

Detecting Opponent Roles in a Robot
Soccer Domain

Jennifer Lin
Advisor: Dr. Brett Browning

April 2004

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, 15289

 1

Abstract
Robot soccer provides a good domain for role-based opponent modeling

because roles are well-defined and integral to the play system of the opponent.
Specifically, I detect roles and role transitions in the adversary team. This
information can then be used to exploit the opponent’s playbook in order to defeat
them. The research can also be applied in other formation detection domains. It
can rely on a variety of variables that have not been extensively explored before.
Role detection is achieved with a combination of hand-coded rules and Markov
Models. These methods were tested on the CMDragons02. Results show promise
that almost every role can be detected with at least 70% accuracy given a
complete world model. While role detection can indeed be accomplished, it was
found that Markov Models were not the method of choice.

 2

Table of Contents

1 Introduction 4
 1.1 Motivation . 4
 1.2 Problem . 4
 1.3 Approach . . 5
 1.4 Contributions . 5
 1.5 Domain . 5
 1.6 Related Work . 8

2 Objectives 10

3 Hand-coded Rules 12
 3.1 Motivation . 12
 3.2 Hand-coded Rules Approach 13
 3.3 Experimental Set-up . . 14
 3.4 Results . 14
 3.5 Summary . 17

4 Markov Models 18
 4.1 Motivation . 18
 4.2 Markov Models Approach. . 19
 4.3 Experimental Set-up . . 22
 4.4 Results . 22
 4.5 Summary . 23

5 Discussion 25
 5.1 Meaning of Results. 25
 5.2 Failure Cases . 26
 5.3 Future Work. . 29

 3

Chapter 1

Introduction
This thesis work is on role detection in the small-size league of robot soccer. Real
time observations are used to make predictions about the role of a given opponent
robot.

1.1 Motivation
Plenty of work has been done in role detection in many fields. This thesis will

focus on looking at role detection for robot soccer. Role detection can be useful
for automated announcing of sporting events, recognition of patterns and
formations in a military domain, and air traffic control as well as many others.
Also, as more robots are integrated into the human environment, the ability to
model other agents is going to become more essential.

Specifically for robot soccer, role information can be used to stop the opponent
team. Knowing the role of a robot can allow us to exploit opponent plays by
preventing them from getting to the ball, or by finding holes in their defense. For
instance, if it can be detected that the role of an opponent will make it likely to try
to get open for a pass, another robot can be sent in the path to intercept a pass.

1.2 Problem
The objective of this thesis is to successfully detect the role of each opponent

robot on the field at any given time during a game situation. Specifically, it will
answer the question:

 How can an autonomous robot team build models of an unknown
opponent team in real time in hopes of eventually using those models
to exploit the actions of the opponent?

 The roles that will be detected are the goalie, the active player, the defense,
the supporting offense, and the mark. Since the rules of robot soccer include a
description of what a goalie can or cannot do, every team has a goalie. The

 4

active player simply means a robot going for the ball. If no robots ever went
to the ball, the game would not be very interesting. A common role is a
defensive player. Teams have designated robots to stop the opponent and to
score. Those designed to stop the opponent via positioning themselves in a
zone are called defensive players. Those designed to stop the opponent by
staying next to them or “marking” them are marks. Robots that try to get open
for a pass in order to score a goal or advance the ball are designated as
supporting offense. This thesis is meant to be generalized for all teams,
however specific team roles differ greatly. These categories of roles make it
more feasible to generalize the research across more uses.

1.3 Approach
To detect the roles of an opponent robot, two different methods were tested.

First, a series of hand-coded rules were written to discern between different roles.
Then, a series of Markov models were found based on the distance of the robot
from the goal and the robot to the ball to try to improve upon role detection. Both
of these methods are detailed later.

In order to train and test these models, data provided from CMDragons02 was
used. While it would be nice to use the logged data from the other teams, there is
no information on what roles they are actually running, which makes it difficult to
tell whether or not the system is doing the right thing.

1.4 Contributions
The main contribution of this thesis is providing a method of identifying roles

in real-time based on observations. This research work will allow the game of
robot soccer to move away from the current common state of static playbooks.
Also, role detection techniques can be applied to other fields where formations
and path patterns are of importance by providing a reliable method of classifying
agents into roles.

This thesis also presents a new way of using Markov Models. Specifically, a
Hidden Markov model of roles is used, and the probability of an observation is
based off of a Markov model of observations for that role.

1.5 Domain
Robot soccer provides a fast-paced dynamic autonomous game. Started in 1997,

RoboCup consists of five distinct leagues. [RoboCup] These leagues are the
legged, small-size, mid-size, humanoid, and simulation leagues. Each league has
its own characteristics. Specifically, as of 2003, the small-size league consists of
robots of up to 180mm diameter and up to 150 mm tall that move up to 2 meters

 5

per second and a ball that can reach velocities of over 5 meters per second. An
orange golf ball is used on a flat green carpeted field that measures 2.8 meters by
2.3 meters. An overhead camera allows the position of robots from both teams, as
well as the position of the ball to be tracked by frames. Specifically, a camera that
achieves thirty frames a second was used for this the purposes of this thesis.

 The positional information is then fed into an off-field computer that runs
software and sends commands back to the robots by radio. This positional
information is represented as an X-Y coordinate system. The center of the field is
at (0, 0), and the X-values decrease towards the defending goal and increases
towards the attacking goal while the Y-values increase to the left when facing
towards the attacking goal and decrease to the right. Once the game starts, there is
no human intervention allowed; the robots must play and set-up by themselves.
Teams consist of up to five robots including the goalie. Since robots are built by
individual teams, the capabilities of robots differ from team to team and
sometimes even differ from robot to robot within a team.

Figure 2.1: Various Robots Used by Different Teams in RoboCup 2003

Nearly all teams have a static set of roles and a static set of plays made up of

different combinations of these roles. Therefore roles are well-defined enough to
detect. Generally, there is a multiple-layer software system running the robots.
The bottom layer defines how each robot moves in order to maneuver with the
ball and around the field to perform tasks such as shooting, dribbling, and
positioning. The next layer defines how a specific robot would play an attacker or
play defense or another role based on the tasks in the lower level. Finally, there’s
a top layer that defines how each of these robots in these roles interact with each
other for teamplay. This research would allow work to be done in order to
dynamically write this top layer, since it would be useful to detect roles for the
purposes of dynamically creating new plays to defeat an opponent, real-time
without human intervention.

 6

 Camera

 Software

 Strategy
 Tactics
 Radio Robot

Figure 2.2: Small-Size System

Figure 2.3: A Photograph from an Actual Small-Size Robot Soccer Game

While access to two full teams of physical robots is extremely difficult to find,
there is access to a simulator of physical robots called UberSim [BroTry, 2003].
This allows the code to be tested without 10 physical robots on the field. UberSim
was written to simulate the CMDragons team of small-size robots. It sends frames
of data to software the same way the information from the camera is sent; the
software cannot tell the difference between a simulator and the real camera.
Unfortunately, there are a few problems in UberSim. Although positional data has
100% confidence since there is no occlusion or lighting problems, the physics
built into UberSim is far from perfect. Often times, a ball may shoot off the
screen, get stuck in a wall, or fly above/through robots on the field. In many of
these cases, the ball cannot be manually reset and instead the whole system must
be reset such that UberSim repositions each robot and the ball randomly
somewhere else on the field and keeps running as if nothing happened. This
forces the robots to take time to travel back to their positions on the field,
providing noise in the data. This is also the case when robots sometimes collide

 7

into each other and disappear off the screen. All of these factors result in noise in
the system that is difficult to filter out and lead to more inaccurate results later.

Figure 2.4: A Screenshot from a GUI running UberSim

Also, there are over twenty logged games from RoboCup 2002, American Open

2003, and RoboCup 2003. The logs can play back like an actual game and the
software can detect the roles of opponents played in the past in these real
situations. These log files allow the code to be tested on a variety of opponent
teams who most likely run roles and plays that differ greatly from CMDragons.
Logs play back all information from vision that was received at the time with the
complete frames, as well as provide information as if the software was running at
that time. They were recorded at thirty frames a second.

1.6 Related Work
In robotic soccer, most of the work regarding role detection has been done in

the simulation league. The legged league as well as the mid-size league have a
difficult enough time tracking multiple targets, that they do not do opponent
modeling. The simulation league uses information mostly from past games, but
also some real-time information in set-play situations [RilVel, 2002][Ste, 2001].
However, the interactions between robot and robot as well as robot and ball are
also less predictable in the real game where simple physics equations are used to
map this out in the simulator. For instance, a pass becomes much harder in small-
size because the kicking speed if significantly faster than the combination of
latency and the robot's ability to respond to changes. For half a meter, the robots
do not even see the ball before it is about to hit them. If a pass comes off the
kicker a little bit off, it is difficult for the recipient to adjust for this since only a

 8

fraction of a degree of error is allowed given about a 6 centimeter dribbler and
passed from a half meter away.

Related work has also been done outside of robotic soccer in the form of using
recorded American football games [Int2001]. Bayesian networks were used. Of
the 25 known plays they used, 21 were correctly identified. This may be
applicable to small-sized robotic soccer, but requires knowledge of the
opponent’s playbook.

As for deployed systems within small-size, CMDragons02 used basic opponent
modeling in the F-180 league as far as trying to determine whether to shoot or to
pass to another player based on the goalie speed and the speed of our kickers.
Prior to that, CMDragons01 started the use of adaptive playbooks.

Meanwhile, the idea of using Markov models comes from the research done by
[HanVel, 1999] and [Boh, 2002]. Both groups used Hidden Markov Models to
automate detection of robot behaviors. Specifically for [HanVel, 1999], the
robot’s distance from the ball was used as an observation to determine whether or
not the robot was going for the ball. Finite windows of data were used as input to
the system. Every few time steps, the window would be reset. This concept seems
to be similar enough to apply to role recognition since the robot’s distance to the
ball is an indicator of certain roles.

Using the positional information from the field also comes from [Tam, 1996].
This paper shows that tracking individual agents helps in plan recognition.
Examples are shown through both RoboCup and a simulated air combat situation.

What makes this research unique is that it deals with real robots and it collects
and uses the data real-time in order to distinguish between roles. As the game is
going on, the opponent modeling occurs and the information is immediately used
to determine the next action of the team.

 9

Chapter 2

Objectives
For role detection to be successful and meaningful, many things must occur. If
these objectives were not met, then even if roles were successfully identified, the
information would not be useful.

• The system must be capable of detecting roles in real-time.

• The system must have a low latency.

• The system should be generic enough to work with any team.

• The system must only rely on positional and temporal information.

Although there are logs of games in years past, the system must work in real-
time making no assumptions from data from previous games. The information
from the data is not very useful for learning because teams will change drastically
from year to year. Almost all teams make significant changes in hardware every
year, which affects the physical capabilities of the robots themselves. A faster
robot and stronger kick allow teams to also change their plays and strategies as
well.

Since the role information needs to be used immediately in order to respond to
opponent moves, a latency of a few seconds is far too high. The system should be
capable of achieving role detection within a few frames time.

There is no standard for roles defined in each team’s system. Therefore, roles
cannot be too specific to a particular team. There are over fifty small-size teams
around the world.

The only information available is from the camera. Therefore, the system must
be able to detect the roles only based off of the position of robots and the ball
through time. Specifically in this case, it must be able to detect the roles using
positional information at a resolution of thirty frames a second.

If none of these objectives were in place, then it is possible to end up with a
system that could only detect roles from one specific team using past information

 10

assuming no changes and took several seconds to run. It would then be impossible
to create new plays that relied on knowing the roles of the opponents, and would
not work on any other team or even on the same team if the code was even
slightly modified. Therefore, each one of these must be achieved in addition to the
successful role detection.

 11

Chapter 3

Hand-coded Rules
The first approach to detecting roles was to create a number of hand-coded rules
based on domain knowledge. This approach should be easy to do and straight-
forward. Results from this approach should show whether or not the task at hand
is possible while later approaches attempt for more accurate results.

3.1 Motivation
Since the robots the behaviors that make up robot roles are hand-coded, it

seems logical that they can be detected by hand-coded rules are well. For
instance, a robot running mark is told to stay in close proximity an particular
opponent robot, staying between it and the ball. Therefore, they follow a very
particular movement pattern and positioning sequence. Simple rules should be
able to pick up on these. Here are some histograms diagramming this fact:

Figure 3.1: Histogram of
Goalie Positions

Figure 3.2: Histogram of
Positions as Active Player

Figure 3.3: Histogram of
Robot Positions as Defense

 12

 13

Figure 3.4: Histogram of Robot Positions as
Supporting Offense

Figure 3.5: Histogram of Robot Positions as
Mark

The darker splotches on the plot represent areas of the field that the robot is at

more often given that role. White areas represent areas where the robot is never
at. As is evident by the plot, the most common locations of each robot when their
positions are plotted on a histogram is very specific for each role. For instance,
even though the active player is the one that should be following the ball, it still
forms patterns with its positioning on the field. Other roles like goalie and defense
are more evident. Based on these locations, rules were written to discern between
the roles.

3.2 Hand-coded Rules Approach
Of the five roles, the first role to pick out is the goalie. This is the robot

designated to defend the goal from shots on it. Only one robot plays the position
of goalie throughout the whole game. The goalie has special privileges. For
instance, it is the only robot allowed in the goal box. Also, when in the goal box,
an opponent robot cannot touch the goalie. Therefore, as long as the goalie is
playing his position properly, this robot is usually the closest to the goal.
Therefore, a simple minimum function was applied to the distance of each robot
to the goal to find which robot was the goalie. While hysterisis may sound like a
good idea, it was found to be unnecessary, especially since no other robot but the
goalie is allowed in the goal box according to the rules, and goalies generally stay
in the goalie box since they have the advantage that no opponent robot may
legally touch the goalie in the goal box. These factors all amount to the goalie
always being the nearest to the relevant goal.

The next role to pick out is the active player. The active player is defined as the
one directly interacting with, or about to directly interact with the ball. Therefore,
it is easy to say that robot closest to the ball is the active player. In the case where
the goalie is the one with the ball, the robot is identified as a goalie and the role of
active player is not assigned to any robot

The role with the next more specific rule is the defensive player. The defense is
a player guarding off a certain zone of the field, preventing an opponent robot
from getting the ball or shooting in that area. A player is identified as being on
defense if its center dot is in the triangle created by the ball and each goal post. A
confidence level was determined for each robot by taking the difference in y-
positions of the robot and triangle, where the Y-position represents how far to the
right or left of the triangle the robot is, when facing the goal. This confidence
level was based on a Gaussian distribution. The confidence was then thresholded,
causing additional robots to be declared as defenders.

 the ball
 defensive triangle

Figure 3.6: The Defensive Triangle used for Recognizing Robots Running Defense

After coding the rules for the defensive player, the rules for supporting offense
go into effect. This role represents robots that would try to drive to the open space
to receive a pass or a loose ball in order to advance the ball up the field or to take
a shot on goal. The supporting offense is always on the offensive side of the field,
but its position relative to the ball or other robot could be a variety of things.
Therefore, it was simply anything on the offensive side that wasn’t on defense.

The final position is a special position called mark. The mark is a robot
assigned to preventing another particular robot from getting the ball. In this role, a
robot is defending another robot by following it regardless of the ball’s position.
The code actually classifies whether or not the robot is running mark after active
player, since it is such a special case. In this case, the nearest robot to each robot
is logged. If the nearest robot is further than a certain threshold or keeps
changing, the robot is not running mark. Unfortunately, this is the hardest role to
discern since sometimes many robots are clumped around the ball and therefore
are always near each other, especially if the ball has trouble getting free from the
crowding. This is still an important role because it is the distinguishing factor
telling whether the opponent is running a zone defense, a robot-to-robot defense,
or some combination of both strategies.

 14

3.3 Experimental Set-up
Information to test the software was collected by having the simulator play

twenty-minute five-on-five games. When a goal was scored, the ball was replaced
in the middle without the robots setting up again. There were no stop plays and as
little time as possible was spent with the ball in the goal. In cases where the ball
went hopeless out of bounds, the simulator was quickly reset, repositioning all
robots and the ball in random positions on the field. Records were kept for the
score of each team and the number of resets that were required during the game.

3.4 Results
The roles of each opponent robot was detected during the game with some

success. Several trial were run using the simulator, allowing each team both
output what roles they are picking for themselves as well as what roles they think
the opponent is running. For each trial run, a confusion matrix was calculated in
order to analyze how well each role was picked out and what roles the software
could not discern at all.

Table 3.1: Hand-coded Rules Confusion Matrix

 Goalie Active
Player

Defense Supporting
Offense

Mark Not Sure

Goalie 0.995 0.000 0.002 0 0 0.003
Active Player 0.000 0.923 0.055 0.008 0.006 0.008

Defense 0.001 0.032 0.714 0.121 0.065 0.066
Supporting Offense 0.001 0.003 0.171 0.709 0.042 0.074

Mark 0.000 0.049 0.193 0.719 0.022 0.017

Noise was expected in the matrix, due to multiple resets that occurred during

the twenty minute test periods, forcing robots to end up somewhere random and
take time to move back into position. There was an average of 2.3 resets per
game. Each reset forced the position of the robots to be replaced randomly
elsewhere in the screen. This often causes the goalie to end up on the other side of
the field and the active player to be far from the ball and such. It is difficult to
filter out when this happens, so it just becomes noise in the system.

In many cases when the ball is in the far corner, a robot will start marking the
goalie or the active player. This is a case in the play system where the code does
not work as intended. While the program is really running mark, the software
tends to see that it looks like it’s a supporting offensive player when it is marking
the goalie, and an active player when it is marking the other team's active player.
This case appears to be a flaw in the testbed, not the software since a supporting
offensive player would make more sense in such a scenario. Also, the play system
also often chooses to mark the active player from the other team. This causes a lot

 15

of crowding of the ball and looks more like any of the other roles except for
goalie and itself.

There was also a problem sometimes of deciding between defense and
supporting offense. Part of this case is because of a tactic in the play system run
called “defend_lane”. Robots are often assigned to defend_lane near the center of
the field. The reason for this is so that they behave more like midfielders and can
easily transition into a deflection play or a pass play almost like a striker position
in real soccer.

Goalie Active Player Defense Supporting Offense Mark
0.0150 0.043 0.829 0.061 0.053

Table 3.2: Real Roles During “Not Sure”

About 3.7% of the time, the software was not sure what position to identify a
robot as. Of this percentage, 82.9% of the time, the robot was actually running
defense. This could stem from two problems: either defend_lane was confusing it
again when the robot is towards the middle but not on the offensive side of the
field to be confused with supporting offense, or the threshold on the Gaussian is
too high. To compensate the threshold was lowered slightly.

Another real problem encountered in the confusion matrix was that a robot
would decide to switch from defense to active player or supporting offense. At
some point it starts moving into position to become active player and the
programming running that robot would them output that it has already become the
new role where my program continued to recognize it as the old role for a few
frames before catching up. To deal with this new problem, rules were added to
detect transitions. This is done by comparing the robot speed to the speed of the
ball. When the robot speed is significantly higher than the speed of the ball, the
robot is in all likelihood speeding to its new position due to a role change. A robot
detected to be transitioning between roles was not included in the data.

Table 3.3: Handcoded Rules Confusion Matrix with Transitions

 Goalie Active
Player

Defense Supporting
Offense

Mark Not Sure

Goalie 0.984 0.013 0.000 0.003 0.000 0.000
Active Player 0.001 0.952 0.027 0.016 0.002 0.002

Defense 0.034 0.095 0.677 0.160 0.019 0.015
Supporting Offense 0.000 0.036 0.007 0.890 0.005 0

Mark 0.043 0.260 0.096 0.585 0.014 0.002

Goalie Active Player Defense Supporting Offense Mark
0.024 0.100 0.853 0.000 0.024

Table 3.4: Real Roles During “Not Sure” with Transitions

 16

 Making these changes seemed to have increased recognition of supporting
offense significantly. The software is now never “not sure” when the robot is
running a supporting offensive role, and it is no longer significantly confused
with defense. Meanwhile, the detection of defense still suffers and usually when
it’s “not sure” it is defense. When the software thinks that it is supporting offense,
sometimes it is actually defense.

3.5 Summary
Hand-coded rules faired decently except in a few special play-specific

situations, with mark, or certain defense situations. A few problems were
encountered regarding transitions and boundaries of offense and defense.
Solutions to these were added and the tests were reran turning the results for
supporting offense from decent to accurate. In the final set of code used for this
part of the thesis, the recognition of goalie, active player, and supporting offense
were accurate while the recognition for defense was decent and for mark, it was
poor.

 17

Chapter 4 Markov Models

Hoping to get more accurate results, a second method of role detection was
attempted. This method used distance metrics as observations for a series of
Markov Models. The idea of this method developed from work from [HanVel,
1999]

4.1 Motivation
While the hand-coded rules were somewhat effective in recognizing opponent

roles, but they did not really take advantage of the patterns available in the
continuous temporal stream of data. Therefore, another approach was used for
comparison. Markov models allow a series of state transitions from observations
to be incorporated into the decision using the continuous data to determine what
role the robot is running. Nine different states were defined based on observations
of distance from ball and position on the field.

 The ball
 Zone One (close enough to touch the ball)
 Zone Two (close enough to receive a pass)
 Zone Three (everything else)

Figure 4.1: Zones One, Two, and Three for Observations Used in Markov Models

 Zone A (goal box)
 Zone B (defensive zone)
 Zone C (offensive zone)

 Figure 4.1: Zones A, B, and C for Observations Used in Markov Models

These observations were chosen because they are much of the same criteria that
the handwritten rules were based off of. It can be predicted that the goalie would
be always be in Zone A. Meanwhile, the active player would be one in Zone One.
Other roles could depend on a combination of zones, such as supporting offense,

 18

which would probably be a robot both in Zone Two and Zone C at the same time.
Defenders could be in Zone B and Zone Two or Three, while the mark can be
almost anywhere.

These metrics were chosen since many of the hand-coded rules also relied on
these factors. Also, the behavior detection work [HanVel, 1999] used similar
metrics leading to good results.

4.2 Markov Models Approach
Markov Models depend on observations and emitted symbols in different

situations that serve as a basis of creating a model of states and state transitions.
Five different Markov models were constructed in parallel, one for each role.
[Vai, 2004] This was computed by taking real role data as training data to
calculate the real probability of a transition between states while in each role.
There are nine states that were defined based on the distance from ball and
position on the field.

B1

A1

C1

B2

Table 4.1: Mar

0.016

0.012

0

0.012

0.984

0.004

0.9890.007

0.003

0.016 0.980
B2

C1

B1

Table 4.2: Markov

0.004

0.981

A2 A3
0.013

0.003
0.002
 0.990
C2

kov Model for Goalie

0.001

.964

0.9920.007

0.003

0.0
C2

 Model for Active Play
0.006
0.001
0.004
B3

09

0.007

B3

er
0.996
0.011
 0.954
 0.032

0.003
0.005
0.125
 0.980
0.003
0.005
0.

0.9
0.003

0.003
 0.989
0.014
C3

0.986
0.009
 0.991
0

7

0.007
0.007
 0.987
14

0.001

7

C3

19

0.028

0.011

0.008

0.007
0.0010.002

0.962 0.0030.982

0.016

0.981

0.002

0.9900.009

0.003

0.9880.007

0.001

0.027 0.972

C3

B3

C2

B2

C1

B1

0.001

Table 4.3: Markov Model for Defense

B1

C1

B2

C2

B3

0.971

0.983

0.987

0.989

0.011

0.001

0.9940.006

0.0010.017

0.001
0.015

0.004

0.029

0.006
C3

0.985

Table 4.4: Markov Model for Supporting Attacker

0.011
0.004

0.0010.002

0.956 0.9770.983

0.003

0.9970.003

0.003

0.9860.009

0.961

0.033

0.009
C3

B3

C2 C1

B2

0.010

0.034

0.006
0.001

0.013

B1

Table 4.5: Markov Model for Mark

 20

After the Markov models are given, a test set of data is run. The test data is a
temporal stream of data. Given this time series of values x0, x1,...,xt, the belief
state for time j for class ci where the classes are goalie, active player, defense,
supporting offense, and mark, is the probability of the class being the actual role
at time j. The math for the belief states comes from [Len, 2004] and was modified
slightly to work here.

Equation 4.1: Equation for the Belief State

 Since the 1/ P(xj|xj-1,…,x0) term should be constant, it is ignored for now and
dealt with later by normalizing all the belief state probabilities. Under Markov
assumptions of independence, the first term, P(xj|xj-1,…,x0,ci,j) simplifies to P(xj|xj-

1,ci,j). Meanwhile the second term, P(ci,j|xj-1,…,x0) can be expanded.

Equation 4.2: Equation for the Class Probability

Here, ci,j is assumed to be independent of observations before time j given cl,j-1

for all l. These assumptions simplify the problem to finding the ci that maximizes
the following equations by providing a recursive solution:

Equation 4.3: Belief State Recursive Solution

The Markov models for each class provides P(xj|xj-1,ci,j) by examining the

probability of the transition between xj-1 and xj in the model that represents ci,j.

 21

B(ci,j) was initialized to 0.20 for each value of ci,j. Finally, P(ci,j|cl,j-1) was defined
as 0.98 when cl,j-1 was equal to ci,j and was (1-0.98)/(n-1) otherwise, where n is 5
since that is the total number of classes. These values are chosen because it is
most common for a self-transition to occur, since roles stay the same for several
frames at a time before changing, but it still needs to be possible for a transition to
occur. If the role changes for just a few frames, it will be viewed as noise, while
after it has changed and stayed steady for multiple frames, it will stabilize again.
At every time step, B was normalized to sum to 1 since the 1/ P(xj|xj-1,…,x0) term
was ignored. This series of equations formulated the Hidden Markov Model
placed on top of the set of Markov Models of observations. B(ci,j) represented the
probability of each state, or class in this case. The role detected was defined as the
class with the greatest value of B(ci,j).

Since many cells in the Markov models have a high probability despite little
data (this happens due to the noise in the system), a Dirichlet Prior with a virtual
sample value of 100 was applied on values of P(xj|xj-1,ci,j) so data cells based on
low information is not taken into account as strongly.

4.3 Experimental Set-up
The experimental set-up for testing Markov Models was the same as the

experimental set-up for Hand-coded Rules (Chapter 3, Page 15).

4.4 Results
After the results were collected, a confusion matrix was made again with the

most probable role compared to the real role. First it was run with the test data
being the same as the training data.

Table 4.6: Markov Models Confusion Matrix when Test Data is the Same as Training Data

 Goalie Active Player Defense Supporting Offense Mark
Goalie 0.897 0.0380 0.0132 0.0201 0.0321

Active Player 0.0330 0.335 0.227 0.182 0.223
Defense 0.0231 0.282 0.291 0.180 0.224

Supporting Offense 0.0163 0.289 0.157 0.348 0.190
Mark 0.0188 0.294 0.229 0.156 0.303

While the detection percentages were poor, unlike the hand-coded rules, this

method detected the every role to be the correct role more than it detected it to be
any other role when the test data was the training data. Also, it has the advantage
that it is never “unsure” of what the role is.

The results were not nearly as good once other data was used for the test data.

 22

Table 4.7: Markov Models Confusion Matrix

 Goalie Active Player Defense Supporting Offense Mark
Goalie 0.872 0.0146 0.0305 0.0713 0.0118

Active Player 0.0670 0.454 0.314 0.0828 0.0830
Defense 0.0603 0.467 0.251 0.116 0.106

Supporting Offense 0.133 0.306 0.341 0.166 0.0536
Mark 0.0863 0.363 0.300 0.135 0.115

While the results for active player were improved, supporting offense and

mark’s accuracy of recognition dropped greatly. Meanwhile, defense’s accuracy
of recognition stays about the same, but was confused with the active player a lot
more than before. Either way though, the mark was detected with a higher
accuracy rate than the hand-coded rules. It is still not accurate enough, however,
since it still is about or below the percentage from a random guess (20%).

This method ended up not being as good as hoped originally for several
reasons. First of all, the play system seems to change roles sometimes quicker
than the robot can actually move itself to one of the other zones. For instance,
there are many situations in the data where the role will have switched three times
within a third of a second…not enough time for the metric to be different. For 797
role transitions, there were only 1122 metric transitions in the case of when the
test data was the same as the training data. For the other data set, there were 1077
metric transitions for 826 role transitions.

Again, certain play system bugs caused problems. For instance, the mark seems
to be confused a lot with the active player and defense, which happens when the
mark is marking the opponent's active player. This is particularly detrimental to
this method since a robot marking the opponent's active player shows up in Zone
One.

Also, it is likely that the zones were too large, especially for position on the
field. While the defense can be anywhere on the field, splitting it at the half field
point was not necessarily optimal. This is the same for supporting offense. Active
player and mark do not seem to rely on this division as much either, although
active player has the distance-from-ball metric. In order to create smaller zones,
clustering can be used. [RilVel, 2000] Another possible zone that could have been
used is the defense triangle from the hand-coded rules.

4.5 Summary
Given that handwritten rules achieved the goal of detecting roles with relative

accuracy using positional data, it had seemed that the automated process of
Markov models would have yielded better results. At least with the training data,
the models were able to choose the right role more often than it chose another

 23

specific wrong role, which was not the case with handwritten rules. However,
either more work needs to be done for this method to work or another method
needs to be used.

 24

Chapter 5

Discussion
The goal of this thesis was to detect roles in real-time. Two methods were tried.
While both methods achieved role detection with low latency, they results in
varying accuracy. The hand-coded rules was meant to be a starting place and an
easy approach. The Markov Models was meant to provide better accuracy.

5.1 Meaning of Results
The results of this thesis show that detecting opponent roles with at least 70%

accuracy for almost all roles is possible. The method of choice appears to be the
hand-coded rules, which faired a lot better than the Markov models.

With the hand-coded rules, the ability to detect mark is totally non-existent,
while the ability to detect defense could be improved on. Meanwhile, the Markov
models only seemed to be able to detect the goalie with decent accuracy. It did,
however, detect mark with a higher probability than the hand-coded rules.

Other possible approaches that were considered included the use of decision
trees and Bayesian classifiers. A decision tree would allow for automation of the
process of finding rules, however this has the same problem as the hand-coded
rules were the availability of a stream of temporal data is not taken advantage of.
While Bayesian classifiers was the method of choice in past work involving
detecting plays in American Football, it was not explored in this thesis and maybe
should be in the future. It would be interesting to use the same observations for
the classifiers as was used with the Markov models.

Given the results in this thesis, it can be concluded that at least with hand-coded
rules, most of the roles can be detected with at least 89% accuracy, and that all
but one can be detected with 70% accuracy. Although this is still not accurate
enough for use in fields such as air traffic control, it certainly shows potential and
can at least be partially used for things like automated sport announcing.

 25

5.2 Failure Cases
In the Results section for both methods, several specific failure cases were

mentioned. This section is intended to address in more detail each of those cases.
In order to understand this section, several symbols must first be introduced.

 Goalie Active Player Defense Supporting Offense Mark Not Sure

Figure 5.1: Key for Understanding Role Symbols

The actual role is shown in dark blue while the detected role is shown in cyan.
There are occasionally other marks that show up on the field as either dark blue or
cyan. These marks are to be ignored as they are debug outputs from other parts of
the program.

The first situation to be addressed is why mark was so difficult to detect in both
methods. The easiest explanation for this is that the mark code in the systems
tested is broken to begin with. For some strange reason, the mark tends to chose
either the goalie or the active player to mark. The point of mark is to guard an
open player from receiving a pass or getting to the ball. The goalie is usually not a
target for a pass, and the active player already has the ball. One of the reasons the
mark code may be broken is because prior to this thesis work, the software did not
know which player is the active player and which player is the goalie, so it does
not realize the silliness of what it’s doing. Although this goes to show why this
work is necessary, it does not help us detect mark very well.

robot marking
the active player detected as the

active player

detected as
defense

 the actual
active player

Figure 5.2: A Screenshot showing a Situation Where the Active Player is Marked

 When the active player is marked like in the figure above, the software isn’t
sure which of the two robots is the active player and which isn’t. It also assumed
that the robot that is not the active player is a support offensive player, not a

 26

mark, since a mark should not be marking the active player in order to be a
successful mark. Sometimes there is also the same problem with marking the
goalie.

marking the
goalie

Figure 5.3: A Situation Where the Goalie is being Marked

Another problem situation was for the defense. As mentioned before,
defend_line often looks and even acts like a supporting offense role. However,
due to the name of the tactic, it is classified under a defensive role, causing some
of the confusions between defense and supporting offense.

 27

detected as
supporting offensed e

 Defe
corner
does n

 Alth
“norm

 28
running
efend lan

Figure 5.4: An Example Where Defend_Lane Looks/Acts like a Supporting Offensive Role

nse also seems to have a problem of being detected when the ball is in the
. Although the triangle-method of detecting defense is fairly effective, it
ot cover this case.

detected as
supporting
offense

running
defense

Figure 5.5: A Figure of when the Ball is in the Defensive Corner

ough frequent, these failure cases are still in the minority of all cases. In the
al” cases, the software still works quite well.

Figu

5.3 Future Work
There is a lot of work to

handwritten rules method
the ball is in the corner of
with working “mark” cod
least 90% per role.

With the information
information to find a way
and positions of the playe
lead to interesting machin
two teams learning at th
patterns can be found in
military positioning, or re

Identical Markings on the Robots
Meaning Correct Detection

re 5.6: A Screenshot of the Program Working

 be done in improving the accuracy of results. With the
, another clause should be added to detect defense when
 the field. Also, recognition could be tested on a system
e. Both of these things should increase detection to at

from the role detection, the next step is to use this
 to learn the best way to defeat a team given the roles
rs. This will allow for a more dynamic game which will
e-learning questions about what happens when you have
e same time. Also, this can also be applied to see if
 flight patterns for air traffic control, formations in

al sporting events.

29

Bibliography
[RilVel, 2002]
Patrick Riley and Manuela Veloso. Planning for Distributed Execution Through
Use of Probabilistic Opponent Models. In Proceedings of the Sixth International
Conference on AI Planning and Scheduling (AIPS-2002), pp. 72–81, 2002.

[RilVel, 2000]
Patrick Riley and Manuela Veloso. Towards Behavior Classification: A Case
Study in Robotic Soccer. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence (AAAI-2000), pp. 1092, AAAI Press, 2000.

[Ste, 2001]
Timo Steffans. Feature-based Declarative Opponent-Modeling in Multi-Agent
Systems. Master’s Thesis: Institute of Cognitive Science Osnabrűck, 2001.

[Int, 2001]
Stephen S. Intille. Recognizing Planned, Multiperson Action. Computer Vision
and Image Understanding, pp. 414-445, 2001.

[HanVel, 1999]
Kwun Han and Manuela Veloso. Automated Robot Behavior Recognition.

[Boh, 2002]
Dan Bohus. Learning to Recognize Automated Robot Behavior in the Soccer
Domain.

[Rab, 1989]
Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. In Proceedings of IEEE, Vol. 77, No. 2,
pp.257-286, February 1989.

[Robocup]

 30

 31

http://www.robocup.org

[Len, 2004]
Scott Lenser and Manuela Veloso. Classification of Robot Sensor Streams Using
Non-Parametric Statistics. Submission 2004.

[BroTry, 2004]
Brett Browning and Eric Tryzelaar. UberSim: A Realistic Simulation Engine for
Robot Soccer. Autonomous Agents and Multi-Agent Systems (AAMAS ’03).
Submission 2003.

[Tam, 1996]
Milind Tambe. Tracking Dynamic Team Activity. National Conference on
Artificial Intelligence(AAAI96). 1996.

[Vai, 2004]
Discussions with Douglas Vail.

	Table of Contents
	Motivation
	Problem
	Approach
	Contributions
	Domain
	Related Work
	Motivation
	Hand-coded Rules Approach
	Experimental Set-up
	Results
	Summary

	Markov Models
	Motivation
	Markov Models Approach
	Experimental Set-up
	Results
	Summary
	Meaning of Results
	Failure Cases
	Future Work

