

FrontDesk: An Enterprise Class Web-based Software System for Programming
Assignment Submission, Feedback Dissemination, and Grading Automation.

Mike Maxim

Carnegie Mellon University School of Computer Science
5000 Forbes Avenue, Pittsburgh, PA 15213

USA
mmaxim@cs.cmu.edu

Abstract
The problem of managing an effective relationship
between course staff and students in large programming
courses admits no trivial solution. Students often
complain of lack of feedback, slow assignment grading
times, and a gap in communication between them and the
course staff responsible for evaluating their work. In
addition, course staff feels powerless to help because of
the complexity and sheer numbers of students involved in
such courses. In this paper, we describe our Web-based
distributed application, FrontDesk that attempts to bridge
the feedback and communication gap that these courses
suffer from. FrontDesk provides tools for students to
submit their work through the Web and to receive rich,
informative feedback. In addition, it provides course staff
with the ability to give such effective subjective feedback
for large courses and to automate objective programming
assignment testing in a flexible, distributed, and efficient
manner.

Key Words
submission, automatic, grading, feedback, enterprise, web

1. Introduction

There have been many proposals for online
submission and grading systems for computer science
courses. Such systems are created in order to simplify and
improve the process of producing objective correctness
tests and define grading criteria for subjective evaluation
of code. Both the course staff and the students aim to
benefit from this improvement. Course staff is able to
concentrate more on the actual evaluation process and less
on the bureaucratic nature of processing a large number of
submissions. In addition, staff can formally define
evaluation criteria in terms of both objective and
subjective tests in order to increase grader consistency
and efficiency. Objective tests can be automated through
the use of automatic test suites written with tools like
JUnit. Subjective grading is enhanced through the
introduction of common criteria and comments to which
all graders must adhere. Students benefit from the
increased access to grading feedback. Thorough objective
tests let students know where and why their program fails.

Subjective analysis enables students to learn about how to
create code in the correct manner. Grading systems aim to
make the ideal interaction of course staff and students
through the evaluation process described a practical goal.
[1]

When the number of students enrolled in a
course is high, stress is placed on the submission and
grading systems. Many submission systems fail under the
pressure of hundreds of submissions. Because of this, it is
necessary for these systems to be defined using enterprise
software design techniques, and to mobilize the correct
amount of hardware support behind the solution.

In this paper, we describe our system,
FrontDesk, which we believe accurately addresses the
main issues involved in the creation of a software system
to manage computer science courses by providing a
submission and feedback portal. Due to the degree of
complexity and potentially high load of submissions and
grading jobs, FrontDesk is built on a Web-based multi-
tier enterprise architecture that is more cognizant of its
role within a larger, potentially university wide portal or
course delivery system. We first discuss the exact
specifics of the problem domain, and then proceed to
explain both the solution of FrontDesk, and its software
design.

2. Problem Domain

 Course systems need to implement subsystems to
handle evaluation of submissions, the submission of work
for students, and the management of the course for course
staff. We first define the main stakeholders in the system.

2.1 Stakeholders

• Student
• Course Staff

o Teaching Assistant
o Instructor

2.1.1 Teaching Assistant

 We consider the teaching assistants to be the
main administrators of the evaluation of student
submissions. That is, teaching assistants are responsible

for defining both the objective and subjective grading
criteria for assignments. Each of the following below is a
problem TAs face when presented with this challenge.

• Consistency – Consistency in grading across
sections and across graders is important for
subjective evaluation. TAs need tools,
particularly the ability to formally define
subjective grading criteria, to make this process
cohesive and easy for graders to remain
consistent.

• Efficiency – Making objective correctness tests
is difficult in the ad hoc setting. As a result,
TAs are slow in producing these tests and the
grading process suffers. Because of this, it is
incumbent upon the grading system to deliver
toolkits to enable the fast creation of test cases.
In addition to creation time of tests, execution
time is also a major concern [2]. For instance,
testing a program that performs a compression
algorithm on 30 or 40 files can take minutes to
finish. Multiplying this by the number of
students in the course make the importance of a
distributed, parallel testing platform obvious [3].

• Robustness – TAs should be able to deliver rich,
informative feedback to a student that accurately
reflects their feelings about the student
submission. The system should provide
mechanisms to make dissemination of large
amounts of subjective and objective grading
results practical.

• Groups – Many times assignments will be
administered with students forming into groups.
When groups span multiple sections and
graders, then the grading process slows down to
sort out who is going to grade what. The system
should allow for students to form into groups on
the system itself, and allow graders to process
these submissions as group submissions, not as
submissions that happen to be identical for more
than one student.

2.1.2 Student

 Students want three things from the system: easy
submission, informative feedback, and submission
verification.

• Submission – Conceptually, submission is not a
difficult task to accomplish. However, it is
necessary to have students submit their work in
the same environment they receive feedback.
The integrated aspect of submission and
feedback reduces the amount of elements
students need to learn to operate in the course.

• Feedback – With the increased ease of feedback
creation for TAs, students are now able to access
this feedback to improve the learning process.
Students should be given an unmitigated view of
the TA generated feedback, and be able to learn
from this without going through much difficulty

deciphering TA comments or complaining about
grading inconsistencies.

• Verification – Students are very nervous about
their grades and submissions, so it becomes
necessary to provide them with a level of
assurance about their submission. The
submission system should pre-test student code
so they have an idea their code performs like
they think it should. Students should also be able
to browse their submission files for verification.

2.1.3 Instructor

 Instructors are concerned with defining course
content and assignment material, not in the administration
and evaluation of the assignments. For this reason, we
feel any course system must make it possible for
instructors to delegate these responsibilities to TAs.

• Permissions and Settings – Instructors should be
able to create permissions and course settings to
control the behaviour of subordinate TAs and
customize the course to their liking.

• Statistics – Instructors are also interested in
statistics about the grades and submissions. For
instance, an instructor may want information
about how many people have already submitted
their work. They may also want information
about grade data.

2.2 Volume

 When dealing with multiple large courses, the
volume of submissions and automatic grading jobs
increases dramatically. In order for a course system to
handle this increased load, enterprise design and
implementation techniques must be used to produce the
system. Design techniques used to produce state of the art
information and transactional systems used in today’s
most successful firms must be applied to the course
management and grading scenario if an effective
deployment is to be achieved.

3. The FrontDesk Solution

 FrontDesk is primarily a Web-based system
built on ASP.NET. The Web interface serves as a portal
for course staff and students to access the submission and
grading systems. Along with the Web interface, there
exists a Testing Center application designed to run on
multiple platforms. The testing center runs separate from
the Web server, and provides the functionality of actually
executing test suites and harvesting results. FrontDesk
also exposes most of its functionality through XML web
services, allowing great potential for integration with
existing systems.

3.1 FrontDesk Assignments

 The main item of course content in FrontDesk is
the assignment. Assignments consist of a grading schema
composed of both subjective and objective tests, written
content such as write-ups, student submission groups, and
assignment specific settings. All grading and submission
actions are performed with respect to an individual
assignment. The next sections discuss each subsystem of
FrontDesk, and how each works to support the students
and course staff during the assignment’s lifetime.

The scenarios below are what the subsystems
described in the next sections attempt to implement.

• Course Staff

o Assignment Creation – Course staff create
assignments by defining the grading schema
in terms of objective and subjective tests. In
addition, assignment write-up documents are
made available.

o Assignment Evaluation – After the
submission process has ended, the course
staff evaluates the student submissions. Staff
accesses the objective testing system to
obtain the objective correctness test results.
Drawing upon these results, staff accesses
the subjective grading system to evaluate the
quality and style of student code. Once this
has completed, the results of the
submissions are made available to the
students.

• Students
o Submission – Once a student has completed

their assignment, they access FrontDesk to
submit their work. Depending on whether or
not they worked in a group, the student
forms into a submission group.

o Accessing Feedback – After the course staff
has completed the grading process, students
access FrontDesk to receive grading
information about their submission.

During the discussion of each subsystem, we

maintain an example assignment based around the
computation of Fibonacci numbers to make the features of
FrontDesk more concrete.

3.2 FrontDesk Objective Testing System

Objective correctness testing is an important
aspect of the grading of any computer science assignment,
however, it is often difficult to implement. FrontDesk
provides services for making the creation and execution
of objective tests as easy as possible. Test suites are
written to operate with the testing center application. In
order to make this process flexible with respect to
programming language and platform, test suites
communicate with the testing center in a loosely coupled
manner. Communication between test suites and the

testing center is made possible by the testing center
hooking into the standard output stream of the test suite
process. Test suites are required to output an XML result
description conforming to a FrontDesk defined XSD
schema. The schema defines precisely how point
deductions are reported. Test suites must report through
the XML result a list of failures and errors generated by
the submission being tested. A failure is defined to be an
expected malfunctioning of the submission. In our
Fibonacci example, this would correspond to testing if the
submission correctly computes F(10) = 89. On the other
hand, an error is defined to be an unexpected malfunction.
In Java, this corresponds to something like a
NullPointerException. Failures and errors are separated in
order to allow staff to define different point deductions
for each type of malfunction.

In order to make development of test suites a
tractable task, FrontDesk provides toolkits for popular
software unit testing APIs. For instance, FrontDesk
provides extensions to the widely used JUnit unit testing
library for Java programs. Course staff can take existing
JUnit tests and convert them to FrontDesk test suites by
changing very few lines of code. All of the XML output is
taken care of by the extensions to the JUnit testing API.
Similar toolkits exist for various other popular testing
APIs as well as a general toolkit for custom tests. To
better understand the process of creating test suites for the
FrontDesk testing center, we will examine a sample test
case for our Fibonacci assignment. Figure 1 shows a code
sample from a JUnit test.

Figure 1. JUnit code snippet from a Fibonacci test suite.

Using methods such as the assertEquals()
method shown in the code above, failures and errors are
generated for the submission being tested. Each failure
and error is given a point value that indicates how many
points are lost per failure or error. The JUnit extensions
FrontDesk provides will transform JUnit exceptions
thrown by the assert methods into the correct XML
format for consumption by the testing center. JUnit, and
toolkits similar to it, play a large role in making

FrontDesk an efficient objective testing solution.
FrontDesk provides a “low-level” XML interface between
test suites and the testing centers; however, it relies on
JUnit to make creation of tests within this environment a
simple task.

In addition, objective tests can be defined to
contain dependencies amongst themselves. All
dependencies of a test are executed before the main test.
This is useful for making sure that a student submission is
always built before correctness tests are to be run. Making
a build test a dependency of the correctness test ensures
the correctness test will execute properly (assuming it is
correct of course).

Creation of test suites is only half of the story of
objective testing. Execution of objective tests also
provides a bottleneck on grading time. In order to address
this problem, FrontDesk provides a distributed testing
application called the testing center. Testing centers are
intended to be installed on multiple workstations in order
to distribute objective testing jobs. The testing centers are
constantly polling the main database to check if any
objective testing jobs have been requested. If a testing
center finds a job that it can execute, it will proceed to
download the student files and test files onto its local file
system and proceed to execute the test. Once the test has
completed, the testing center will log the results of the test
back to the global database for consumption by both staff
and students. Figure 2 shows a diagram of this process.

Figure 2. Flow chart for the process of starting and receiving results
from the automatic testing system.

 This system for objective testing addresses the
efficiency concern noted in Section 2. The distributed
testing center application allows for easy upgrades to test
execution time. By adding an extra testing center, the time
to run an entire job for the whole course is substantially
reduced. In addition, the test creation process is kept
simple. Course staffs can continue to use unit testing APIs
such as JUnit and have these tests integrate fully with the
FrontDesk testing centers through the toolkits provided.
The loose coupling between test suites and the testing
centers maximizes the flexibility in the types of
assignments that can be run through FrontDesk.

3.3 FrontDesk Subjective Testing System

 In addition to providing a rich environment for
the creation and troubleshooting of objective tests,
FrontDesk provides a system to give detailed and
organized subjective feedback from course staff to
students. The principle idea behind the FrontDesk
subjective feedback system is the ability for course staff
to formally define hierarchical subjective grading criteria.
An example hierarchy for the Fibonacci assignment is
given in Figure 3.

Figure 3. A view of the hierarchical grading schema for the Fibonacci
assignment.

The advantages of this approach are two fold.

For the course staff, each grading member of the staff is
now encouraged to fill in detailed information for each
category of the subjective grading schema. The criteria
are organized into a tree-view Web control which allows
the staff to easily make remarks in each section of the
grading schema about the current submission being
graded. Each entry is allotted a point value, enabling
course staff to enter in exactly how many points the
student earned for that particular category. Students now
have the opportunity to view the same tree-view Web
control in order to determine exactly what the grader of
their submission thought of the submission. They can
browse each category and effectively determine issues
that their submission had with regard to the particular
category. This addresses the problem of providing
students with subjective information under a common
interface with course staff.
 In order to further increase grader consistency,
FrontDesk provides the option of creating pre-determined
subjective remarks for each of the categories defined in
the grading schema. The pre-determined comments are
defined by a point value, a comment type, and a message
for the student. Figure 4 shows a listing of such comments
for a grading schema entry in the Fibonacci example.
When a grader is assessing a submission, they can draw
comments from either the pre-determined set, or make
custom comments. The comments have the option of
being attached to specific files and lines from the student
submission files. This gives the grader the ability to link
subjective grading content to specific places in the student
submission. Figure 5 shows how the student can view the

Automatic
Test
Request

Run Tests Results

Collect
Results Subjectively ssess A

Submission

Course Staff

Web/Database Server

Testing Centers

file-based grading comments for the Fibonacci
assignment.

Figure 4. Suggested comments for a rubric entry.

Figure 5. A sample in-file comment that a student can view after
grading has completed.

3.3 FrontDesk Submission and Management

 FrontDesk provides a Web interface for student
solution submission. The Web interface allows for many
different types of submission methods. Examples include
archive based submission and CVS based submission
allowing students to directly submit from a CVS
repository. Upon submission, students are informed that
they will receive results of tests that have been designated
by course staff to be run when the student submission is
received. Such tests are queued in the testing center
system described above and the results of the tests are
emailed to the students upon completion. Students are
also presented with the FrontDesk Web interface file
browser allowing them to browse their submission files to
further validate that they submitted the correct files with
the proper directory structure. Another important feature
for students during the submission process is the ability to
submit under a group identity. Student can impersonate
the identity of the group during submission, implementing
the process of submitting for their group. Figure 7 shows
a portion of the Web interface for file browsing.

Figure 6. Screenshot of the FrontDesk submission options.

 Students are provided with the assurance of
receiving preliminary test results, and the ability to
browse the server file system through the Web interface.

Figure 7. Screenshot of the FrontDesk file browser.

 The course staff is given fine grained control
over various aspects of course management, particularly
administration of individual assignments. Sections and
groups allow the staff to divide labor amongst the
members of the staff in order to increase the efficiency of
the subjective grading process. The group system
employed by FrontDesk addresses the problem discussed
in Section 2 regarding the confusion that sometimes
accompanies the grading of group submissions. Since the
submission is under one identity, one grader will be
assigned to the submission. The staff is also given access
to the Web interface file browser to correct minor
mistakes in a student submission, as well as the main
engine for the application of the subjective comments
described in Section 3.3. In addition, instructors are able
to define specific settings and permissions on both the
course and assignment level. They can designate settings
such as maximum student group size, maximum number
of submissions, allow group submissions, etc. Instructors
can also set permissions on the actions other members of
the course staff can perform in the administrative mode of
FrontDesk. FrontDesk provides detailed grade reports at
both the assignment and course level. These grade reports
contain the student performance across assignments.
Reports can also be generated for entire sections in order
to get section-wide data. Submission statistics are
available to course staff during the student submission
time period so that staff can monitor the patterns of the
student submissions.
 With the course management features described
above, course staff is given an effective means to solve
many of the problems discussed in Section 2. The Web
interface to the underlying file system provides the ability
for staff to make changes without needing special
privileges to access the Web server through alternate
means. Security is increased by making sure only senior
course staff have the ability to do the most damage to
critical student records.

4. The FrontDesk Design

 As mentioned in Section 2, a large concern
during the design and implementation of the FrontDesk
solution was the ability to scale to meet heavy load
requirements and be flexible enough to handle diverse
course offerings. FrontDesk is written entirely in C# and

uses the Microsoft .NET Framework extensively to
implement many enterprise style features such as data
source access, XML web services, and distributed
transactions. The main data warehouse in the design is
implemented using the data provider model. Providers can
be written for many different types of data sources. They
are subject to many implementation invariants and must
conform to a FrontDesk specified Provider layer interface.
Currently two data providers have been implemented:
Microsoft SQL Server 2000 and Oracle 9i relational
databases. Application specific rules (business logic) are
implemented in a separate layer that sits on top of the
main Provider layer. This layer, called the data access
layer, implements the rules of the FrontDesk system and
implements many of the features described in Section 3.
Using .NET Remoting, this layer is able to be distributed
across many different workstations, maximizing
scalability under high load. For small loads however,
performance can remain high by isolating the layer on a
single workstation. The presentation layer, as described in
Section 3, is a Web interface implemented using
ASP.NET. The presentation layer never directly accesses
the Provider layer, but must attempt all data operations
through the data access layer. Testing centers are
implemented upon the same architecture as the Web
interface. Testing centers are able to use the same data
access layer to perform operations such as requesting tests
to run and reporting results. The enterprise class design
makes FrontDesk a highly distributed, scalable
application capable of handling multiple large
programming courses. Figure 8 shows a schema of the
architecture design.

Figure 8. A pictorial high level topology of the FrontDesk architecture.

 FrontDesk was designed with the realization that
most courses and universities already have existing grade
tracking systems that are hard to replace directly. To help
alleviate the burdens of introducing FrontDesk into such a
situation, we exposed much of FrontDesk’s functionality
through XML web services. The service oriented
architecture allows for external grade management
systems to easily connect to FrontDesk to retrieve grading
information in a platform independent manner. Student

submissions can be made in a non-Web interface by
writing programs that invoke the submission system
through the web service exposing the submission system.
In short, FrontDesk exposes all major functionality
through the use of web services allowing for flexible
integration of the system with existing systems.

5. Experience and Future Work

 FrontDesk has been deployed for the Spring 2004
semester offering of 15-211 Fundamental Data Structures
and algorithms at Carnegie Mellon which has 300
students enrolled. It has successfully handled over 1000
submissions over the course of 3 assignments. Current
course staff reports that students generally agree with
course staff evaluation of submissions and find that
students are better able to learn from mistakes their code
suffers from. They also respond positively on the ability
to manipulate files directly through the Web interface.
Future work will involve the use of FrontDesk throughout
the undergraduate curriculum at Carnegie Mellon. There
is also an effort to collect more scientific data in order to
determine the tangible effects FrontDesk has on a course.

6. Conclusion

 FrontDesk provides functionality that directly
addresses the problems associated with the administration
of multiple large programming courses. Through its
flexible objective correctness testing and rich subjective
feedback model, the experiences of the course staff and
students are made easier and, we believe, more enjoyable.
We believe that the cost of a principled enterprise design
has helped bridge the gap between course staff and
students and additionally provides a flexible approach
suitable for diverse programming intensive courses.

7. Acknowledgements

We would like to thank Professors Peter Lee and Bill
Scherlis at Carnegie Mellon for their support and input on
the project and permission to use the system in courses
they taught.

References:
 [1] Stephen Edwards, Teaching software testing,
automatic grading meets test-first coding. Addendum to
the 2003 Proceedings of the Conference on Object-
oriented Programming, Systems, Languages, and
Applications, San Francisco, CA, 2003, 500-506.

 [2] J.B Hext, J.W. Winings, An automatic grading
scheme for simple programming exercises,
Communications of the ACM, 12(5), 1969, 272-275.

[3] Kent Beck, Test Driven Development (Addison-
Wesley, 2002).

Presentation
Tier ASP.NET Forms Windows Forms

Data Access
Tier .NET Data Access Components

 Data Provider
Tier SQL Server Provider Oracle Provider

FS Provider
Tier Database File System OS File System

ADO.NET
Database OS FS

