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Abstract 
Robot soccer provides a good domain for role-based opponent modeling 

because roles are well-defined and integral to the play system of the opponent. 
Specifically, I detect roles and role transitions in the adversary team. This 
information can then be used to exploit the opponent’s playbook in order to defeat 
them. The research can also be applied in other formation detection domains. It 
can rely on a variety of variables that have not been extensively explored before. 
Role detection is achieved with a combination of hand-coded rules and Markov 
Models. These methods were tested on  the CMDragons02. Results show promise 
that almost every role can be detected with at least 70% accuracy given a 
complete world model. While role detection can indeed be accomplished, it was 
found that Markov Models were not the method of choice. 
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Chapter 1  

Introduction  
This thesis work is on role detection in the small-size league of robot soccer. Real 
time observations are used to make predictions about the role of a given opponent 
robot. 

1.1 Motivation 
Plenty of work has been done in role detection in many fields. This thesis will 

focus on looking at role detection for robot soccer. Role detection can be useful 
for automated announcing of sporting events, recognition of patterns and 
formations in a military domain, and air traffic control as well as many others. 
Also, as more robots are integrated into the human environment, the ability to 
model other agents is going to become more essential. 

Specifically for robot soccer, role information can be used to stop the opponent 
team. Knowing the role of a robot can allow us to exploit opponent plays by 
preventing them from getting to the ball, or by finding holes in their defense. For 
instance, if it can be detected that the role of an opponent will make it likely to try 
to get open for a pass, another robot can be sent in the path to intercept a pass. 

1.2 Problem 
The objective of this thesis is to successfully detect the role of each opponent 

robot on the field at any given time during a game situation. Specifically, it will 
answer the question: 

 How can an autonomous robot team build models of an unknown 
opponent team in real time in hopes of eventually using those models 
to exploit the actions of the opponent? 

 The roles that will be detected are the goalie, the active player, the defense, 
the supporting offense, and the mark. Since the rules of robot soccer include a 
description of what a goalie can or cannot do, every team has a goalie. The 
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active player simply means a robot going for the ball. If no robots ever went 
to the ball, the game would not be very interesting. A common role is a 
defensive player. Teams have designated robots to stop the opponent and to 
score. Those designed to stop the opponent via positioning themselves in a 
zone are called defensive players. Those designed to stop the opponent by 
staying next to them or “marking” them are marks. Robots that try to get open 
for a pass in order to score a goal or advance the ball are designated as 
supporting offense. This thesis is meant to be generalized for all teams, 
however specific team roles differ greatly. These categories of roles make it 
more feasible to generalize the research across more uses. 

1.3 Approach 
To detect the roles of an opponent robot, two different methods were tested. 

First, a series of hand-coded rules were written to discern between different roles. 
Then, a series of Markov models were found based on the distance of the robot 
from the goal and the robot to the ball to try to improve upon role detection. Both 
of these methods are detailed later. 

In order to train and test these models, data provided from CMDragons02 was 
used. While it would be nice to use the logged data from the other teams, there is 
no information on what roles they are actually running, which makes it difficult to 
tell whether or not the system is doing the right thing. 

1.4 Contributions 
The main contribution of this thesis is providing a method of identifying roles 

in real-time based on observations. This research work will allow the game of 
robot soccer to move away from the current common state of static playbooks. 
Also, role detection techniques can be applied to other fields where formations 
and path patterns are of importance by providing a reliable method of classifying 
agents into roles. 

This thesis also presents a new way of using Markov Models. Specifically, a 
Hidden Markov model of roles is used, and the probability of an observation is 
based off of a Markov model of observations for that role. 

1.5 Domain 
Robot soccer provides a fast-paced dynamic autonomous game. Started in 1997, 

RoboCup consists of five distinct leagues. [RoboCup] These leagues are the 
legged, small-size, mid-size, humanoid, and simulation leagues. Each league has 
its own characteristics. Specifically, as of 2003, the small-size league consists of 
robots of up to 180mm diameter and up to 150 mm tall that move up to 2 meters 
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per second and a ball that can reach velocities of over 5 meters per second. An 
orange golf ball is used on a flat green carpeted field that measures 2.8 meters by 
2.3 meters. An overhead camera allows the position of robots from both teams, as 
well as the position of the ball to be tracked by frames. Specifically, a camera that 
achieves thirty frames a second was used for this the purposes of this thesis. 

 The positional information is then fed into an off-field computer that runs 
software and sends commands back to the robots by radio. This positional 
information is represented as an X-Y coordinate system. The center of the field is 
at (0, 0), and the X-values decrease towards the defending goal and increases 
towards the attacking goal while the Y-values increase to the left when facing 
towards the attacking goal and decrease to the right. Once the game starts, there is 
no human intervention allowed; the robots must play and set-up by themselves.  
Teams consist of up to five robots including the goalie. Since robots are built by 
individual teams, the capabilities of robots differ from team to team and 
sometimes even differ from robot to robot within a team. 

 

 
Figure 2.1: Various Robots Used by Different Teams in RoboCup 2003 

 
Nearly all teams have a static set of roles and a static set of plays made up of 

different combinations of these roles. Therefore roles are well-defined enough to 
detect. Generally, there is a multiple-layer software system running the robots. 
The bottom layer defines how each robot moves in order to maneuver with the 
ball and around the field to perform tasks such as shooting, dribbling, and 
positioning. The next layer defines how a specific robot would play an attacker or 
play defense or another role based on the tasks in the lower level. Finally, there’s 
a top layer that defines how each of these robots in these roles interact with each 
other for teamplay. This research would allow work to be done in order to 
dynamically write this top layer, since it would be useful to detect roles for the 
purposes of dynamically creating new plays to defeat an opponent, real-time 
without human intervention.  
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Figure 2.2: Small-Size System 
 

 

 
 

Figure 2.3: A Photograph from an Actual Small-Size Robot Soccer Game 
 

While access to two full teams of physical robots is extremely difficult to find, 
there is access to a simulator of physical robots called UberSim [BroTry, 2003]. 
This allows the code to be tested without 10 physical robots on the field. UberSim 
was written to simulate the CMDragons team of small-size robots. It sends frames 
of data to software the same way the information from the camera is sent; the 
software cannot tell the difference between a simulator and the real camera. 
Unfortunately, there are a few problems in UberSim. Although positional data has 
100% confidence since there is no occlusion or lighting problems, the physics 
built into UberSim is far from perfect. Often times, a ball may shoot off the 
screen, get stuck in a wall, or fly above/through robots on the field. In many of 
these cases, the ball cannot be manually reset and instead the whole system must 
be reset such that UberSim repositions each robot and the ball randomly 
somewhere else on the field and keeps running as if nothing happened. This 
forces the robots to take time to travel back to their positions on the field, 
providing noise in the data. This is also the case when robots sometimes collide 
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into each other and disappear off the screen. All of these factors result in noise in 
the system that is difficult to filter out and lead to more inaccurate results later. 

 

 
Figure 2.4: A Screenshot from a GUI running UberSim 

 
Also, there are over twenty logged games from RoboCup 2002, American Open 

2003, and RoboCup 2003. The logs can play back like an actual game and the 
software can detect the roles of opponents played in the past in these real 
situations. These log files allow the code to be tested on a variety of opponent 
teams who most likely run roles and plays that differ greatly from CMDragons. 
Logs play back all information from vision that was received at the time with the 
complete frames, as well as provide information as if the software was running at 
that time. They were recorded at thirty frames a second. 

1.6 Related Work 
In robotic soccer, most of the work regarding role detection has been done in 

the simulation league. The legged league as well as the mid-size league have a 
difficult enough time tracking multiple targets, that they do not do opponent 
modeling. The simulation league uses information mostly from past games, but 
also some real-time information in set-play situations [RilVel, 2002][Ste, 2001]. 
However, the interactions between robot and robot as well as robot and ball are 
also less predictable in the real game where simple physics equations are used to 
map this out in the simulator. For instance, a pass becomes much harder in small-
size because the kicking speed if significantly faster than the combination of 
latency and the robot's ability to respond to changes. For half a meter, the robots 
do not even see the ball before it is about to hit them. If a pass comes off the 
kicker a little bit off, it is difficult for the recipient to adjust for this since only a 

 8



fraction of a degree of error is allowed given about a 6 centimeter dribbler and 
passed from a half meter away. 

Related work has also been done outside of robotic soccer in the form of using 
recorded American football games [Int2001]. Bayesian networks were used. Of 
the 25 known plays they used, 21 were correctly identified. This may be 
applicable to small-sized robotic soccer, but requires knowledge of the 
opponent’s playbook. 

As for deployed systems within small-size, CMDragons02 used basic opponent 
modeling in the F-180 league as far as trying to determine whether to shoot or to 
pass to another player based on the goalie speed and the speed of our kickers. 
Prior to that, CMDragons01 started the use of adaptive playbooks. 

Meanwhile, the idea of using Markov models comes from the research done by 
[HanVel, 1999] and [Boh, 2002]. Both groups used Hidden Markov Models to 
automate detection of robot behaviors. Specifically for [HanVel, 1999], the 
robot’s distance from the ball was used as an observation to determine whether or 
not the robot was going for the ball. Finite windows of data were used as input to 
the system. Every few time steps, the window would be reset. This concept seems 
to be similar enough to apply to role recognition since the robot’s distance to the 
ball is an indicator of certain roles. 

Using the positional information from the field also comes from [Tam, 1996]. 
This paper shows that tracking individual agents helps in plan recognition. 
Examples are shown through both RoboCup and a simulated air combat situation. 

What makes this research unique is that it deals with real robots and it collects 
and uses the data real-time in order to distinguish between roles. As the game is 
going on, the opponent modeling occurs and the information is immediately used 
to determine the next action of the team. 
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Chapter 2  

Objectives 
For role detection to be successful and meaningful, many things must occur. If 
these objectives were not met, then even if roles were successfully identified, the 
information would not be useful. 

• The system must be capable of detecting roles in real-time. 

• The system must have a low latency. 

• The system should be generic enough to work with any team. 

• The system must only rely on positional and temporal information. 

Although there are logs of games in years past, the system must work in real-
time making no assumptions from data from previous games. The information 
from the data is not very useful for learning because teams will change drastically 
from year to year. Almost all teams make significant changes in hardware every 
year, which affects the physical capabilities of the robots themselves. A faster 
robot and stronger kick allow teams to also change their plays and strategies as 
well. 

Since the role information needs to be used immediately in order to respond to 
opponent moves, a latency of a few seconds is far too high. The system should be 
capable of achieving role detection within a few frames time. 

There is no standard for roles defined in each team’s system. Therefore, roles 
cannot be too specific to a particular team. There are over fifty small-size teams 
around the world. 

The only information available is from the camera. Therefore, the system must 
be able to detect the roles only based off of the position of robots and the ball 
through time. Specifically in this case, it must be able to detect the roles using 
positional information at a resolution of thirty frames a second. 

If none of these objectives were in place, then it is possible to end up with a 
system that could only detect roles from one specific team using past information 
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assuming no changes and took several seconds to run. It would then be impossible 
to create new plays that relied on knowing the roles of the opponents, and would 
not work on any other team or even on the same team if the code was even 
slightly modified. Therefore, each one of these must be achieved in addition to the 
successful role detection. 
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Chapter 3  

Hand-coded Rules 
The first approach to detecting roles was to create a number of hand-coded rules 
based on domain knowledge. This approach should be easy to do and straight-
forward. Results from this approach should show whether or not the task at hand 
is possible while later approaches attempt for more accurate results. 

3.1 Motivation 
Since the robots the behaviors that make up robot roles are hand-coded, it 

seems logical that they can be detected by hand-coded rules are well. For 
instance, a robot running mark is told to stay in close proximity an particular 
opponent robot, staying between it and the ball. Therefore, they follow a very 
particular movement pattern and positioning sequence. Simple rules should be 
able to pick up on these. Here are some histograms diagramming this fact: 

 

 
 

Figure 3.1: Histogram of 
Goalie Positions 

 

 

 
 

Figure 3.2: Histogram of 
Positions as Active Player 

 

 
 

Figure 3.3: Histogram of 
Robot Positions as Defense 
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Figure 3.4: Histogram of Robot Positions as 
Supporting Offense 

 
 

Figure 3.5: Histogram of Robot Positions as 
Mark 

 
The darker splotches on the plot represent areas of the field that the robot is at 

more often given that role. White areas represent areas where the robot is never 
at. As is evident by the plot, the most common locations of each robot when their 
positions are plotted on a histogram is very specific for each role. For instance, 
even though the active player is the one that should be following the ball, it still 
forms patterns with its positioning on the field. Other roles like goalie and defense 
are more evident. Based on these locations, rules were written to discern between 
the roles. 

3.2 Hand-coded Rules Approach 
Of the five roles, the first role to pick out is the goalie. This is the robot 

designated to defend the goal from shots on it. Only one robot plays the position 
of goalie throughout the whole game. The goalie has special privileges. For 
instance, it is the only robot allowed in the goal box. Also, when in the goal box, 
an opponent robot cannot touch the goalie. Therefore, as long as the goalie is 
playing his position properly, this robot is usually the closest to the goal. 
Therefore, a simple minimum function was applied to the distance of each robot 
to the goal to find which robot was the goalie. While hysterisis may sound like a 
good idea, it was found to be unnecessary, especially since no other robot but the 
goalie is allowed in the goal box according to the rules, and goalies generally stay 
in the goalie box since they have the advantage that no opponent robot may 
legally touch the goalie in the goal box. These factors all amount to the goalie 
always being the nearest to the relevant goal. 

The next role to pick out is the active player. The active player is defined as the 
one directly interacting with, or about to directly interact with the ball. Therefore, 
it is easy to say that robot closest to the ball is the active player. In the case where 
the goalie is the one with the ball, the robot is identified as a goalie and the role of 
active player is not assigned to any robot  



The role with the next more specific rule is the defensive player. The defense is 
a player guarding off a certain zone of the field, preventing an opponent robot 
from getting the ball or shooting in that area. A player is identified as being on 
defense if its center dot is in the triangle created by the ball and each goal post. A 
confidence level was determined for each robot by taking the difference in y-
positions of the robot and triangle, where the Y-position represents how far to the 
right or left of the triangle the robot is, when facing the goal. This confidence 
level was based on a Gaussian distribution. The confidence was then thresholded, 
causing additional robots to be declared as defenders. 
 
 
 
 
                              the ball 
                              defensive triangle 
 
 
 
 
 

 
 

Figure 3.6: The Defensive Triangle used for Recognizing Robots Running Defense 
 

After coding the rules for the defensive player, the rules for supporting offense 
go into effect. This role represents robots that would try to drive to the open space 
to receive a pass or a loose ball in order to advance the ball up the field or to take 
a shot on goal. The supporting offense is always on the offensive side of the field, 
but its position relative to the ball or other robot could be a variety of things. 
Therefore, it was simply anything on the offensive side that wasn’t on defense. 

The final position is a special position called mark. The mark is a robot 
assigned to preventing another particular robot from getting the ball. In this role, a 
robot is defending another robot by following it regardless of the ball’s position. 
The code actually classifies whether or not the robot is running mark after active 
player, since it is such a special case. In this case, the nearest robot to each robot 
is logged. If the nearest robot is further than a certain threshold or keeps 
changing, the robot is not running mark. Unfortunately, this is the hardest role to 
discern since sometimes many robots are clumped around the ball and therefore 
are always near each other, especially if the ball has trouble getting free from the 
crowding. This is still an important role because it is the distinguishing factor 
telling whether the opponent is running a zone defense, a robot-to-robot defense, 
or some combination of both strategies. 
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3.3 Experimental Set-up 
Information to test the software was collected by having the simulator play 

twenty-minute five-on-five games. When a goal was scored, the ball was replaced 
in the middle without the robots setting up again. There were no stop plays and as 
little time as possible was spent with the ball in the goal. In cases where the ball 
went hopeless out of bounds, the simulator was quickly reset, repositioning all 
robots and the ball in random positions on the field. Records were kept for the 
score of each team and the number of resets that were required during the game. 

3.4 Results 
The roles of each opponent robot was detected during the game with some 

success. Several trial were run using the simulator, allowing each team both 
output what roles they are picking for themselves as well as what roles they think 
the opponent is running. For each trial run, a confusion matrix was calculated in 
order to analyze how well each role was picked out and what roles the software 
could not discern at all. 

 

Table 3.1: Hand-coded Rules Confusion Matrix 

 Goalie Active 
Player 

Defense Supporting 
Offense 

Mark Not Sure 

Goalie 0.995 0.000 0.002 0 0 0.003 
Active Player 0.000 0.923 0.055 0.008 0.006 0.008 

Defense 0.001 0.032 0.714 0.121 0.065 0.066 
Supporting Offense 0.001 0.003 0.171 0.709 0.042 0.074 

Mark 0.000 0.049 0.193 0.719 0.022 0.017 

 
Noise was expected in the matrix, due to multiple resets that occurred during 

the twenty minute test periods, forcing robots to end up somewhere random and 
take time to move back into position. There was an average of 2.3 resets per 
game. Each reset forced the position of the robots to be replaced randomly 
elsewhere in the screen. This often causes the goalie to end up on the other side of 
the field and the active player to be far from the ball and such. It is difficult to 
filter out when this happens, so it just becomes noise in the system. 

In many cases when the ball is in the far corner, a robot will start marking the 
goalie or the active player. This is a case in the play system where the code does 
not work as intended. While the program is really running mark, the software 
tends to see that it looks like it’s a supporting offensive player when it is marking 
the goalie, and an active player when it is marking the other team's active player. 
This case appears to be a flaw in the testbed, not the software since a supporting 
offensive player would make more sense in such a scenario. Also, the play system 
also often chooses to mark the active player from the other team. This causes a lot 

 15



of crowding of the ball and looks more like any of the other roles except for 
goalie and itself. 

There was also a problem sometimes of deciding between defense and 
supporting offense. Part of this case is because of a tactic in the play system run 
called “defend_lane”. Robots are often assigned to defend_lane near the center of 
the field. The reason for this is so that they behave more like midfielders and can 
easily transition into a deflection play or a pass play almost like a striker position 
in real soccer. 

 

Goalie Active Player Defense Supporting Offense Mark 
0.0150 0.043 0.829 0.061 0.053 

Table 3.2: Real Roles During “Not Sure” 
 

About 3.7% of the time, the software was not sure what position to identify a 
robot as. Of this percentage, 82.9% of the time, the robot was actually running 
defense. This could stem from two problems: either defend_lane was confusing it 
again when the robot is towards the middle but not on the offensive side of the 
field to be confused with supporting offense, or the threshold on the Gaussian is 
too high. To compensate the threshold was lowered slightly. 

Another real problem encountered in the confusion matrix was that a robot 
would decide to switch from defense to active player or supporting offense. At 
some point it starts moving into position to become active player and the 
programming running that robot would them output that it has already become the 
new role where my program continued to recognize it as the old role for a few 
frames before catching up. To deal with this new problem, rules were added to 
detect transitions. This is done by comparing the robot speed to the speed of the 
ball. When the robot speed is significantly higher than the speed of the ball, the 
robot is in all likelihood speeding to its new position due to a role change. A robot 
detected to be transitioning between roles was not included in the data. 

 

Table 3.3: Handcoded Rules Confusion Matrix with Transitions 

 Goalie Active 
Player 

Defense Supporting 
Offense 

Mark Not Sure 

Goalie 0.984 0.013 0.000 0.003 0.000 0.000 
Active Player 0.001 0.952 0.027 0.016 0.002 0.002 

Defense 0.034 0.095 0.677 0.160 0.019 0.015 
Supporting Offense 0.000 0.036 0.007 0.890 0.005 0 

Mark 0.043 0.260 0.096 0.585 0.014 0.002 

 

Goalie Active Player Defense Supporting Offense Mark 
0.024 0.100 0.853 0.000 0.024 

Table 3.4: Real Roles During “Not Sure” with Transitions 
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 Making these changes seemed to have increased recognition of  supporting 
offense significantly. The software is now never “not sure” when the robot is 
running a supporting offensive role, and it is no longer significantly confused 
with defense. Meanwhile, the detection of defense still suffers and usually when 
it’s “not sure” it is defense. When the software thinks that it is supporting offense, 
sometimes it is actually defense. 

3.5 Summary 
Hand-coded rules faired decently except in a few special play-specific 

situations, with mark, or certain defense situations. A few problems were 
encountered regarding transitions and boundaries of offense and defense. 
Solutions to these were added and the tests were reran turning the results for 
supporting offense from decent to accurate. In the final set of code used for this 
part of the thesis, the recognition of goalie, active player, and supporting offense 
were accurate while the recognition for defense was decent and for mark, it was 
poor. 
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Chapter 4 Markov Models 

Hoping to get more accurate results, a second method of role detection was 
attempted. This method used distance metrics as observations for a series of 
Markov Models. The idea of this method developed from work from [HanVel, 
1999] 

4.1 Motivation 
While the hand-coded rules were somewhat effective in recognizing opponent 

roles, but they did not really take advantage of the patterns available in the 
continuous temporal stream of data. Therefore, another approach was used for 
comparison. Markov models allow a series of state transitions from observations 
to be incorporated into the decision using the continuous data to determine what 
role the robot is running. Nine different states were defined based on observations 
of distance from ball and position on the field. 
 
 
                       The ball 
                       Zone One (close enough to touch the ball) 
                       Zone Two (close enough to receive a pass) 
                       Zone Three (everything else) 
 
 
 

Figure 4.1: Zones One, Two, and Three for Observations Used in Markov Models  
 
 

 
 
                       Zone A (goal box) 
                       Zone B (defensive zone) 
                       Zone C (offensive zone) 

 
 

 Figure 4.1: Zones A, B, and C for Observations Used in Markov Models 
 

These observations were chosen because they are much of the same criteria that 
the handwritten rules were based off of. It can be predicted that the goalie would 
be always be in Zone A. Meanwhile, the active player would be one in Zone One. 
Other roles could depend on a combination of zones, such as supporting offense, 
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which would probably be a robot both in Zone Two and Zone C at the same time. 
Defenders could be in Zone B and Zone Two or Three, while the mark can be 
almost anywhere. 

These metrics were chosen since many of the hand-coded rules also relied on 
these factors. Also, the behavior detection work [HanVel, 1999] used similar 
metrics leading to good results. 

4.2 Markov Models Approach 
Markov Models depend on observations and emitted symbols in different 

situations that serve as a basis of creating a model of states and state transitions. 
Five different Markov models were constructed in parallel, one for each role. 
[Vai, 2004] This was computed by taking real role data as training data to 
calculate the real probability of a transition between states while in each role. 
There are nine states that were defined based on the distance from ball and 
position on the field. 
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Table 4.3: Markov Model for Defense 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B1 

C1 

B2 

C2 

B3 

0.971 

0.983 

0.987

0.989

0.011 

0.001

0.9940.006

0.0010.017 

0.001  
0.015

0.004

0.029

0.006
C3 

0.985 

 
Table 4.4: Markov Model for Supporting Attacker 
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0.010

0.034 

0.006 
0.001

0.013

B1 

Table 4.5: Markov Model for Mark 
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After the Markov models are given, a test set of data is run. The test data is a 
temporal stream of data. Given this time series of values x0, x1,...,xt, the belief 
state for time j for class ci where the classes are goalie, active player, defense, 
supporting offense, and mark, is the probability of the class being the actual role 
at time j. The math for the belief states comes from [Len, 2004] and was modified 
slightly to work here. 
 

 
Equation 4.1: Equation for the Belief State 

 
 Since the 1/ P(xj|xj-1,…,x0) term should be constant, it is ignored for now and 
dealt with later by normalizing all the belief state probabilities. Under Markov 
assumptions of independence, the first term, P(xj|xj-1,…,x0,ci,j) simplifies to P(xj|xj-

1,ci,j). Meanwhile the second term, P(ci,j|xj-1,…,x0) can be expanded. 
 

 
Equation 4.2: Equation for the Class Probability 

 
Here, ci,j is assumed to be independent of observations before time j given  cl,j-1 

for all l. These assumptions simplify the problem to finding the ci that maximizes 
the following equations by providing a recursive solution: 
 

 
Equation 4.3: Belief State Recursive Solution 

 
The Markov models for each class provides P(xj|xj-1,ci,j) by examining the 

probability of the transition between xj-1 and xj in the model that represents ci,j. 
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B(ci,j) was initialized to 0.20 for each value of ci,j. Finally, P(ci,j|cl,j-1) was defined 
as 0.98 when cl,j-1 was equal to ci,j and was (1-0.98)/(n-1) otherwise, where n is 5 
since that is the total number of classes. These values are chosen because it is 
most common for a self-transition to occur, since roles stay the same for several 
frames at a time before changing, but it still needs to be possible for a transition to 
occur. If the role changes for just a few frames, it will be viewed as noise, while 
after it has changed and stayed steady for multiple frames, it will stabilize again. 
At every time step, B was normalized to sum to 1 since the 1/ P(xj|xj-1,…,x0) term 
was ignored. This series of equations formulated the Hidden Markov Model 
placed on top of the set of Markov Models of observations. B(ci,j) represented the 
probability of each state, or class in this case. The role detected was defined as the 
class with the greatest value of B(ci,j). 

Since many cells in the Markov models have a high probability despite little 
data (this happens due to the noise in the system), a Dirichlet Prior with a virtual 
sample value of 100 was applied on values of P(xj|xj-1,ci,j) so data cells based on 
low information is not taken into account as strongly. 

4.3 Experimental Set-up 
The experimental set-up for testing Markov Models was the same as the 

experimental set-up for Hand-coded Rules (Chapter 3, Page 15). 

4.4 Results 
After the results were collected, a confusion matrix was made again with the 

most probable role compared to the real role. First it was run with the test data 
being the same as the training data. 

 

Table 4.6: Markov Models Confusion Matrix when Test Data is the Same as Training Data 

 Goalie Active Player Defense Supporting Offense Mark 
Goalie 0.897 0.0380 0.0132 0.0201 0.0321 

Active Player 0.0330 0.335 0.227 0.182 0.223 
Defense 0.0231 0.282 0.291 0.180 0.224 

Supporting Offense 0.0163 0.289 0.157 0.348 0.190 
Mark 0.0188 0.294 0.229 0.156 0.303 

 
While the detection percentages were poor, unlike the hand-coded rules, this 

method detected the every role to be the correct role more than it detected it to be 
any other role when the test data was the training data. Also, it has the advantage 
that it is never “unsure” of what the role is. 

The results were not nearly as good once other data was used for the test data.  
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Table 4.7: Markov Models Confusion Matrix 

 Goalie Active Player Defense Supporting Offense Mark 
Goalie 0.872 0.0146 0.0305 0.0713 0.0118 

Active Player 0.0670 0.454 0.314 0.0828 0.0830 
Defense 0.0603 0.467 0.251 0.116 0.106 

Supporting Offense 0.133 0.306 0.341 0.166 0.0536 
Mark 0.0863 0.363 0.300 0.135 0.115 

 
While the results for active player were improved, supporting offense and 

mark’s accuracy of recognition dropped greatly. Meanwhile, defense’s accuracy 
of recognition stays about the same, but was confused with the active player a lot 
more than before. Either way though, the mark was detected with a higher 
accuracy rate than the hand-coded rules. It is still not accurate enough, however, 
since it still is about or below the percentage from a random guess (20%). 

This method ended up not being as good as hoped originally for several 
reasons. First of all, the play system seems to change roles sometimes quicker 
than the robot can actually move itself to one of the other zones. For instance, 
there are many situations in the data where the role will have switched three times 
within a third of a second…not enough time for the metric to be different. For 797  
role transitions, there were only 1122 metric transitions in the case of when the 
test data was the same as the training data. For the other data set, there were 1077 
metric transitions for 826 role transitions. 

Again, certain play system bugs caused problems. For instance, the mark seems 
to be confused a lot with the active player and defense, which happens when the 
mark is marking the opponent's active player. This is particularly detrimental to 
this method since a robot marking the opponent's active player shows up in Zone 
One. 

Also, it is likely that the zones were too large, especially for position on the 
field. While the defense can be anywhere on the field, splitting it at the half field 
point was not necessarily optimal. This is the same for supporting offense. Active 
player and mark do not seem to rely on this division as much either, although 
active player has the distance-from-ball metric. In order to create smaller zones, 
clustering can be used. [RilVel, 2000] Another possible zone that could have been 
used is the defense triangle from the hand-coded rules. 

4.5 Summary 
Given that handwritten rules achieved the goal of detecting roles with relative 

accuracy using positional data, it had seemed that the automated process of 
Markov models would have yielded better results. At least with the training data, 
the models were able to choose the right role more often than it chose another 
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specific wrong role, which was not the case with handwritten rules. However, 
either more work needs to be done for this method to work or another method 
needs to be used. 
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Chapter 5  

Discussion 
The goal of this thesis was to detect roles in real-time. Two methods were tried. 
While both methods achieved role detection with low latency, they results in 
varying accuracy. The hand-coded rules was meant to be a starting place and an 
easy approach. The Markov Models was meant to provide better accuracy. 

5.1 Meaning of Results 
The results of this thesis show that detecting opponent roles with at least 70% 

accuracy for almost all roles is possible. The method of choice appears to be the 
hand-coded rules, which faired a lot better than the Markov models. 

With the hand-coded rules, the ability to detect mark is totally non-existent, 
while the ability to detect defense could be improved on. Meanwhile, the Markov 
models only seemed to be able to detect the goalie with decent accuracy. It did, 
however, detect mark with a higher probability than the hand-coded rules. 

Other possible approaches that were considered included the use of decision 
trees and Bayesian classifiers. A decision tree would allow for automation of the 
process of finding rules, however this has the same problem as the hand-coded 
rules were the availability of a stream of temporal data is not taken advantage of. 
While Bayesian classifiers was the method of choice in past work involving 
detecting plays in American Football, it was not explored in this thesis and maybe 
should be in the future. It would be interesting to use the same observations for 
the classifiers as was used with the Markov models. 

Given the results in this thesis, it can be concluded that at least with hand-coded 
rules, most of the roles can be detected with at least 89% accuracy, and that all 
but one can be detected with 70% accuracy. Although this is still not accurate 
enough for use in fields such as air traffic control, it certainly shows potential and 
can at least be partially used for things like automated sport announcing. 
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5.2 Failure Cases 
In the Results section for both methods, several specific failure cases were 

mentioned. This section is intended to address in more detail each of those cases. 
In order to understand this section, several symbols must first be introduced. 
 
 
 
 
        Goalie   Active Player  Defense  Supporting Offense     Mark    Not Sure 
 

Figure 5.1: Key for Understanding Role Symbols 
 

The actual role is shown in dark blue while the detected role is shown in cyan. 
There are occasionally other marks that show up on the field as either dark blue or 
cyan. These marks are to be ignored as they are debug outputs from other parts of 
the program. 

The first situation to be addressed is why mark was so difficult to detect in both 
methods. The easiest explanation for this is that the mark code in the systems 
tested is broken to begin with. For some strange reason, the mark tends to chose 
either the goalie or the active player to mark. The point of mark is to guard an 
open player from receiving a pass or getting to the ball. The goalie is usually not a 
target for a pass, and the active player already has the ball. One of the reasons the 
mark code may be broken is because prior to this thesis work, the software did not 
know which player is the active player and which player is the goalie, so it does 
not realize the silliness of what it’s doing. Although this goes to show why this 
work is necessary, it does not help us detect mark very well. 

 

 

robot marking  
the active player detected as the 

active player 

detected as 
defense 

 the actual 
active player 

Figure 5.2: A Screenshot showing a Situation Where the Active Player is Marked 
 

 When the active player is marked like in the figure above, the software isn’t 
sure which of the two robots is the active player and which isn’t. It also assumed 
that the robot that is not the active player is a support offensive player, not a 
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mark, since a mark should not be marking the active player in order to be a 
successful mark. Sometimes there is also the same problem with marking the 
goalie. 
 

 

marking the 
goalie 

Figure 5.3: A Situation Where the Goalie is being Marked 
 

Another problem situation was for the defense. As mentioned before, 
defend_line often looks and even acts like a supporting offense role. However, 
due to the name of the tactic, it is classified under a defensive role, causing some 
of the confusions between defense and supporting offense. 
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Figure 5.4: An Example Where Defend_Lane Looks/Acts like a Supporting Offensive Role 

 
nse also seems to have a problem of being detected when the ball is in the 
. Although the triangle-method of detecting defense is fairly effective, it 
ot cover this case. 

 

detected as 
supporting 
offense 

running 
defense 

Figure 5.5: A Figure of when the Ball is in the Defensive Corner 

ough frequent, these failure cases are still in the minority of all cases. In the 
al” cases, the software still works quite well. 
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