tasks.  Some of the datatypes that 
are return from QCNMR are quantum 
computationally useful mathematical types like 
matrices and operators, which inherently 
provide for more power computation in 
QCNMR user’s programs.  In addition, there is 
a graphical user interface that allows the quick 
construction and running of circuits, without the 
need to compile a C++ program; its 
computational power is limited due to the 
complexity of making an interface that can fully 
exercise the library under an arbitrary C++ 
program.  However, the graphical interface is 
more meant as an educational tool or a toy to 
experiment on small circuits with. 
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i. The Kernel 
 

The kernel consists of  three main classes: 
1.     QCNMRQubit 
2.     QCNMROperator 
3.     QCNMRProgram 

The respective purpose of each of these classes 
is almost obvious, but we will explain it 
anyway.  The instantiation of the QCNMRQubit 
class is the equivalent of a single qubit.  It 
contains all information about the qubit 
including its isotope, chemical shift, J-coupling 
interaction strengths, pointers to all the 
operators that will operate on it, pointers to all 
the other qubits of the same isotope and 
information about what types of pulses can be 
applied to it.  There really is not much work 
being done within this class during the course of 
the computation, it is really just a glorified 
struct.   
     The instantiation of the QCNMROperator 
class is the equivalent of a single qubit gate. It 
store information about which QCNMRQubits 
are being operated on, at what time the gate is 
applied and the types of pulses that need to 
occur at the top level (ignoring refocusing) to 
accomplish the request operation.  An auxiliary 
class QCNMROperatorGen is used to actually 
generate instances of QCNMROperators, this is 
because some global knowledge must be stored 
to determine whether or not that creation of an 
operator on certain qubits at a certain time is a 
valid thing to do. 
     The final kernel class is QCNMRProgram.  It 
contains most of the meat of the 
implementation.  It takes in an array of 
QCNMRQubits and then allows the addition of 
circuit elements in the form of 
QCNMROperators.  Most of the work happens 
in the QCNMRProgram::Run() function, which 
actually interfaces with GAMMA to transform 
our QCNMRQubits into their GAMMA 
representation.  Then QCNMRProgram converts 
the inputted QCNMROperators in pulse 
sequences that it then runs on GAMMA, the 
QCNMROperators are destroyed in this process, 

though the pulse sequence that they were 
converted to can be returned to the user.  The 
idea was that user would be allowed to perform 
some circuit, look at the output and then 
proceed from the final state by adding new 
elements and running the new circuit.  
QCNMRProgram has the power to return pulse 
sequences to user or to save them to disk as in a 
human readable format.  QCNMRProgram can 
also output a text-based diagram of the circuit 
that it processes to the disk. 
 The main computation in 
QCNMRProgram is dedicated to generating and 
running refocusing pulses.  The first part of this 
was implementing that refocusing pulse 
sequence generation as was fully described in 
section II.  The second key concern was 
allowing GAMMA to run simultaneous pulses.  
To understand what was done we must first give 
a brief explanation of how pulse sequences are 
implemented in GAMMA.  A pulse on a single 
channel, iso, on a specific resonant chemical 
shift frequency, � � , is implemented in the 
following fashion (without loss of generality the 
pulse is for �  radian about the x-axis): 
 
 

1. Shift the all nuclei of that isotope from 
the original rotating frame into the 
rotating frame of the resonant chemical 
shift frequency, we get a new 
Hamiltonian: 

( )21.
�

∈
∆−=′

isoi

i
zrotrot JHH ω

 
 

2. Next we add the magnetic in the 
direction of our axis (x-axis).  The 
strength of the field is determined by the 
pulse time length and the angle we wish 
to rotation through: 
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3. We then leave the system to evolve 
under Heff for time t. 

4. Since we shifted to another rotating 
frame we need to shift back to the 
original frame, this can be done by 
constructing a Hamiltonian: 

( )23.
�

∈
∆=

isoi

i
zshift JH ω

 
5. We evolve the system through again for 

time t under Hshift, though this time is not 
real time, it is just some mathematical 
bookkeeping to put us back in the 
original frame. 

6. The pulse is complete and we return to 
using our original Hrot. 

 
This method performs a hard rectangular pulse 
or if the time is long enough a soft rectangular 
pulse.  In order to perform more complex pulse 
this method is used as an atomic operation.  To 
perform shaped pulse we apply a series of 
rectangular pulses with varying strengths.  The 
shaped pulse is applied through the 
discretization of its time-strength function.  So 
in order to allow pulses to fire simultaneous in a 
general sort of way you have to keep track of all 
the changes that you have made and all the 
changed you need to make to the Hamiltonian.  
The discrete time step method for performing 
shaped pulses adds even more complexity.  
However, when you get down to, it is not a 
technically difficult problem, it is just tedious.  
We will not go into the implementation of 
scheduling and ordering changes to the 
Hamiltonian and evolving the state 
appropriately as it is just a programming task 
and does not add anything interesting to this 
discussion. 
      QCNMRProgram’s main output is the final 
density matrix of the system.  This is clearly not 
realistic, an NMR machine will not simply give 
the final density matrix of the system; you must 
compute it from the FID.  There are basically 
two reasons we choose not to provide the output 
via FID.  The reason one reads an FID and 

converts it to a density matrix was simply 
because the density matrix itself is unavailable, 
so since GAMMA freely gives us the density 
matrix it makes little sense to transform the 
density matrix to an FID for the purposes of 
transforming it back to an FID.  The second 
reason is that as we mentioned before GAMMA 
does not have much built-in capacity for 
analyzing FID, so it would have required 
significant extra work to add that on to support 
an admittedly dubious process.  We did add the 
ability to take the partial trace of a density 
matrix against some parts of the space to make 
it easier to examine the states of subspaces of 
the system. 
 

ii. The GUI 
 

The graphical front-end of QCNMR is almost 
an afterthought.  It has a simple point-click 
interface that allows the user to quickly 
construct quantum circuits and view the final 
output of the system as a graphically expressed 
density matrix or as a diagram of pulses.  At the 
time of writing this paper, the first version of the 
GUI is finished, though a few minor bugs still 
remain.  It makes it very easy to just put down a 
few gates and experiment with some small 
circuit.  The output capabilities are limit to 
diagrams and graphs, because large amounts of 
textual data are confusing and often not useful.  
In the short time we have had to play with it, it 
seems as though it would be useful 
educationally, even if the fact that it is based on 
a nuclear magnetic resonance simulation were 
ignored.  It is an interesting thing to play with if 
nothing else. 
Figure 5: Graphical User Interface Screenshot 
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IV. Results - Quantum Teleportation 
 

One interesting quantum algorithm that we 
had a chance to implement using QCNMR, was 
the canonical quantum teleportation circuit.  The 
circuit is shown below in figure XXX.  All three 
qubits start out in the state |0>.  Operations may 
be performed on the Q1, state to produce a 
different input to the system (step one on the 
diagram).  Next qubit two and three are 
initialized into an entangled Bell state (step two 
on the diagram): 

( ) ( )241100
2

1 +=ooB  

In the original formulation of the problem the 
qubit two was given to Alice and qubit three 
was given to Bob.  Alice started by initializing 
qubit one into some state.  Then Alice can make 
some local measurements on qubit one and 
qubit two and send the results classical to Bob, 
who may be some distance away.  Bob can then 
use the classical information that Alice sent him 
to decide whether or not to apply certain  
 
Figure 6 (top): Quantum Teleportation Circuit 
Figure 7 (bottom): Quantum Teleportation Pulse 
Sequence  

operations to his qubit three.  The end result is 
that the final state of Bob’s qubit three is the 
same quantum state as initial state that Alice 
prepared.  Because we have not implemented 
classical channels with QCNMR, we have to use 
an equivalent circuit with only quantum 
operations.   

We implemented this circuit on a 
heteronuclear three-qubit system.  The spin 
parameters where more or less arbitrary, the 
chemical shift for each nuclei was 200Hz, and 
the J-coupling strength between each one was 
10Hz.  Since we have a heteronuclear system all 
pulses are hard pulses on a channel.  The 
nominal pulse length was one microsecond.  
The pulse sequence for the sections two and 
three of the teleportation circuit are shown 
below in figure XXX.  As you can see the total 
execution time for the circuit is on the order of 
0.3 seconds.  Notice the four symmetric open 
regions in the pulse diagram.  These are the 
regions where the J-coupling interaction was 
being allowed to evolve.  Since the J-coupling  

1. Initialize 

2. Create Entangled Bell State 

3. ‘Local’ Measurements 
Hadamard 

J-coupling 



 16 

term is an order of magnitude smaller than the 
chemical shift, the time required to perform the 
J-coupling over some angle increases by an 
order of magnitude.  Similarly, the tightly pack 
regions of the diagram correspond to the single-
qubit evolution that occur as part of the CNOT 
gates and the initial Hadamard gate.  The 
numerical results themselves are not too 
interesting.   

The original density matrix after 
preparation of the qubit one traced down to 
qubit one is almost identical to the final density 
matrix traced down to qubit three.  
 The interesting thing is that when we 
interesting the length of the hard pulses, the 
fidelity of the final teleported state to the initial 
prepared state decreases dramatically.  
However, this is to be expected, one of the 
requirements of the refocusing processes was 
that the pulse lengths must be kept short 
[Leun99].  The time that the pulses are being 
applied is larger relative to the total duration of 
the refocusing, likely due to the fact that not all 
qubits are being pulsed for the same amount of 
time during the refocusing sequence; we believe 
that this causes the effectiveness of the J-
coupling refocusing between qubits to break 
down.  The Zeeman refocusing should be 
unaffected.  This suggests that smaller J-
coupling strengths would improve this problem, 
however, that would increase the total 
refocusing time required.  In the end it is a 
balancing effort between pulse length and 
refocusing time.  
 We did not have a chance to examine as 
many quantum circuits as we would like to 
have.  The main stumbling block other than 
time, was that most of the interesting circuits 
involve construction of some set of Uf’s that act 
as oracles in the Deutsch-Jozsa problem or the 
Grover Search problem [Erma03].  It was not 
obvious to us how to construct these unitary 
functions using the gates we had available.  
However, during the early stages of 
development of QCNMR, we did test out the 
unitaries provided for the three-qubit Deutsch-

Jozsa algorithm [Kim00]. These unitary 
functions where not constructed using the 
standard gate set, they we constructed using 
NMR rotations and interactions.  It is in the 
realm of QCNMR to perform such operations as 
we described in previous sections; that 
functionality is privately internal to the kernel 
and for design choices was not exposed to the 
user.  It would be simple to allow the 
construction gates that allowed for arbitrary X, 
Y and Z rotations, but they were hidden in order 
to make the user’s interface cleaner.  In future 
iterations of the QCNMR, this functionality will 
likely be exposed. 
 Finally, a note about simulated and 
experimental accuracy, QCNMR is not intended 
to exactly simulate a nuclear magnetic 
resonance computer in complete detail.  There 
are a number of practical assumptions that had 
to be made in order to make this project 
tractable.  The most important assumption is 
that we consider the NMR system as a statistical 
ensemble as opposed to a physic n-body system, 
which is horribly intractable.  Along with that 
assumption was the assumption that the 
Hamiltonian for our system was time-
independent meaning the bulk relaxation effects 
were not being considered either, though they 
could be included to zero-th order as a restraint 
on total computation time.  Another assumption 
that we consider was that the only qubits in the 
system were nuclei that we involved in the 
computation, this is not strictly necessary, the 
user can add whatever extra qubits the wish add, 
the only cost is that refocusing is performed 
uniquely on each one of them.  The final, 
perhaps somewhat understated assumption, is 
that we assumed that refocusing was necessary 
for atomic operation, strictly speaking 
refocusing is probably not always necessary, in 
fact, it is probably wasteful sometimes.  The 
problem is that it is difficult to quantify the 
effectiveness of using refocusing at some point 
in the evolution of the circuit.  While always 
refocusing is good from a correctness point of 
view, it can often be dubious from a efficiency 
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perspective.  Again, it is a case where balance 
and optimization of parameters comes into play.  
We decide to err on the side of correctness a 
opposed to the side of efficiency, for it will 
likely be easy to approach a optimal solution 
from a solution that is already correct. 
 
V. Conclusion 
 
A. Summary 
 

We presented our construction of a nuclear 
magnetic resonance quantum computer 
simulator, QCNMR.  We discussed the 
necessary background for a layman to get a 
good physical understanding of NMR and 
quantum computing at a basic level.  Our 
algorithms for constructing refocusing 
sequences and for performing simultaneous 
pulses were also discussed.  We examined the 
structure and interface to the open-source NMR 
simulation library that we used as a backend for 
QCNMR’s nuclear magnetic resonance 
simulation as well as its technical short-comings 
and limitations.  The basic structure and classes 
in our implementation were briefly described in 
their form and function.  We have concluded 
with a short example circuit that we 
implemented on QCNMR.  For the most part 
this project constructed what it set out to do, to 
implement a program that takes a “classical” 
quantum circuit and performs it by using NMR 
pulses.  Finally we commented on a number of 
assumptions that were made in the formulation 
and implementation of QCNMR.  The next 
major step from QCNMR is to construct a time-
correctness optimization solver for applying 
pulses.   

 
B. Related Work 
 

There are relatively few examples of similar 
attempts to implement a nuclear magnetic 
resonance quantum computer simulation.  One 
such example is the Quantum Computer 
Emulator (QCE) by a group at the University of 

Groningen, Demark [Mich03].  There approach 
is at a much lower level, by allowing the user to 
choose all the pulses and the parameters of the 
pulses.  They make this slightly more tractable 
to a novice by constructing instruction sets of 
basic useful pulses with pre-set parameters.  
There implementation, however, seems to focus 
on being an ideal quantum computer simulator 
as opposed to a NMR based simulator.  They to 
not seem to provide the automatic construction 
of the necessary refocusing pulse for the user; it 
is up to the user to implement them however 
they choose.  This method is allows the user 
more control over how their abstract quantum 
circuit is implemented in NMR hardware, 
though at the cost of considerably more time to 
implement any given circuit with the QCE 
system.  QCNMR provides a quick way for user 
to test and examine the basic properties of 
circuits that will be on simulated NMR system 
at the loss of user control of the pulse 
sequencing.  
 
C. Future Work 
 

We would like to have spent more time 
testing some example circuits to examine the 
effectiveness of QCNMR, but backlogs in the 
development schedule hindered the process.  
We did not spend much time trying to optimize 
the pulse sequences beyond applying multiple 
pulses at the same time.  Future work could 
address optimizing pulse sequences both on a 
per-operation basis and on a global scale using 
some linear programming techniques.  There 
was not enough time to compare the results of 
the simulated computation and the generated 
pulse sequences to the physical implementations 
and actual pulse sequences.  There is one thing 
that remains to be implemented, however, at the 
time of publishing this paper, simultaneous 
homonuclear soft pulses are not yet 
implemented due to complexity issues and time 
constraints.  We also look to further iterations 
on the development of the GUI, in order to add 
make it a more powerful tool that allows it to 
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exercise more features of the QCNMR library. 
The issue of swapping qubits (and optimizing 
the swapping of qubits) for performing 
information exchange on qubits that have zero 
or very small J-coupling interaction strength 
was not even discussed.  There are a number of 
simple optimizations that come to our minds as 
this paper is being written; mostly optimizations 
in the maximum time duration of a refocusing 
sequence and the organization of pulses within 
each refocusing pulse interval.   

  
D. Acknowledgements 
 

Firstly, thanks to the research at the 
University of Florida and in Switzerland that 
produced GAMMA and made it openly 
available to the public, for without which this 
project would have been impossible.  Secondly, 
thanks to Dr. Arvind, for some useful pointers 
and discussion about using NMR for quantum 
computation.  Thirdly, we would like to thank 
Dr. Avrim Blum for signing as co-advisor to 
this project and supporting it even though it is 
not his area of expertise.  Fourthly, we would 
like to thank Mark Stehlik for organizing the CS 
Senior Thesis program, as well as for some 
good advice concerning this thesis and other 
aspects of CS undergraduate life.  Finally, and 
most importantly, we would like to Dr. Robert 
Griffiths for being the main advisor of this 
research; there were definitely some rough spots 
during the past two semesters, but it seems we 
made it through no worse for wear having 
completed a frustrating, though ultimately 
worthwhile, project. Thanks everybody. 
 



 19 

 
VI. Bibliography 
 
Cira95   Cirac I J and Zoller P Quantum computations with cold trapped ions, Phys. Rev.  

   Let., 74: 4091-4094, 1995. 
 
Cory96  Cory, D. G., Fahmy, A. F. and Havel, T. F., Nuclear magnetic resonance  

spectroscopy: an experimentally accessible paradigm for quantum computing. In   
Proceedings of the 4th Workshop on Physics and Computation, Boston: New 
England Complex Systems Institute, (1996). 

 
DiVi95   DiVincenzo, D. P., Quantum Computation. Science, pages 270:255, 1995. 
 
Erma03 Ermakov, V., B. M. Fung, Nuclear Magnetic Resonance Implemention of the  

Deutsch-Jozsa Algorithm Using Different Initial States,  
               arXiv:quantph/0304058 (2003). 
 
Grov96  L. K. Grover, A fast quantum mechanical algorithm for database search,  

   Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of    
   Computing, 212-219, Philadelphia, PA, (May, 1996). 
 

Grze03  Grzesiek, S., Notes on Relaxation and Dynamics. Course Notes, EMBO  
   Practical Course on NMR, Heidelberg, 2003. 

 
Keel04   Keeler, James. Understanding NMR, http://www-keeler.ch.cam.ac.uk/lectures/  

  (2004). 
 
Kim00   Kim, J., J. Lee, S. Lee, C. Cheong, Implementation of the Refined Deutsch- 

Jozsa Algorithm on a Three-Bit NMR Quantum Computer. Physical Review A,          
62, 022312 (2000). 
 

Ladd03  Ladd, T., NMR Quantum Computation. Course Notes, Quantum Information  
   Science and Technology. (2003). 
 

Leun99   Leung, D., I. Chuang. F. Yamaguchi, Y. Yamamoto. Efficient Implementation  
of Selective Recoupling in Heteronuclear Spin Systems Using Hadamard 
Matrices.  arXiv:quant-ph/9904100. 

 
Mich03   Michielsen, K., H. Raedt, QCE: A Simulator for Quantum Computer Hardware,  
       University of Groningen, The Netherlands, (2003). 
 
Niel00    Nielson, M., I. Chuang.  Quantum Computation and Quantum Information.   

   Cambridge University Press, (2000). 
 
 



 20 

Shor97 Shor, Peter W., "Polynomial-Time Algorithms for Prime Factorization and    
 Discrete Logarithms on a   Quantum Computer", SIAM Journal on 

Computing,26,5,pages 1484-1509,1997. 
 
 
Smit94    S.A. Smith, T.O. Levante, B.H. Meier, and R.R. Ernst, Computer Simulations  

in Magnetic Resonance: An Object Oriented Programming Approach, J. Magn. 
Reson., 106a,77-104,(1994). 
 

Yann99   Yannoni, C., M. Sherwood, D. Miller, I. Chuang, Nuclear Magnetic Resonance  
Quantum Computing Using Liquid Crystal Solvents. arXiv:quant-ph/9907063 
(1999). 


