

Toward a Complete Face Recognition System

Chong Hock Kelvin Goh
School of Computer Science
Carnegie Mellon University

E-mail: chongk@andrew.cmu.edu

Advisor
Professor Takeo Kanade

Robotics Institute
Carnegie Mellon University

E-mail: Takeo.Kanade@cs.cmu.edu

Abstract

This research is to develop a computer program for human face recognition. A user sits in front of

a computer equipped with a web camera. The program then captures the photo of the user, and
through various modules, processes the photo and identifies the user within the database.

The system includes many modules that perform separate functions: image capturing module, face

detector, face component localizer, face feature calculation, and classification algorithm. The current
face classification module uses SSD (sum of squared differences) values of various face regions as
features. I have investigated other features to be used for classification, in particular the use of
wavelets.

The result of this research provides a basis for future development of many face recognition

applications, such as surveillance, digital personal assistant, and camera-equipped cell-phones.

Toward a Complete Face Recognition System

Chong Hock Kelvin Goh, Professor Takeo Kanade (Advisor)
Carnegie Mellon University

E-mail: chongk@andrew.cmu.edu, Takeo.Kanade@cs.cmu.edu

Abstract

This research is to develop a computer program for
human face recognition. A user sits in front of a
computer equipped with a web camera. The program
then captures the photo of the user, and through various
modules, processes the photo and identifies the user
within the database.

The system includes many modules that perform

separate functions: image capturing module, face
detector, face component localizer, face feature
calculation, and classification algorithm. The current
face classification module uses SSD (sum of squared
differences) values of various face regions as features. I
have investigated other features to be used for
classification, in particular the use of wavelets.

The result of this research provides a basis for future

development of many face recognition applications, such
as surveillance, digital personal assistant, and camera-
equipped cell-phones.

1 Introduction

We as human beings, perform face recognition from a
very young age. It is a basic reflex to observe faces in
order to recognize someone. Yet, currently, face
recognition performed by a computer is not as
instantaneous.

For a computer, the given image has to be processed by

passing through a face detector module, identifying
regions in the picture that contains a human face. Within
this region, two traditional classes of techniques can be
applied to the recognition of faces under normalized
(roughly constant) illumination [1]. Feature based
matching allows a face to be recognized even when details
of individual features such as eyes, nose and mouth are
not resolved. The key idea is to extract information such
as relative position and other parameters of distinctive
features such as eyes, nose and mouth. An example of a
method to extract such features is the use of edge
detection. The other technique is template matching. In
the simplest version of template matching, the image,

which is represented as a two dimensional array of values
(typically illumination intensity) is compared with a single
template representing the whole face. The comparison
typically uses a suitable metric such as euclidean distance.
In order to tackle the problem of pose differences between
faces, a more complex approach is to use a single template
together with a qualitative prior model of how a generic
face transforms under a change of viewpoint. The
deformation model is then heuristically built into the
metric used by the matching measure; this is the idea
underlying the technique of elastic templates and elastic
bunch graphs.

 Our approach is categorically that of appearance-based

template matching. In template matching, if we use the
whole face region for comparison, it is not easy to take
into account changes in appearance due to pose
differences, because the appearance in a different part of a
face changes in a different manner due to its complicated
three-dimensional shape. Instead, one can compare
several subregions of the face separately, such as the eyes,
nose and mouth [1, 2]. Hence, given a probe image (the
image with face(s) to be recognized), the subregions of
the face will be compared to the corresponding subregions
of other faces stored in the database.

There are several different measures that can be used to

compare such subregions. The current method is to use
sum of squared differences (SSD). To compare the two,
the SSD similarity value for each subregion after image
normalization (so effectively the same as normalized
correlation), is computed after finer alignment is done in
order to compensate for the potential error in registration
and the local deformation due to pose and other
variations. The total similarity value between the probe
face and the gallery face is then obtained by combining
the similarity values of all subregions. Besides SSD, we
have investigated the use of wavelets as a measure.

Many face recognition algorithms have been developed

and some have been commercialized for applications such
as access control and surveillance. Several studies have
been reported in recent years [3, 4, 5] that compare those
algorithms and evaluate the state-of-the-art of face
recognition technology. These studies show that current

algorithms are not robust against changes in illumination,
pose, facial expression and occlusion.

Of these, pose change is one of the most important and

difficult issues for the practical use of automatic face
recognition. Our face feature calculation, and
classification algorithm, developed by T. Kanade [7] and
T. Sawao [8], is able to tackle pose differences well. It
was shown that our algorithm outperformed a baseline
algorithm (PCA) and a commercial product for face
recognition [9]. However, unfortunately, the face detector
employed poses as a limitation. The face detector used for
this system is only able to detect frontal pose. Hence the
overall system is only limited to frontal pose.

Because of this limitation, we have to modify the face

feature calculation, and classification algorithm to accept
only one pose. Also, the algorithm had to be modified
such that it is able to use a dynamic database, instead of
the static CMU PIE database.

In addition to the face detector, face component

localizer module developed by L. Gu [10], and the
modified face feature calculation, and classification
module, a image capturing module was built to allow a
user to sit in front of a web camera and capture images of
his/her own face. With these modules, we can build a
complete face recognition system that accepts images
from a web camera.

2 System Overview

The system connects to a web camera and allows the

user to freeze a frame (capture image). The image will
then be passed to the Face Detector module which will
detect a face region in the image. If a face region is not
automatically detected, then the user may manually
specify a face region. The rectangular face region (4
coordinates) is passed on to the Face Component
Localizer, which will produce 83 points that correspond to
particular points of a face. These coordinates will then be
passed on to the Face Feature Calculation module. It then
calculates the feature values and passes this to the Face
Classifier module. Based on a non-static database of
images, the Face Classifier will output the ID of the

Web
Camera

Image Capturing
Module Image

Face
Detector

Face
Component
Localizer

83 Face
Points
+ Image

Face
Feature
Calculation

Face
Classifier

ID of person

Feature Values

Fig 2.3 Screenshot of user interface for face detection

Face
Region

person. The user may add the image to the database if he
wishes to do so.

The remaining sections of the paper will discuss the

components of the system. Section 3 will discuss the
Image Capturing module; Section 4 will discuss the Face
Detector module and how it allows faces to be detected
very quickly; Section 5 will discuss the Face Component
Localizer module and how it produces the 83 facial
points; Section 6 will discuss the Face Feature Calculation
and Section 7 will discuss the Face Classifier module.
Lastly, Section 8 will discuss the results we have.

3 Image Capturing Module

The purpose of this module is to allow the user to
capture an image frame from a web camera. The program
will show the user what the web camera is viewing. When
the user is satisfied with the position of his face, the user
would click on the Capture Picture button to freeze the
frame. Since the face detector module can only detect
frontal pose, it is best that the user positions his face
facing directly to the web camera. However, the user is
allowed to tilt his head left or right, as long as he is still
directly facing the camera.

Fig 2.1 An example of a bad pose – User should be looking

directly at web camera.

Fig 2.2 An example of a good pose – Even if the user’s face is

tilted, it is acceptable as long as the user is looking straight at
the camera.

The main purpose for the user interface is to allow users

to perform face recognition seamlessly. Hence the image
capture module would pass the captured image frame to
the face detector module, without the user’s intervention.
Once the Detect Face button is pressed, the face detector
module would attempt to detect a face in the captured

image frame. If a face has been automatically detected, the
user is shown the face region generated by the face
detector module (Refer to Appendix, Fig. 11.1). Then, 83
points of the face, which is generated by the face
component localizer module, will be displayed. These 83
points correspond to particular features of the face. For
example, point #5 would correspond to the left corner of
the left eye. If a face was not detected by the face detector
module, then the user will be prompted to manually select
a rectangular region where the face lies. Then the face
component localizer module will attempt to generate the
83 points based on the user-specified region. (Refer to
Appendix, Fig. 11.2)

4 Face Detector

The face detector module uses the robust real-time

object detection algorithm developed by P.Viola and M.
Jones [11]. The frontal face detection system firstly
varies the size and position of a detection window in the
image. It then calculates the values of rectangle features
within the detection window. For example, the value of a
two-rectangle feature is the difference between the sum
of the pixels within two rectangular regions. The regions
have the same size and shape and are horizontally or
vertically adjacent (see Fig. 2.4). A three-rectangle
feature computes the sum within two outside rectangles
subtracted from the sum in a center rectangle. Finally a
four-rectangle feature computers the difference between
diagonal pairs of rectangles.

Figure 2.4 Example rectangle features shown relative

to an enclosing detection window. The sum of the pixels
which lie within the white rectangles are subtracted from
the sum of pixels in the grey rectangles. Two-rectangle
features are shown in (A) and (B). Figure (C) shows a
three-rectangle feature, and (D) a four-rectangle feature.

To speed up calculation of rectangle features, the

algorithm computes integral images. The integral image
at location x,y contains the sum of the pixels above and to
the left of x,y, inclusive. We store the integral image
value for each x,y coordinate into an 2-D array. Hence
using the integral image, any rectangular sum can be
computed in four array references. Since the two-
rectangle features defined above involve adjacent
rectangular sums they can be computed in six array
references.

Steerable filters, and their relatives, are excellent for

the detailed analysis of boundaries, image compression,
and texture analysis. In contrast rectangle features, while
sensitive to the presence of edges, bars, and other simple
image structures, are quite coarse and somewhat
primitive. However, the extreme computational
efficiency of rectangle features provides ample
compensation for their limited flexibility.

The detector scans the input image at many scales;

starting at the base scale in which objects are detected at
a size of 24x24 pixels, the image is scanned at 11 scales
each a factor of 1.25 larger than the last. The
computation requires many iterations, hence we use these
computationally efficient rectangle features.

These features are combined to form a classifier.
Within any image sub-window the total number of Harr-
like features is very large, far larger than the number of
pixels. In order to ensure fast classification, the learning
process must exclude a large majority of the available
features, and focus on a small set of critical features.
Motivated by the work of Tieu and Viola, feature
selection is achieved through a simple modification of
the AdaBoost procedure: the weak learner is constrained
so that each weak classifier returned can depend on only
a single feature. As a result each stage of the boosting
process, which selects a new weak classifier, can be
viewed as a feature selection process.

Next, the algorithm uses a method to combine

successively more complex classifiers in a cascade
structure which dramatically increases the speed of the
detector by focusing attention on promising regions of
the image. More complex processing is reserved only for
these promising regions. In the domain of face detection
it is possible to achieve fewer than 1% false negatives
and 40% false positives using a classifier which can be
evaluated in 20 simple operations. The effect of this filter
is to reduce by over one half the number of locations
where the final detector must be evaluated.

Hence the face detector module is extremely fast,
and is able to detect frontal pose faces in both black &
white, and color images.

5 Face Component Localizer

Given the face region, the face component localizer
module will produce 83 points that correspond to parts of
the face.

For this purpose people generally use a model-based

method. For example, a face model is defined by a set of
key feature points on face, and the connectivity of the
points. Given an initial guess of the position, the
algorithm attempts to find the best matching of the model
to the image. Hence, based on the given face region, a
template of 83 face points are generated. Then, these
points will be adjusted to better match the face in the
image.

The matching result includes two components. The first

is a shape component which interprets the variation of the
structure of the object. The second is a pose component
including a set of geometrical parameters which
transforms the shape in the image to standard pose.

Given an input image, we want to recover both shape

parameters and pose parameters simultaneously.

Firstly, based on the face region given by the Face

Detector module, we generate a starting approximation
based on a model template. We then implement the
matching algorithm.

The matching algorithm is generally a 2 step iteration

process.

Fig 5.1 Starting Approximation

Given a starting approximation or previous estimation

of the model parameters, the first step is to independently
update each feature point in a local window. In this
example, for each point we search in a line segment
along the normal direction, find the besting matching,
and we get a shape like this, which is jaggy. We call it
the observed shape.

This local searching step generally encourages the
landmark points move to the position with high feature
response. For example, because of this illumination
effects, the points on the left side of the nose contour are
moved to some high contrast position. So from a global
view, the observed shape does not looks like a reasonable
face.

Therefore, the next step is to regularize the observation

by some prior knowledge, and hope the results will be
more accurate than the previous estimation.

Because of variability in images, local feature

matching is always unreliable. We would say that the
regularization step, or in other words, the way to
incorporate the prior knowledge with the observation, is
the most important part in shape registration [12]. This
naturally leads us to a Bayesian treatment of shape
registration problem.

Since these 83 points correspond to a certain part of the

face, these points serve as a basis for comparison of
certain face regions of the probe image, with the other
images stored in the database. For example, the region
around the left corner of the left eye of the probe image
can be compared to the corresponding region of each
image in the database.

These 83 points produced by the face component

localizer will be passed on to the face feature calculation
module. Although we have 83 points available, the face
feature calculation module and face classifier module do
not require that many points. Since a region surround each
point is being compared, and these points are usually
close to each other hence there will be many overlapping
regions if all points were used. For example, point #1 is
the right corner of the left eye, and point #5 is the left
corner of the left eye, and points #2 to #4 are points
located on the upper arc of the left eye.

6 Face Feature Calculation

In order to perform comparisons on fair ground, the
image captured from the web camera has to be
normalized. The target image that contains just the face
(background removed) will be a 128x128 grayscale
image. The image is reduced from RGB format as given
by the web camera to grayscale, because the face
classifier module is unable to process RGB images. Also,
the normalization of RGB images is more complicated
and this might increase recognition error rate, since 2
images containing the same face might not be recognized
as being the same face due to different lighting that gives
rise to more variation in illumination in color mode. For
example, if a yellow light is shone, then the user might
appear to have a yellower skin as compared to white light
being shone.

The first step in the normalization process is to

ensure that the face is vertically upright. Since the face
captured by the web camera can be tilted, we perform
affine transformation on the face by using the 83 points,
so that 3 points of the face will always be transformed to

Fig 5.2 Observation

 Fig 5.3 Regularization

the same coordinates. The left corner of the left eye of
any face will always be at coordinate (32, 16) of the final
128x128 image. Likewise, the center of the nose will
always be at coordinate (72, 64). In order to ensure that
the face is vertically straight, based on the 83 points, the
intersection point of the line that connects the left corner
of the left eye to the right corner of the right eye (line1),
and the line that connects the middle of the eyebrows to
the middle of the mouth (line2), will always be at
coordinate (32, 64). The affine transformation will hence
result in line1 being horizontal and line2 being vertical.
In this process, interpolation has to be used otherwise the
transformed image will look jagged. This will result in a
128x128 image.

21 points are then selected from the 83 points to be

used for comparison. Some of these 21 points are
calculated by using 2 or more points from the original set
of 83 points. Therefore even though we only use 21
points for comparison, this allows us to use more
information, as compared to the case where we only take
exactly 21 points from the original set of 83 points). For
example, one of the 21 points is the middle of the left
cheek. This would be the midpoint of the line that
connects a point at the left border of the face, and a point
at the left side of the nose.

Using these 21 points, a 9x15 subregion with the point

as its center is created. Hence the face region is divided
into a set of small subregions, and each subregion is
compared with the corresponding subregion of the face in
the gallery. To compare the two, a similarity value for
each subregion, defined by the sum of squared difference
(SSD), is computed after finer alignment is done in order
to compensate for the potential error in registration and
the local deformation due to pose and other variations.
The total similarity value between the probe face and the
gallery face is then obtained by combining the similarity
values of all subregions. For each subregion the intensity
values are normalized to have zero mean and a unit
variance.

As the similarity measure, the SSD (sum of squared

differences) values sj between corresponding j–th
subregions for all the pair of images Ik= (ik, φk) vs. Im= (im,
φm) in the training dataset were calculated. Note that since
we compute the SSD after image normalization for each
subregion, it contains effectively the same information as
normalized correlation.

In addition, we investigate the use of gabor wavelets

instead of SSD as a feature. Using gabor wavelets, we can
get texture characteristic locally in spatial frequency
domain. In our implementation, we use 40 gabor wavelets
for each location. We vary spatial frequency and

orientation to yield 40 gabor wavelets. In particular, we
have 5 spatial frequencies: (π/2, π/4,π/8, π/16,π /32), and 8
Orientations: (from 0 to π, differing π/8). We also vary the
kernel size of the wavelet. It is important to choose a
kernel size such that the wavelet does not exceed the
image area (zeros padded on non-image region). If the
kernel size is too big, the wavelet will include unintended
areas such as the background, instead of the areas which
we are interested in (e.g. left eye).

Fig 6.1 Coverage of gabor wavelets with different filter

sizes

Initial results reveal that wavelets, on the whole, is not

as a good as a feature as compared to SSD. However, for
certain features such as the eye, it might be a better (more
discriminative) feature than SSD. With SSD, the graph of
same ID probability and the graph of different ID
probability overlaps by around 10%. On the other hand,
with gabor wavelets, the overlapping area is around 35%.
A good feature with high discriminating factor will have a
small overlapping area, since this means that it can clearly
tell apart same ID images from different ID images.

7 Face Classifier

The previous Face Classifier module was built with the
intention to recognize the ID of faces with different poses.
This poses a problem because for our system, we can only
accept images with frontal pose.

In the old module, for the training phase, we create

P(sj|same, φk ,φm), the conditional probability density of

the j-th SSD similarity value sj given that the images are
of the class same identity and the poses of the two images
are is φk and φm, respectively, from the histograms of SSD
values of each region of the images. Likewise we also
create P(sj|diff, φk ,φm) for the class of different. We
approximate these distributions by a Gaussian
distribution. Accordingly,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2)(

2
1exp

2
1),,|(same

j

same
jj

same
j

mkj

s
samesP

σ
µ

σπ
φφ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2)(

2
1exp

2
1),,|(diff

j

diff
jj

diff
j

mkj

s
diffsP

σ
µ

σπ
φφ

where µj

same
 and µj

diff, σj
same

 and σj
dif are the means and

standard deviations of class same and diff, respectively,
which are obtained from the histograms. These
distributions are then used during classification.

However, the old classification module becomes a

problem for our system because the variance same
jσ is zero

for same ID. We would then encounter a division-by-zero
error. Previously, images with same ID had different
poses, hence this variance is non-zero. Therefore, we have
to develop another classification method.

We cannot simply look at a SSD value between a probe

image p and a gallery image g, and determine if it is too
high and classify the ID of probe p as not ID of g. We
cannot use the raw SSD value because other factors such
as illumination will affect the raw value. Instead, we
should use the distribution of SSD values and calculate
probabilities instead.

For each gallery image i, we plot SSD between image i

and all other gallery images k. We then assume normal
distribution. Then, given the value of SSD between probe
image p and gallery image i, we calculate P(probe image
is not gallery image i). This probability is the area under
the probability distribution graph of SSD values between
image i and all other gallery images k, given the value of
SSD between probe image p and gallery image i.

We then take the minimum of each probability that the

probe image is not gallery image i. In other words, if
gallery image i has the lowest probability that probe
image is not the ID of gallery image i, then the ID of the
probe image is most likely to be the ID of gallery image i.

Lastly, we set a threshold to indicate if the probe image

is a new image. This threshold is set arbitrarily and we
note that we should set this value using a classifier. We
should run our system using probe images with known

IDs, and classify the probabilities accordingly as Yes
(found in gallery) and No (probe image is not in gallery).

Fig 7.1 Blue bars: Histogram of SSD values between
image i and all other gallery images k. Red line: Fitted
normal distribution of histogram. Cyan line: SSD value

of probe image p and gallery image i

8 Results

The system usually has problems trying to recognize

the face captured via the web camera. This is usually
because it is difficult for the user to adjust his/her face to
the frontal pose expected by the system. Hence the user
has to usually cancel the captured picture and readjust
his/her face and retry.

Also, it takes a long time to classify / identify an

image because SSD takes a long time to compute,
especially because Matlab is inefficient with loops.
However, to reduce inefficiency, we use a database of
hashed SSD values. Hence we only need to compute SSD
values of probe image with respect to the images in the
gallery. We should not recomputed the SSD values
between gallery images (which was done previously in
the old face feature calculation module).

With regards to recognition accuracy, regrettably, we

did not have time to formalize our results. However, we
note that if there are faces in the gallery with the same ID
as the probe face, the system will correctly identify the
probe image most of the time. However, due to the
arbitrarily set threshold, the system will identify a new
probe image with an ID of a face from the gallery, instead

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

of prompting the user that this is indeed a new face and
ask if the user wishes to add the face to the database.

9 Conclusion

We have built a basic complete face recognition
system, although it is still far from perfect. For example,
the face detector module should be improved to accept
faces with various poses. The next step will be to optimize
the face feature calculation module and face classifer
module so that face identification can be done in real time.
If that is possible, then video surveillance can be done.
The user interface can be altered so that continuous video
feed (i.e. a sequence of image frames) is fed into the face
recognition module, which then be used to compare the
faces appearing on the web camera, with a database of
known faces (such as known terrorists) for surveillance.

10 References

[1] R. Brunelli, T. Poggio. Face Recognition: Features
versus Templates, IEEE Transactions On Pattern
Analysis and Machine Intelligence, Vol. 15, No. 10,
October 1993.

[2] A. Pentland, B. Moghaddam, T. Starner. View-based

and Modular Eigenspaces for Face Recognition. M.I.T
Media Laboratory Perceptual Computing Section
Technical Report No.245.

[3] D. Blackburn, M. Bone, and P. Phillips. Facial

Recognition Vendor Test 2000: Evaluation Report,
2000.

[4] P. J. Phillips, H. Moon, S. Rizvi, and P. Rauss. The

FERET Evaluation Methodology for Face Recognition
Algorithms: IEEE Trans. On PAMI, 22(10): 1090-
1103, 2000.

[5] R. Gross, J. Shi, and J. Cohn. Quo Vadis Face

Recognition?: Third Workshop on Empirical
Evaluation Methods in Computer Vision, December,
2001.

[6] T. Kanade, A. Yamada. Multi-Subregion Based

Probabilistic Approach Toward Pose-Invariant Face
Recognition. IEEE International Symposium on
Computational Intelligence in Robotics and
Automation (CIRA2003), Kobe, Japan. August 2003.

[7] T. Kanade. Homepage.

http://www.ri.cmu.edu/people/kanade_takeo.html (15

Apr. 2004)

[8] T. Sawao. Homepage.
http://www.ri.cmu.edu/people/sawao_takashi.html (8
Mar. 2004)

[9] P. S. Penev and J. J. Atick. Local Feature Analysis:

A General Statistical Theory for Object
Representation. Network: Computation in Neural
Systems 7(3), 477-500.

[10] L. Gu. Homepage. http://www-2.cs.cmu.edu/~gu/

(15 Apr. 2004)

[11] P.Viola, M. Jones. Robust Real-time Object

Detection. Second International Workshop on
Statistical and Computational Theories of Vision –
Modeling, Learning, Computing, and Sampling.
Vancouver, Canada. July 13, 2001.

[12] Y.Zhou, L.Gu, H-J. Zhang. Bayesian Tangent Shape

Model:Estimating Shape and Pose Parameters via
Bayesian Inference. 2003.

11 Appendix

Fig 11.1 When the “Detect Face” button is clicked after a still picture has been captured, the Face
Detection module will attempt to automatically detect a face region. The face region is shown with a
red rectangle if a face can be automatically detected with the module.

Fig 11.2. Immediately after a face region is automatically detected, the Face Component Localizer
module will generate 83 points that correspond to parts of the face.

Fig 11.3. Screenshot of the user interface of the Face Recognizer. The program shows the captured
image from the web camera.

Fig 11.4. The user has to normalize the image before trying to recognize the probe image. During the
normalization process, the program rotates and crops the image, according to the 83 points passed
in from the Face Detector module. The normalized image is then displayed in the user interface.

Fig 11.5. Result of face recognition. The ID of the closest matching face in the gallery is shown. If
the probe face is not found the database, the user will be prompted to enter face into gallery (if user
wishes to).

