
Data Classification and Relaxing Storage

Requirements

Brian Railing∗

Advisor: Greg Ganger

April 30, 2004

Traditionally, there has been a single guarantee assumed for all data stored
in a storage device: usually, the guarantee is that the data will remain un-
changed and accessible. My work is explores applications that can continue to
behave correctly even when the underlying storage does not meet this condi-
tion. Application data is classified based on the guarantees that the application
requires; I will show an automated method for evaluating applications following
changes to the disk’s guarantees about its data.

1 Introduction

There has been much work put into improving access to the disk, with most
work focused on improving the storage system access rather than the application
access. In this paper, I will explore measuring the necessity of some of the
guarantees for subsets of the application’s data. Persistence accessibility are
two areas I will focus on.

1.1 Motivation

Most applications require two functions from storage system: Stored data must
only be changed by legitimate requests and requests for data at any time must
be received in a timely fashion. However, some data does not always require
these parameters. Unfortunately, no technique currently exists to relay this
knowledge to the storage layer, in which I include the operating and file system.

My work explores separating application data into three classifications. ”Nor-
mal data” relies on standard persistence and accessibility requirements. ”Dis-
cardable data” is data that the application expects to meet the unchanged
requirement; the storage system may have discarded the data at some earlier
time. In this case, the application would respond to read requests with ”dis-
card”. ”Changeable data” relies on data being returned, not on changed data.

∗School of Computer Science, Carnegie Mellon University, Pittsburgh PA
(bpr@andrew.cmu.edu)

1



Recently, there has been work done developing a technique of storage perfor-
mance evaluation called timing accurate storage emulation (TASE) [4]. TASE
emulates future storage technology by using additional computer systems con-
nected over SCSI. Storage emulation allows more detailed analysis of a proposed
storage device, without the work to build a hardware prototype. In order to
best meet its timing requirements, the data is stored in RAM rather than phys-
ical storage and therefore uses RAM more efficiently. The better TASE runs.
This requirement limits the size of workloads that can be run on the system.
Data classification came out of an effort to identify benchmark workload data
that has different requirements for its storage and therefore may not need to be
retained for correctness. For TASE, this would allow larger benchmarks to be
run. Generally, by identifying this data, we may reduce the load on the stor-
age system and distribute it to other parts of the system whose performance is
growing faster than disks.

1.2 Determining Classification

There are two ways of determining the classification for a request or set of
requests. Ideally, the application developers understand the requirements of
the application’s data and, using a future interface, pass this knowledge to the
storage layer. Another technique is based on multiple executions of the deter-
ministic application. While modifying various portions of the data to measure
the effect on the application, the various classifications of the application’s data
are determined. Additionally, developing an automated technique will assist in
verifying manual classifications.

1.3 Summary of Results

In real applications, a small increase in runtime can be traded for the ability
to intercept and trace the syscalls made by the application. By the automated
method explained in this paper, the data can be classified with high accuracy.

2 Theoretical Basis

Automated data classification poses three questions that need to be addressed.
What are the application’s actions? How do we create something meaningful to
the application? How do we measure the effect on the application?

Intercepting all storage requests from the application can be achieved on
multiple levels: user level, kernel level, and storage device level. First, we ensure
that we only intercept requests from the application that are of interest. We
must also choose an interception level that would better support the following
steps.

The second question is how to modify the application’s data while it runs
so as to better determine what the data classifications are. Requests can vary

2



greatly in size. This is nothing unusual. Having some idea of what parts of the
request are important and what makes them important is a necessity.

Finally, in order to achieve anything from the steps in the automated clas-
sification, we must determine when the application’s behavior changed. We
have three approximations for comparing behavior: what blocks are read, what
blocks are written to, and what data is written. Once we know that the ap-
plication’s behavior has changed, we can deduce that at least some of the data
that the automated tool changed needed stricter requirements.

3 Design

3.1 Intercepting Requests

The best place for intercepting requests is at the user level. At this level, we
can guarantee that we are only intercepting the requests from the application
that we are testing. Furthermore, the entire system is more robust as failures,
at worst terminate the current environment but not the system. The system is
easily tested because changes to the tool can be tested with less turn around
time. The interception tool generates a trace of the syscalls with the arguments
and return values, which allows offline analysis of the application.

3.2 Modifying Requests

The question of modifying requests deals with testing the different requirements
while treating the application as a black box. There are too many combinations
to rely on trying all permutations, so instead, we categorize the data into three
possibilities: negative, zero, and positive. As we run more tests, we can able to
refine these categories to determine a better classification.

3.3 Measuring Impact

Comparing the impact that the classification technique has on the application
involves a basic assumption. I assume the application will have identical be-
havior if it has identical data in the storage system. Future work may include
adding support for applications that have variation in their performance even
when there is identical data. The first comparison of performance involves what
locations were requested to read. The background is that the decision of what
blocks to read relies on previous reads. However, some applications may rely
on randomness to determine which data blocks to read. Reading data has no
impact on the data at the storage device. This does not guarantee a difference
in the application’s behavior.

Instead of observing the tool look at the reads, let’s compare what the appli-
cation sends to the disk. Should we compare where it is written or what is being
written? Where the data is written does, at minimum, depend on allocation
policies. What is being written will not always depend on what data the appli-
cation reads. A simple exception is writing a pid or uid. In other words, there

3



are occasions when either of these strategies, through not fault of the system,
will fail.

4 Setup

The testing was run under the linux 2.4.19 kernel on a P3 700MHz laptop. There
was online work suggesting a method by which the necessary interceptions in
the user level of a system running linux can be performed[5]. The interception
takes place by adding the tool’s library to the dynamic libraries that are loaded
at run time. The tool’s library contains functions of the same names as the
syscall wrappers in the standard library. Therefore, each call goes through the
tool’s function first before the standard library’s function.

The tool was run on a collection of simple programs displaying certain char-
acteristics. Each program reads from a file of random integers. Program A
reads sequentially and writes the number of reads performed. A’s reads are
changeable. Program B reads numbers seeking between each read based on the
number read until it leaves the file and writes the time it took to complete the
reads. B’s reads are not changeable under the strictest interpretation, but its
output should not differ. Program C reads 10 numbers randomly chosen from
the file and writes the average. The tool should note that C doesn’t depend on
the data for what is read, but its write depends on the data.

Additionally, two benchmarks in use are postmark 1.5 and ssh-build using
OpenSSH (3.7p1). Postmark is a benchmark whose data can easily be recognized
as changeable. Ssh-build is relatively simple to run yet has greater complexity
than postmark.

5 Results

I looked at the results of running the classification tool on simple programs as
well as two benchmarks. The tool currently classifies the data into changeable
and normal, with counts of the number of requests that it determined were of
each type. I looked at the results in three areas: correctness, effectiveness, and
resources.

5.1 Correctness

Each of the programs is assumed to be fairly consistent in its requests. Only
postmark lends itself to changes in its requests without impacting its behavior.
There are small variations in the run time of the programs. For program B,
these variations can result in incorrect classifications.

5.2 Effectiveness

The effectiveness of the tool is its support of the theory that there is changeable
data. How much of an application’s data is changeable? Table 1 shows the

4



Automated Classification
Manual Classification (%) Percent Bytes

A 100 100 2048
B 100 99 2000
C 0 9 4

Postmark 100 100 2.99 MB
ssh-build

Table 1: Changeable Read Data

determinations made by the tool about data read by the application and also
shows in testing that the writes do not change. The small discrepancies in the
classifications for programs B and C come from the small variations in runtime
inherent in real systems.

5.3 Resources

More important for measuring the resource use of the the tool is evaluating its
use of time, both in its classification of data, and in its impact on each run of the
application. Table 2 contains the time to run the tool on each application and
to generate the results seen in table 1. The tool’s runtime is ideally linear with
respect to runs and time per run, though there is the additional time dependence
on evaluating each run.

Runs Time per Run (s) Total Time
A 513 0.01 30.21± 0.10 s
B 506 0.01 29.97± 0.13 s
C 12 0.01 0.396± 0.011 s

Postmark 6373 2 4h 12m
ssh-build 29543 199

Table 2: Time Requirements

Table 3 shows the increase in runtime for the applications when the intercep-
tion library is included. There is a drastic difference between the benchmarks
and simple programs, while the simple programs are quick the interception still
results in a large increase in time. One reason for this is these simple pro-
grams are designed to exhibit certain requirements and are therefore io-bound.
In addition, the overhead per operation is constant, which more dramatically
escalates the time for smaller requests.

Finally it must be asked, is the tool easy to use? It is simple to run and
outputs results, which summarize the classification of the application. The tool
is designed towards a single run and only after major revisions to the application
should it be necessary to rerun the tool.

5



Interception (s) Without Interception (s) Percent Increase
A 0.92± 0.01 0.10± 0.01 820
B 1.04± 0.01 0.18± 0.01 477
C 0.01± 0.01 0.01± 0.01 0

Postmark 310.8± 1.1 331.7± 11.0 6.7
ssh-build 199.4± 0.3 196.6± 3.0 1.3

Table 3: Runtime with and without Interception

6 Related Work

There has been some work accounting for the difference in performance between
storage devices [3], [8], which could be expanded to account for the time required
to recreate data on the device itself. A couple works discuss setups where
applications interface with the storage layer to decide what blocks should remain
in the cache [2], [6] . A group at the University of Wisconsin studied classification
within the storage device. This work was based on determining how the file
system was using the blocks rather than the application’s use [7]. Additionally,
there has been some work on predicting the characteristics of files: like size,
read / write ratio, etc, in order to improve accesses and allocation by knowing
the needs of each file.

Finally, a group at Kentucky looked at categorizing data based on the level
of persistence required by the application necessary. They also addressed an
extension that would support the recreation of data that is lost [1].

7 Conclusions

With sufficient support from the operating system, we can present an expanded
interface to the applications to further allow them to communicate details about
their particular needs. This can improve response time by considering the needs
of the system along with the requirements of the applications. Finally, the
automated method presented by this paper, while accurate for distinguishing
between ”normal” and ”changeable” data, can be expanded in the future to
address ”discardable” data and support greater variety in possible behaviors of
the applications.

References

[1] T. Anderson, J. Griffioen. ”An Application-Aware Data Storage Model.”
In Proceedings of the 1999 USENIX Annual Technical Conference, p. (June
1999)

[2] P. Cao, E. Felten, K. Li. ”Application-Controlled File Caching Policies.” In
Proceedings 1994 Summer USENIX Conf., p. 171–182 (June 1994)

6



[3] B. Forney, A. Arpaci-Dusseau, R. Arpaci-Dusseau. ”Storage Aware Caching:
Revisiting Caching for Heterogeneous Storage Systems.” Proceedings of the
FAST 02 Conference on File and Storage Technologies, p. 61–74 (January
2002)

[4] J. Griffin, J. Schindler, S. Schlosser, J. Bucy, G. Ganger. ”Timing-Accurate
Storage Emulation” Conference on File and Storage Technologies (FAST),
p. 75 – 88 (January 2002)

[5] izik. ”hacking exists programs using ldpreload”
http://sickpuppy.ath.cx/papers/libhack.txt

[6] T. Kimbel, A. Tomkins, R. H. Patterson, B. Bershad, P. Cao, E. Felten,
G. Gibson, A. Karlin, K. Li. ”A Trace-Driven Comparison of Algorithms
for Parallel Prefetching and Caching.” In Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation (OSDI), p.
19 – 34 (October 1996)

[7] M. Sivathanu, V. Prabhakaran, F. Popovici, T. Denehy, A. Arpaci-Dusseau,
R. Arpaci-Dusseau. ”Semantically-Smart Disk Systems.” In Proceedings of
the 2nd USENIX Conference on File and Storage Technologies (FAST), p.
(March 2003)

[8] N.E. Young. ”On-line File Caching.” In Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 82–86. (January
1999)

7


