
Synthetically Real Graphics

Khalid El-Arini
Advised by Todd Mowry

April 30, 2004

Abstract

Synthetic Reality is a project with the goal of creating metamorphic
robotic systems that simulate real moving objects. These systems consist
of small, independent modules, or ”catoms,” each containing a processor,
memory, a capacitor (for power), programmable magnets (for motion),
and both wireless and wired communication capability. The surface of
each catom is equipped with a graphical display, on which appropriate
textures can be mapped to simulate the surface of the real object that is
being modeled. This project addresses the problem of mapping textures
to the surfaces of catoms so as to minimize distortion from the original
model. Depending on the catom size, shapes to be modeled by a system
of catoms will potentially lose much of their topographic information. As
a result, texturing is very important in maintaining an approximation of
the original characteristics of the model.

1 Introduction

1.1 Synthetic Reality

Synthetic Reality is a project recently started by Carnegie Mellon professors
Seth Goldstein and Todd Mowry with the goal of creating metamorphic robotic
systems that simulate real moving objects. These systems consist of small,
independent modules, or “catoms,” each containing a processor, memory, a
capacitor (for power), programmable magnets (for motion), and both wireless
and wired communication capability. The surface of each catom is equipped with
a graphical display, on which appropriate textures can be mapped to simulate
the surface of the real object that is being modeled.

Catoms will be spherical in shape, but their eventual size is heavily depen-
dent on the locomotion and communication mechanisms needed for them to
interact with each other. Although initial three dimensional prototypes are ex-
pected to be the size of ping-pong balls, advancements in nanotechnology over
the next several years could reduce their size significantly. The Synthetic Re-
ality research group is currently working on two dimensional prototypes that
operate on a power grid placed on a flat surface.

1



Applications of this project range from the field of medical robotics to the
sports entertainment industry, and beyond. For instance, combining a Synthetic
Reality system with live image capture and actuators allows a surgeon to phys-
ically manipulate a scaled up, catom version of the blood vessels and tissue in
question, and have the deformations replicated in the patient’s body. In another
example, a live, three-dimensional video feed of a football game can be scaled
down to a tabletop system of catoms, allowing the sports fan to watch the game
in three dimensions without actually being present at the stadium.

1.2 Problem Definition

This paper addresses the problem of mapping textures to the surfaces of catoms
so as to minimize distortion from the original model. In this context, distortion
is defined as the per pixel difference between a view of the original object and a
view, from the same viewpoint, of the object rendered with catoms. Depending
on the catom size, shapes to be modeled by a system of catoms will potentially
lose much of their topographic information. This occurs if the diameter of the
catoms is larger than the smallest feature size of the original model, thus provid-
ing resolution too coarse to produce a faithful replica. As a result, texturing is
very important in maintaining an approximation of the original characteristics
of the model.

Since it will be some time before three dimensional physical prototypes are
built that include a graphical display, this research was done using a simulation
environment implemented by the author. In this environment, catoms are col-
ored and shaped based on a passed in object model, consisting of a mesh and
one or more textures. Experiments were done where each catom was restricted
to only one color, and where each catom was textured with multiple colors. Fur-
thermore, the author investigated both the case where the location of the viewer
is known, and where the location is unknown, resulting in view-dependent and
view-independent algorithms.

1.3 Simulation Details

The Synthetic Reality Graphics Simulator is an OpenGL application that ren-
ders object models passed in OBJ format as catoms, textured with the passed in
image. This is different than directly texturing the catom-rendered object with
an image, since in order to mimic the appearance of the original object, appro-
priate texture coordinates must be extracted from the object model. Through-
out this work, results were obtained by running the simulator on an elephant
mesh, with two textures: a checker pattern and a blue wavy pattern. Runs were
performed with catoms of various sizes, and were compared to baseline images
generated in Maya of the original OBJ model, as shown in Figures 1 and 2.

The simulator involves a preprocessing step of obtaining catom locations
from the original mesh, given a catom radius. Each catom is stored as a vector
representing the center vertex, and the associated triangles in the original mesh
that are contained within this catom. Similar to the marching cubes algorithm,

2



Figure 1: Baseline Maya Image (checker texture)

Figure 2: Baseline Maya Image (blue texture)

this process works in voxel-space, where the voxels are the size of catoms. If a
triangle from the original mesh intersects a specific voxel, a catom is placed in
that location.

1.4 Related Work

Traditional graphics literature does not specifically cover the problem investi-
gated in this work, but there are a few areas in computer graphics that attempt
to solve similar problems. Prime among these is point-based rendering, or using
sample points from surface models as display primitives. Although the moti-
vation for point-based rendering is efficiency when dealing with large, complex
models, this work can be seen as a three dimensional variant of that idea. In
[5], the authors use a point-based rendering system in a large-scale three dimen-
sional digitization project to render models containing hundreds of millions of
samples. Others extend the technique to transparent objects as well, using El-
liptical Weighted Average (EWA) texture filtering [7]. In [6], the authors create
an editor for three dimensional point-sampled geometry, in order to explore the
usability of point primitives for surface editing.

Parameterization is another area of computer graphics that is relevant to the
problem investigated in this paper. Parameterizing a three dimensional mesh
involves computing a correspondence between a surface patch on an object and
a planar mesh, such as a texture. The authors of [1] investigate parameteriza-

3



Figure 3: Initial Single Color Implementation (checker texture, large catoms)

tions of textures that minimize distortion of different intrinsic measures of the
mesh. In [4], the authors propose a technique for parameterizing textures onto a
spherical domain, while minimizing a stretch-based measure in order to reduce
distortion.

2 Single Color Catoms

The earliest work on this problem revolved around the idea of coloring each
catom with a single color, in order to avoid the problem of assigning appropriate
texture coordinates to the catom model. The first attempt at single color catom
coloring consisted of coloring the catom with the same color as a randomly
chosen triangle from within that catom. More precisely, each spherical catom
can be associated with a set of triangles in the original mesh that would intersect
the sphere if both models were superimposed on one another. For each catom,
one of these triangles is randomly chosen, and then the colors at each of the
triangle’s vertex are averaged in order to obtain the color of the catom.

Results from this method are shown for the elephant model (Figures 3
through 6), textured with both the checker pattern and the blue pattern, and
rendered using two different catom sizes. Note that the checker pattern is barely
discernible.

The next attempt at a single color catom technique was a stratified sampling
method, which divides the surface of each catom into 32 patches, based on
spherical coordinates. Namely, φ ranges from [0, π], and θ ranges from [0, 2π],
both with a step size of π

4 . Next, a point p is randomly (uniformly) chosen from
within each patch, and a ray is shot out from p to the corresponding location
of the center of the catom on the original mesh (Figure 7). (The reason for
the randomness is to avoid aliasing due to regular patterns, such as checkers
or stripes.) If shooting the ray results in a front-side intersection [2] with a
triangle in the original mesh, the appropriate color of the intersection point is
interpolated (using barycentric coordinates), and is averaged uniformly along
with the colors associated with all other front-side intersections for this catom,
in order to generate the catom’s final color.

4



Figure 4: Initial Single Color Implementation (checker texture, small catoms)

Figure 5: Initial Single Color Implementation (blue texture, large catoms)

Figure 6: Initial Single Color Implementation (blue texture, small catoms)

5



Figure 7: Stratified Sampling Single Color Implementation (methodology)

Figure 8: Ray Traced Single Color Implementation (checker texture)

These results, shown in Figures 8 and 9, are much better than the previous
ones. It is also the case that dividing the catom surface into more than 32
patches does not significantly increase accuracy, but increases computation time.

Another final attempt at single color catom coloring was made, but this
time taking into account the position of the viewer. This algorithm proceeds
exactly as the previous ray tracing algorithm, except that instead of uniformly
averaging the color contributions from each intersection point, a color now gets
more weight in the average if the dot product between the ray that produced it
and the ray representing the view angle is greatest.

These results barely differ from the previous ones, although it is noteworthy
that some of the visual artifacts (e.g. improperly colored holes in the middle of
the model) have disappeared (Figures 10 and 11).

3 Textured Catoms

More faithful textured models can be created if catoms are allowed to assume
multiple colors.

One such method is similar to the ray tracing based approaches from the
previous section. Like before, the surface of the catom is subdivided evenly
into patches. However, instead of randomly selecting a point within each patch

6



Figure 9: Ray Traced Single Color Implementation (blue texture)

Figure 10: View Dependent Single Color Implementation (checker texture)

Figure 11: View Dependent Single Color Implementation (blue texture)

7



Figure 12: Textured Implementation (checker texture)

Figure 13: Textured Implementation (blue texture)

to shoot the ray from, rays are shot evenly in a grid from points P across the
surface of the catom to the center of the catom. Rather than extracting color
information from the intersection points, we instead extract texture coordinates
from the original model, which we directly map onto the spheres.

The results are shown in Figures 12 and 13. Note that this is the closest that
the blue texture on the catom model has looked to the original blue texture on
the baseline image.

One can take viewer location into account, and shoot the rays not from the
surface of the catom to the center, but rather from the viewpoint through the
surface points P, as shown in Figure 14.

This technique produces very accurate results, which are displayed in Fig-
ures 15 and 16. This iteration of the model with the checkered texture is the
first one to display straight lines.

4 Conclusion

It is important to note the performance requirements for this system of catoms.
Any algorithm chosen to color the catoms must be distributed and local, in
the sense that each catom can compute its color or texture with minimal, if

8



Figure 14: View Dependent Textured Implementation (methodology)

Figure 15: View Dependent Textured Implementation (checker texture)

Figure 16: View Dependent Textured Implementation (blue texture)

9



any, interaction with other catoms. A catom certainly cannot afford to wait
for information from all of the other catoms in the system, since this clearly
does not scale with the complexity of the model. All of the algorithms explored
in this work meet these performance requirements. A catom only needs local
texture information in order to shoot rays at the original model and retrieve
appropriate colors. Experiments were done in the view dependent case where
rays were shot at all of the triangles in the mesh, not just the local ones, and
there was only a negligible increase in quality.

In the near future, the multicolored textured algorithms will provide the
most realistic rendering of colors on catoms, since the catoms themselves will
be relatively large in size. In this scenario, using the single color techniques
would produce severely under-sampled textures. As the field of nanotechnology
advances, however, and the catoms become smaller, the simple single color
catom algorithms will suffice, since each catom will have the resolution of a
single pixel.

5 Future Work

It would be interesting to investigate the effects of lighting on the surfaces of
the catoms, and to perhaps compensate for external lighting effects by changing
the hue or brightness of the catom’s color. This situation may arise if a three
dimensional video feed is used as input to create the catom model, and the source
lighting is vastly different than the lighting in the room where the catoms are
located.

Another interesting problem is that of view dependent algorithms that take
into account multiple viewers, instead of just one. How do these techniques
extend to the two viewer case? It may be the case that after a certain number
of viewers, the benefits obtained by using the view dependent algorithms disap-
pear, and the view independent algorithms would be preferable due to ease of
computation.

6 Acknowledgements

The author would like to thank Todd Mowry, Seth Goldstein, Ben Rister, James
Kuffner, Nancy Pollard and Robert Wang for their contributions to this work.

References

[1] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface
meshes. In EUROGRAPHICS, 2002.

[2] A. S. Glassner. An Introduction to ray tracing. Academic, London, 1989.

[3] P. S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and
Applications, pages 207–212, 1986.

10



[4] E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM
Trans. Graph., 22(3):340–349, 2003.

[5] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution point render-
ing system for large meshes. In Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pages 343–352. ACM
Press/Addison-Wesley Publishing Co., 2000.

[6] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop 3d: an interactive
system for point-based surface editing. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pages 322–329.
ACM Press, 2002.

[7] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In Pro-
ceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 371–378. ACM Press, 2001.

11


