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Abstract 

 
This research is to develop a computer program for human face recognition. A user sits in front of 

a computer equipped with a web camera. The program then captures the photo of the user, and 
through various modules, processes the photo and identifies the user within the database.  

 
The system includes many modules that perform separate functions: image capturing module, face 

detector, face component localizer, face feature calculation, and classification algorithm. The current 
face classification module uses SSD (sum of squared differences) values of various face regions as 
features. I have investigated other features to be used for classification, in particular the use of 
wavelets.  

 
The result of this research provides a basis for future development of many face recognition 

applications, such as surveillance, digital personal assistant, and camera-equipped cell-phones. 
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Abstract 
 

This research is to develop a computer program for 
human face recognition. A user sits in front of a 
computer equipped with a web camera. The program 
then captures the photo of the user, and through various 
modules, processes the photo and identifies the user 
within the database.  

 
The system includes many modules that perform 

separate functions: image capturing module, face 
detector, face component localizer, face feature 
calculation, and classification algorithm. The current 
face classification module uses SSD (sum of squared 
differences) values of various face regions as features. I 
have investigated other features to be used for 
classification, in particular the use of wavelets.  

 
The result of this research provides a basis for future 

development of many face recognition applications, such 
as surveillance, digital personal assistant, and camera-
equipped cell-phones. 

 

1  Introduction 
 

We as human beings, perform face recognition from a 
very young age. It is a basic reflex to observe faces in 
order to recognize someone. Yet, currently, face 
recognition performed by a computer is not as 
instantaneous.  

 
For a computer, the given image has to be processed by 

passing through a face detector module, identifying 
regions in the picture that contains a human face. Within 
this region, two traditional classes of techniques can be 
applied to the recognition of faces under normalized 
(roughly constant) illumination [1]. Feature based 
matching allows a face to be recognized even when details 
of individual features such as eyes, nose and mouth are 
not resolved. The key idea is to extract information such 
as relative position and other parameters of distinctive 
features such as eyes, nose and mouth. An example of a 
method to extract such features is the use of edge 
detection. The other technique is template matching. In 
the simplest version of template matching, the image, 

which is represented as a two dimensional array of values 
(typically illumination intensity) is compared with a single 
template representing the whole face. The comparison 
typically uses a suitable metric such as euclidean distance. 
In order to tackle the problem of pose differences between 
faces, a more complex approach is to use a single template 
together with a qualitative prior model of how a generic 
face transforms under a change of viewpoint. The 
deformation model is then heuristically built into the 
metric used by the matching measure; this is the idea 
underlying the technique of elastic templates and elastic 
bunch graphs. 

 
 Our approach is categorically that of appearance-based 

template matching.  In template matching, if we use the 
whole face region for comparison, it is not easy to take 
into account changes in appearance due to pose 
differences, because the appearance in a different part of a 
face changes in a different manner due to its complicated 
three-dimensional shape. Instead, one can compare 
several subregions of the face separately, such as the eyes, 
nose and mouth [1, 2]. Hence, given a probe image (the 
image with face(s) to be recognized), the subregions of 
the face will be compared to the corresponding subregions 
of other faces stored in the database. 

 
There are several different measures that can be used to 

compare such subregions. The current method is to use 
sum of squared differences (SSD). To compare the two, 
the SSD similarity value for each subregion after image 
normalization (so effectively the same as normalized 
correlation), is computed after finer alignment is done in 
order to compensate for the potential error in registration 
and the local deformation due to pose and other 
variations. The total similarity value between the probe 
face and the gallery face is then obtained by combining 
the similarity values of all subregions. Besides SSD, we 
have investigated the use of wavelets as a measure. 

 
Many face recognition algorithms have been developed 

and some have been commercialized for applications such 
as access control and surveillance. Several studies have 
been reported in recent years [3, 4, 5] that compare those 
algorithms and evaluate the state-of-the-art of face 
recognition technology. These studies show that current 



algorithms are not robust against changes in illumination, 
pose, facial expression and occlusion.  

 
Of these, pose change is one of the most important and 

difficult issues for the practical use of automatic face 
recognition. Our face feature calculation, and 
classification algorithm, developed by T. Kanade [7] and 
T. Sawao [8], is able to tackle pose differences well. It 
was shown that our algorithm outperformed a baseline 
algorithm (PCA) and a commercial product for face 
recognition [9]. However, unfortunately, the face detector 
employed poses as a limitation. The face detector used for 
this system is only able to detect frontal pose. Hence the 
overall system is only limited to frontal pose. 

 
Because of this limitation, we have to modify the face 

feature calculation, and classification algorithm to accept 
only one pose. Also, the algorithm had to be modified 
such that it is able to use a dynamic database, instead of 
the static CMU PIE database.  

 
In addition to the face detector, face component 

localizer module developed by L. Gu [10], and the 
modified face feature calculation, and classification 
module, a image capturing module was built to allow a 
user to sit in front of a web camera and capture images of 
his/her own face. With these modules, we can build a 
complete face recognition system that accepts images 
from a web camera.  

 

 
2  System Overview 
 

 
 
The system connects to a web camera and allows the 

user to freeze a frame (capture image). The image will 
then be passed to the Face Detector module which will 
detect a face region in the image. If a face region is not 
automatically detected, then the user may manually 
specify a face region. The rectangular face region (4 
coordinates) is passed on to the Face Component 
Localizer, which will produce 83 points that correspond to 
particular points of a face. These coordinates will then be 
passed on to the Face Feature Calculation module. It then 
calculates the feature values and passes this to the Face 
Classifier module. Based on a non-static database of 
images, the Face Classifier will output the ID of the 

Web 
Camera 

Image Capturing 
Module Image 

Face 
Detector 

Face 
Component 
Localizer

83 Face 
Points 
+ Image 

Face 
Feature 
Calculation 

Face 
Classifier 

ID of person 

Feature Values 

 
Fig 2.3 Screenshot of user interface for face detection 
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person. The user may add the image to the database if he 
wishes to do so. 

 
The remaining sections of the paper will discuss the 

components of the system. Section 3 will discuss the 
Image Capturing module; Section 4 will discuss the Face 
Detector module and how it allows faces to be detected 
very quickly; Section 5 will discuss the Face Component 
Localizer module and how it produces the 83 facial 
points; Section 6 will discuss the Face Feature Calculation 
and Section 7 will discuss the Face Classifier module. 
Lastly, Section 8 will discuss the results we have. 
 
 

3  Image Capturing Module 
 

The purpose of this module is to allow the user to 
capture an image frame from a web camera. The program 
will show the user what the web camera is viewing. When 
the user is satisfied with the position of his face, the user 
would click on the Capture Picture button to freeze the 
frame. Since the face detector module can only detect 
frontal pose, it is best that the user positions his face 
facing directly to the web camera. However, the user is 
allowed to tilt his head left or right, as long as he is still 
directly facing the camera.  

 

 
Fig 2.1 An example of a bad pose – User should be looking 

directly at web camera. 
 

 
Fig 2.2 An example of a good pose – Even if the user’s face is 

tilted, it is acceptable as long as the user is looking straight at 
the camera. 

 
The main purpose for the user interface is to allow users 

to perform face recognition seamlessly. Hence the image 
capture module would pass the captured image frame to 
the face detector module, without the user’s intervention. 
Once the Detect Face button is pressed, the face detector 
module would attempt to detect a face in the captured 

image frame. If a face has been automatically detected, the 
user is shown the face region generated by the face 
detector module (Refer to Appendix, Fig. 11.1). Then, 83 
points of the face, which is generated by the face 
component localizer module, will be displayed. These 83 
points correspond to particular features of the face. For 
example, point #5 would correspond to the left corner of 
the left eye. If a face was not detected by the face detector 
module, then the user will be prompted to manually select 
a rectangular region where the face lies. Then the face 
component localizer module will attempt to generate the 
83 points based on the user-specified region. (Refer to 
Appendix, Fig. 11.2) 

 
 

4  Face Detector 
 
The face detector module uses the robust real-time 

object detection algorithm developed by P.Viola and M. 
Jones [11]. The frontal face detection system firstly 
varies the size and position of a detection window in the 
image. It then calculates the values of rectangle features 
within the detection window. For example, the value of a 
two-rectangle feature is the difference between the sum 
of the pixels within two rectangular regions. The regions 
have the same size and shape and are horizontally or 
vertically adjacent (see Fig. 2.4). A three-rectangle 
feature computes the sum within two outside rectangles 
subtracted from the sum in a center rectangle. Finally a 
four-rectangle feature computers the difference between 
diagonal pairs of rectangles.  

 
 

 
 
Figure 2.4 Example rectangle features shown relative 

to an enclosing detection window. The sum of the pixels 
which lie within the white rectangles are subtracted from 
the sum of pixels in the grey rectangles. Two-rectangle 
features are shown in (A) and (B). Figure (C) shows a 
three-rectangle feature, and (D) a four-rectangle feature. 

 



 
To speed up calculation of rectangle features, the 

algorithm computes integral images. The integral image 
at location x,y contains the sum of the pixels above and to 
the left of x,y, inclusive. We store the integral image 
value for each x,y coordinate into an 2-D array. Hence 
using the integral image, any rectangular sum can be 
computed in four array references. Since the two-
rectangle features defined above involve adjacent 
rectangular sums they can be computed in six array 
references. 

 
Steerable filters, and their relatives, are excellent for 

the detailed analysis of boundaries, image compression, 
and texture analysis. In contrast rectangle features, while 
sensitive to the presence of edges, bars, and other simple 
image structures, are quite coarse and somewhat 
primitive. However, the extreme computational 
efficiency of rectangle features provides ample 
compensation for their limited flexibility.  

 
The detector scans the input image at many scales; 

starting at the base scale in which objects are detected at 
a size of 24x24 pixels, the image is scanned at 11 scales 
each a factor of 1.25 larger than the last. The 
computation requires many iterations, hence we use these 
computationally efficient rectangle features. 

These features are combined to form a classifier. 
Within any image sub-window the total number of Harr-
like features is very large, far larger than the number of 
pixels. In order to ensure fast classification, the learning 
process must exclude a large majority of the available 
features, and focus on a small set of critical features. 
Motivated by the work of Tieu and Viola, feature 
selection is achieved through a simple modification of 
the AdaBoost procedure: the weak learner is constrained 
so that each weak classifier returned can depend on only 
a single feature. As a result each stage of the boosting 
process, which selects a new weak classifier, can be 
viewed as a feature selection process. 

 
Next, the algorithm uses a method to combine 

successively more complex classifiers in a cascade 
structure which dramatically increases the speed of the 
detector by focusing attention on promising regions of 
the image. More complex processing is reserved only for 
these promising regions. In the domain of face detection 
it is possible to achieve fewer than 1% false negatives 
and 40% false positives using a classifier which can be 
evaluated in 20 simple operations. The effect of this filter 
is to reduce by over one half the number of locations 
where the final detector must be evaluated.  

 

Hence the face detector module is extremely fast, 
and is able to detect frontal pose faces in both black & 
white, and color images.  

 
 

5  Face Component Localizer  
 

Given the face region, the face component localizer 
module will produce 83 points that correspond to parts of 
the face. 

 
For this purpose people generally use a model-based 

method. For example, a face model is defined by a set of 
key feature points on face, and the connectivity of the 
points. Given an initial guess of the position, the 
algorithm attempts to find the best matching of the model 
to the image. Hence, based on the given face region, a 
template of 83 face points are generated. Then, these 
points will be adjusted to better match the face in the 
image.  

 
The matching result includes two components. The first 

is a shape component which interprets the variation of the 
structure of the object. The second is a pose component 
including a set of geometrical parameters which 
transforms the shape in the image to standard pose.  

 
Given an input image, we want to recover both shape 

parameters and pose parameters simultaneously. 
 
 

 
Firstly, based on the face region given by the Face 

Detector module, we generate a starting approximation 
based on a model template. We then implement the 
matching algorithm. 

 
The matching algorithm is generally a 2 step iteration 

process.  

Fig 5.1  Starting Approximation 



 
Given a starting approximation or previous estimation 

of the model parameters, the first step is to independently 
update each feature point in a local window. In this 
example, for each point we search in a line segment 
along the normal direction, find the besting matching, 
and we get a shape like this, which is jaggy. We call it 
the observed shape. 

 
 

This local searching step generally encourages the 
landmark points move to the position with high feature 
response. For example, because of this illumination 
effects, the points on the left side of the nose contour are 
moved to some high contrast position. So from a global 
view, the observed shape does not looks like a reasonable 
face. 

 
Therefore, the next step is to regularize the observation 

by some prior knowledge, and hope the results will be 
more accurate than the previous estimation.  

 
 

 
 
 
Because of variability in images, local feature 

matching is always unreliable. We would say that the 
regularization step, or in other words, the way to 
incorporate the prior knowledge with the observation, is 
the most important part in shape registration [12]. This 
naturally leads us to a Bayesian treatment of shape 
registration problem.  

 
Since these 83 points correspond to a certain part of the 

face, these points serve as a basis for comparison of 
certain face regions of the probe image, with the other 
images stored in the database. For example, the region 
around the left corner of the left eye of the probe image 
can be compared to the corresponding region of each 
image in the database. 

 
These 83 points produced by the face component 

localizer will be passed on to the face feature calculation 
module. Although we have 83 points available, the face 
feature calculation module and face classifier module do 
not require that many points. Since a region surround each 
point is being compared, and these points are usually 
close to each other hence there will be many overlapping 
regions if all points were used. For example, point #1 is 
the right corner of the left eye, and point #5 is the left 
corner of the left eye, and points #2 to #4 are points 
located on the upper arc of the left eye. 
 
 
6  Face Feature Calculation 
 

In order to perform comparisons on fair ground, the 
image captured from the web camera has to be 
normalized. The target image that contains just the face 
(background removed) will be a 128x128 grayscale 
image. The image is reduced from RGB format as given 
by the web camera to grayscale, because the face 
classifier module is unable to process RGB images. Also, 
the normalization of RGB images is more complicated 
and this might increase recognition error rate, since 2 
images containing the same face might not be recognized 
as being the same face due to different lighting that gives 
rise to more variation in illumination in color mode. For 
example, if a yellow light is shone, then the user might 
appear to have a yellower skin as compared to white light 
being shone.  

 
The first step in the normalization process is to 

ensure that the face is vertically upright. Since the face 
captured by the web camera can be tilted, we perform 
affine transformation on the face by using the 83 points, 
so that 3 points of the face will always be transformed to 

Fig 5.2  Observation 

                      
                        Fig 5.3  Regularization 



the same coordinates. The left corner of the left eye of 
any face will always be at coordinate (32, 16) of the final 
128x128 image. Likewise, the center of the nose will 
always be at coordinate (72, 64). In order to ensure that 
the face is vertically straight, based on the 83 points, the 
intersection point of the line that connects the left corner 
of the left eye to the right corner of the right eye (line1), 
and the line that connects the middle of the eyebrows to 
the middle of the mouth (line2), will always be at 
coordinate (32, 64). The affine transformation will hence 
result in line1 being horizontal and line2 being vertical. 
In this process, interpolation has to be used otherwise the 
transformed image will look jagged. This will result in a 
128x128 image. 

 
21 points are then selected from the 83 points to be 

used for comparison. Some of these 21 points are 
calculated by using 2 or more points from the original set 
of 83 points. Therefore even though we only use 21 
points for comparison, this allows us to use more 
information, as compared to the case where we only take 
exactly 21 points from the original set of 83 points). For 
example, one of the 21 points is the middle of the left 
cheek. This would be the midpoint of the line that 
connects a point at the left border of the face, and a point 
at the left side of the nose.  

 
Using these 21 points, a 9x15 subregion with the point 

as its center is created. Hence the face region is divided 
into a set of small subregions, and each subregion is 
compared with the corresponding subregion of the face in 
the gallery.  To compare the two, a similarity value for 
each subregion, defined by the sum of squared difference 
(SSD), is computed after finer alignment is done in order 
to compensate for the potential error in registration and 
the local deformation due to pose and other variations. 
The total similarity value between the probe face and the 
gallery face is then obtained by combining the similarity 
values of all subregions. For each subregion the intensity 
values are normalized to have zero mean and a unit 
variance. 

 
As the similarity measure, the SSD (sum of squared 

differences) values sj between corresponding j–th 
subregions for all the pair of images Ik= (ik, φk) vs. Im= (im, 
φm)  in the training dataset were calculated. Note that since 
we compute the SSD after image normalization for each 
subregion, it contains effectively the same information as 
normalized correlation.  

 
In addition, we investigate the use of gabor wavelets 

instead of SSD as a feature. Using gabor wavelets, we can 
get texture characteristic locally in spatial frequency 
domain. In our implementation, we use 40 gabor wavelets 
for each location. We vary spatial frequency and 

orientation to yield 40 gabor wavelets. In particular, we 
have 5 spatial frequencies: (π/2, π/4,π/8, π/16,π /32), and 8 
Orientations: (from 0 to π, differing π/8). We also vary the 
kernel size of the wavelet. It is important to choose a 
kernel size such that the wavelet does not exceed the 
image area (zeros padded on non-image region). If the 
kernel size is too big, the wavelet will include unintended 
areas such as the background, instead of the areas which 
we are interested in (e.g. left eye).  

 

 
Fig 6.1 Coverage of gabor wavelets with different filter 

sizes 
 
Initial results reveal that wavelets, on the whole, is not 

as a good as a feature as compared to SSD. However, for 
certain features such as the eye, it might be a better (more 
discriminative) feature than SSD. With SSD, the graph of 
same ID probability and the graph of different ID 
probability overlaps by around 10%. On the other hand, 
with gabor wavelets, the overlapping area is around 35%. 
A good feature with high discriminating factor will have a 
small overlapping area, since this means that it can clearly 
tell apart same ID images from different ID images. 

 
 

7  Face Classifier 
 

The previous Face Classifier module was built with the 
intention to recognize the ID of faces with different poses. 
This poses a problem because for our system, we can only 
accept images with frontal pose. 

 
In the old module, for the training phase, we create 

P(sj|same, φk ,φm), the conditional probability density of 



the j-th SSD similarity value sj given that the images are 
of the class same identity and the poses of the two images 
are is φk and φm, respectively, from the histograms of SSD 
values of each region of the images. Likewise we also 
create P(sj|diff, φk ,φm) for the class of different. We 
approximate these distributions by a Gaussian 
distribution. Accordingly, 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2)(

2
1exp

2
1),,|( same

j

same
jj

same
j

mkj

s
samesP

σ
µ

σπ
φφ  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2)(

2
1exp

2
1),,|( diff

j

diff
jj

diff
j

mkj

s
diffsP

σ
µ

σπ
φφ  

 
where µj

same
 and µj

diff, σj
same

  and σj
dif are the means and 

standard deviations of class same and diff, respectively, 
which are obtained from the histograms. These 
distributions are then used during classification. 

 
However, the old classification module becomes a 

problem for our system because the variance same
jσ is zero 

for same ID. We would then encounter a division-by-zero 
error. Previously, images with same ID had different 
poses, hence this variance is non-zero. Therefore, we have 
to develop another classification method. 

 
We cannot simply look at a SSD value between a probe 

image p and a gallery image g, and determine if it is too 
high and classify the ID of probe p as not ID of g. We 
cannot use the raw SSD value because other factors such 
as illumination will affect the raw value. Instead, we 
should use the distribution of SSD values and calculate 
probabilities instead. 

 
For each gallery image i, we plot SSD between image i 

and all other gallery images k. We then assume normal 
distribution. Then, given the value of SSD between probe 
image p and gallery image i, we calculate P(probe image 
is not gallery image i). This probability is the area under 
the probability distribution graph of SSD values between 
image i and all other gallery images k, given the value of 
SSD between probe image p and gallery image i. 

 
We then take the minimum of each probability that the 

probe image is not gallery image i. In other words, if 
gallery image i has the lowest probability that probe 
image is not the ID of gallery image i, then the ID of the 
probe image is most likely to be the ID of gallery image i.  

 
Lastly, we set a threshold to indicate if the probe image 

is a new image. This threshold is set arbitrarily and we 
note that we should set this value using a classifier. We 
should run our system using probe images with known 

IDs, and classify the probabilities accordingly as Yes 
(found in gallery) and No (probe image is not in gallery).  

 
 
 
 

Fig 7.1 Blue bars: Histogram of SSD values between 
image i and all other gallery images k. Red line: Fitted 
normal distribution of histogram. Cyan line: SSD value 

of probe image p and gallery image i 
 
 
 

8  Results 
 
The system usually has problems trying to recognize 

the face captured via the web camera. This is usually 
because it is difficult for the user to adjust his/her face to 
the frontal pose expected by the system. Hence the user 
has to usually cancel the captured picture and readjust 
his/her face and retry. 

 
Also, it takes a long time to classify / identify an 

image because SSD takes a long time to compute, 
especially because Matlab is inefficient with loops. 
However, to reduce inefficiency, we use a database of 
hashed SSD values. Hence we only need to compute SSD 
values of probe image with respect to the images in the 
gallery. We should not recomputed the SSD values 
between gallery images (which was done previously in 
the old face feature calculation module).  

 
With regards to recognition accuracy, regrettably, we 

did not have time to formalize our results. However, we 
note that if there are faces in the gallery with the same ID 
as the probe face, the system will correctly identify the 
probe image most of the time. However, due to the 
arbitrarily set threshold, the system will identify a new 
probe image with an ID of a face from the gallery, instead 
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of prompting the user that this is indeed a new face and 
ask if the user wishes to add the face to the database.   

  

9  Conclusion 
 

We have built a basic complete face recognition 
system, although it is still far from perfect. For example, 
the face detector module should be improved to accept 
faces with various poses. The next step will be to optimize 
the face feature calculation module and face classifer 
module so that face identification can be done in real time. 
If that is possible, then video surveillance can be done. 
The user interface can be altered so that continuous video 
feed (i.e. a sequence of image frames) is fed into the face 
recognition module, which then be used to compare the 
faces appearing on the web camera, with a database of 
known faces (such as known terrorists) for surveillance.  
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11  Appendix 
 

 
 

 
Fig 11.1 When the “Detect Face” button is clicked after a still picture has been captured, the Face 
Detection module will attempt to automatically detect a face region. The face region is shown with a 
red rectangle if a face can be automatically detected with the module.  

 
Fig 11.2. Immediately after a face region is automatically detected, the Face Component Localizer 
module will generate 83 points that correspond to parts of the face. 



 
 
 

 
Fig 11.3. Screenshot of the user interface of the Face Recognizer. The program shows the captured 
image from the web camera. 



 

 
Fig 11.4. The user has to normalize the image before trying to recognize the probe image. During the 
normalization process, the program rotates and crops the image, according to the 83 points passed 
in from the Face Detector module. The normalized image is then displayed in the user interface. 



 
 
 
 

 
Fig 11.5. Result of face recognition. The ID of the closest matching face in the gallery is shown. If 
the probe face is not found the database, the user will be prompted to enter face into gallery (if user 
wishes to). 


