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Abstract 

 
 This thesis investigates areas in game theory where concepts from quantum information 

may be applied and vice versa. The nature of correlations that exist in quantum entanglement 

serve as an additional resource in the games we consider. We present a reformulation of some of 

the well known violations that quantum theory predicts in the framework of game theory. This 

approach allows us to show a general structure present in such games. We show how given a 

game and an entangled quantum state, one can go about enumerating all the cases for which a 

quantum advantage exists. We further explore connections these games have to multi-prover 

interactive proof systems.  

 

I) Introduction  
 

 The fact that quantum information is useful in game theory was first pointed out by Meyer 

in [1]. Today there exist various sources in the literature that investigate the advantages of using 

quantum information in specific games, e.g. [2] & [3]. In this paper we begin in Section II by 

presenting a reformulation of some well known quantum paradoxes and violations under the 

framework of game theory. The insight gained by constructing these games allows us to consider 

the general structure of such games for any given experimental setup. Although the examples 

discussed in Section II present conclusive evidence of the advantages of using quantum 

information in such scenarios, they may not necessarily be considered to be of much practical 

interest. Section IV deals with the computational aspects of determining the cases in which 

quantum entanglement is actually useful in a given game. This is based on Pitowsky & Svozil’s 

work on enumerating all the Bell Inequalities of a given experimental setup [4]. In Section V we 

present better motivated examples by investigating connections between these games and multi-

prover interactive proofs. 

 

II) Bell Inequalities, Quantum Paradoxes and Games 
  

Bell Inequalities are logical tests, where classical logic and quantum theory give different 

predictions. These differences occur essentially due to the correlation functions that one can 

extract from entanglement which are not possible to construct classically. Our interest lies in the 
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possibilities of using these correlations in games. We present here three examples that have 

been constructed by abstracting away the actual physical experiment and using the correlations 

that are obtained as a result of these experiments. They are based on Mermin’s presentation in 

[5], [6] & [7]. In all of the games below, the players are allowed to agree on a strategy before the 

game begins and make any preparation before they are taken to “remote and isolated booths”, to 

play the game.  

  

II.1) Bell Inequalities 
  

This game is directly based on Mermin’s example of the Bell inequalities in [5]. It takes 

advantage of the violation of one of Bell’s inequalities by a maximally entangled qubit pair. There 

is a slightly erroneous discussion of a similar setup in [8]. Two players are allowed to 

communicate and agree on a strategy before the game begins. Once they have been isolated in 

their remote booths, each of them receives an input chosen iid uniformly from {A, B, C}. They 

privately observe their input and then simultaneously say either “Yes” -- ‘1' or “No” -- ‘0’. The 

payoffs are determined by the following rules:  

  

•  If the players receive same input and they agree in their output (both say yes or both say 

no), then both players lose and incur a loss of –900 each (The large negative number is 

arbitrary)  

 

•  If players receive different input and they agree in their output then both players win and 

receive a payoff of 9 each  

 

•  If the players disagree in their output, both of them receive 0 as a payoff  

  
The Table II.a represents the payoff matrix for 

the game. Due to the huge loss incurred when players 

receive same input, there are no Nash equilibriums that 

contain the event in a mixed strategy. Complementary 

pure strategies, (which the players can decide upon 

initially), which do not lead to loss are:  

         Table  II.a 
 

Table II.b 
Player1  A B C  Player2  A B C  
    
I 0 0 0   1 1 1  

II 0 0 1   1 1 0  
III 0 1 0   1 0 1  

 Same Different  

 Input Input  

Same  -900  9  
Output    

Diff  0  0  
Output    
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IV 0 1 1   1 0 0  

V 1 0 0   0 1 1  
VI 1 0 1   0 1 0  
VII 1 1 0   0 0 1  

VIII 1 1 1   0 0 0  
 

Strategies (i) & (viii) lead to an expected payoff of 0, & (ii) – (vii) lead to an expected payoff of 

4, which form the optimal Nash equilibrium solutions for the game and also the correlated 

equilibriums. Note that if the player inputs are limited to two, then the pure strategies maximize 

the expected payoff. ((½ * ½) + (½ * ½))*9 = 4.5. However, for the game under consideration, we 

obtain a payoff of (1/3)*(1/3 + 1/3 + 2/3)*9 = 4, whereas the 

maximum possible payoff is (1/3)*(2/3 + 2/3 + 2/3)*9=6   

 

For their quantum strategy, the players share the 
maximally entangled state:   
 

     
     (1) 

 

         Fig. II.a  

   

         Table II.c  

They decide before hand to  measure in the basis 

{a, b, c} based on the input they receive, as indicated in 

figure II.a. So, they might choose to measure along a if 

input is A, along b if input is B and along c if input is C. 

When the players measure in the same basis (i.e. when 

they receive the same input) measurement results would 

always be different and hence the players would avoid 

the loss of (–900). Calculating the probabilities, we note that exactly one fourth of the 

measurements will yield different results for measurement along different axis and the remaining 

three fourths would have the same output result. So, the expected payoff is: (2/3)*(3/4)*9=4.5 > 4 

(the best classical payoff). The probabilities for each case are given in Table II.c. We may even 

be able to obtain better co-ordination if the players share an ensemble of EPR pairs or qutrits.  

 

II.2) GHZ Paradox 

  

This game consists of a team of three players. Each player receives an input chosen 

from {A, B}. Each player must give an output, which is limited to one of only two possibilities: “0” 

or “1.” One of the rules of the game is that either all three players will receive input A or only one 

 Same Different 

 Input Input 

Same  0  0.75 

Output    
Diff 1 0.25 

Output    
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player will receive A as input and the other two will receive B. The team wins if the number of 0 

outputs is odd (one or three) in the case when everyone receives ‘A’ as input, and is even (zero 

or two) in the case of one A and two B inputs.  

  

Assuming that the four possible combinations of inputs (i.e. A
1
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; and B

1
, B

2
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3
) are received with the same frequency, no classical protocol allows the players 

to win the game in more than 75% of the runs. For instance, a simple strategy that allows them to 

win in 75% of the runs is that each player always outputs 1 when input A is received and 0 if input 

B is received. However, quantum mechanics provides a method to always win the game.  

  

The method for always winning is the following. The players share a large number of 

three-qubit systems in the GHZ state:  
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  In case a player received input A, he performs a measurement on his qubit in the Z 

basis and outputs 0 if the outcome corresponds to oz  and outputs 1, if the outcome 

corresponds to 1z . In case a player received input B he performs a measurement in the X basis 

where )(
2

1
1zzx oo +=   and )(

2

1
11 zzx o −=  and outputs 0, if the measurement 

results corresponds to 0x  and outputs 1, if result is 1x  . This strategy allows the team to 

always win the game. Writing out the GHZ state in the four equivalent forms in (3), (4), (5) & (6) 

makes this explicit.  

  

It can be inferred from equation (3) that, if all players measure in the Z basis, then either 

all of them will obtain z
0
 or one will obtain z

0
 and the other two will obtain z

1
. Analogously, it can 

be inferred from Eqs. (4) – (6) that, if one player measures Z and the other two measure X, then 

either all of them will obtain 1, or one will obtain 1 and the other two will obtain 0. The probabilities 

for these events are given in Table II.d 
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Table II.d 
 

Output 
Input  

A
1
, A

2
, A

3
 

Input  
A

1
, B

2
, B

3
 

Input  
B

1
, A

2
, B

3
 

Input  
B

1
, B

2
, A

3
 

000 0.25 0 0 0 

001 0 0.25 0.25 0.25 

010 0 0.25 0.25 0.25 

011 0.25 0 0 0 

100 0 0.25 0.25 0.25 

101 0.25 0 0 0 

110 0.25 0 0 0 

111 0 0.25 0.25 0.25 

 
 

II.3) Hardy’s Paradox 

  

The game using Bell inequalities is based on 2 players with three possible inputs and the 

one based on GHZ has three players with two inputs. The game based on Hardy’s paradox is 

simpler since it has two players with just two inputs. So, it is the simplest case where one could 

expect entanglement to be useful.  

  

The game is setup similar to the last two games. Two players receive on of two possible 

inputs {A, B} and they have to respond by signaling either “0” or “1”. The players incur a huge loss 

if:  

  

•  The players receive different inputs and both of them output 1 
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•  Both the players receive input A and both of them output 0  

  

The players win if:   

•  Both the players receive input B and both of them output 1  

 

Table II.e 
  

 

 

 

 

 

 

Now, classically there is no pure strategy that would allow the players to avoid the losses 

and at the same time win when possible. However, using the experimental setup from Hardy’s 

paradox allows the players to assign a probability > 0 (but < 0.1) to the winning event. The 

probabilities for the Hardy state used in [7] are given in Table II.e. Note that all the losing events 

have a zero probably whereas the winning event has a probability of 0.09.  

 

III) General Game Structure 

 

The results of the above examples are summarized in Table III.a. Note that we have 

restricted out analysis to one particle per player for one run of each game. There might be 

advantages of using an ensemble of entangled particles in a given game. 

 
Table III.a 

Scheme #Particles #Players #Inputs #Output 

Bell 2 2 3 2 

GHZ 3 3 2 2 

Hardy 2 2 2 2 

 

The games as discussed in the above examples are co-operative ones, i.e. the players 

can communication (before the game begins) to come up with a joint strategy to maximize their 

payoff. This seems to be a common aspect of the games constructed to utilize a specific shared 

entangled system. Now, given an entangled quantum state that exhibits violation of classical 

correlations for certain events, one can always construct a game that utilizes the violation by 

setting such events to be the winning events. So, if we are able to enumerate all such violations 

(Bell Inequalities) that exist for a given experimental setup, we have essentially identified all the 

Output Input  Input Input Input 

 AA AB BA BB 

00 0 0.15 0.15 0.64 

01 0.375 0.225 0.625 0.135 

10 0.375 0.625 0.225 0.135 

11 0.25 0 0 0.09 
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cases in which that state may provide advantage in a classical game. 

 

To generalize our formulation consider figure III.a introduced by Prof. Griffiths [18] 

 

 

 

 

 

 

     

 
Figure III.a 

 
 The labels (a) and (b) refer to the degrees of freedom the players enjoy in choosing their 

measurement orientation. In another sense they correspond to the number of possible player 

types. So for example in Bell’s case they correspond to the three possible player types. A and B 

then are the local operations / measurements that they choose to perform on their particle. The 

outputs a and b then take the possible output values that players can signal. Note that there is no 

communication allowed between the players once they have been taken to their “remote booths”. 

It is obvious how the above setup generalizes to n players with various possible values of input 

and output types. 

 
 In the classical case (i.e. if no entangled particle is shared), we can establish the 

following relationship: 

 

        (7) 

 

 One may think of the hidden variable λ  as an “instruction set” that the particles carry 

with them when they are emitted from their source. These instructions determine the state the 

particle would be found in, given the measurement that is carried out. For quantum states we 

enforce a weaker constraint, i.e. 

 

    (8) 

        (9) 

 

These equations imply that output α  is independent of input (b) and output β  is 

independent of input (a). There exist quantum states that satisfy these conditions but are not 

separable as required by (7). However, note that there are cases which satisfy conditions (8) and 

a 

b 
b 

a 

B 

A 
Player 1 

Player 2 

Entanglement

∑∑ =
λλ

λλβλαλβα )(),|(),|(),,|,( PbPaPbaP

)|(),|( aPbaP αα =
)|(),|( bPbaP ββ =
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(9) but are not allowed by Quantum Physics. 

 

IV) Computing all the Inequalities 

 

 Pitowsky and Svozil present a general method for the derivation of all Bell inequalities for 

each given experimental setup in [4]. The general setup that they consider is similar to the one 

discussed earlier in Section III with the important distinction that we replace our entangled particle 

with the notion of a Hidden Variable. The schematic for this is shown in Figure V.a. It can be 

shown that this setup is similar to the one considered by Pitowsky (although it is not trivial to do 

so). 

 

In order to understand Pitowsky’s formulation, consider the setup in Fig. V.a. Let the 

variables a, b, a and b take on two possible values from {0, 1}. Then there are four elementary 

events, i.e. a = 0, a = 1 corresponding to Player 1’s choice of measurements and b = 0, b = 1 

corresponding to Player 2’s measurement choices. 

Figure V.a 

 

 

 

 

 

 

 

 

 In order to derive all the inequalities for this case, list all the 24 = 16 instructions that the 

particles can carry in this scenario. In addition we also consider the following conjunctions of 

these propositions (a=0 AND b=0), (a=0 AND b=1), (a=1 AND b=0) and (a=1 AND b=1). The 

reason we do not consider (a=0 AND a=1) is essentially because these are two are mutually 

exclusive events in our experimental setup and hence do not contribute to the analysis. Now we 

obtain Table V.a: 

 
a=0 a=1 b=0 b=1 a=0&b=0 a=0&b=1 a=1&b=0 a=1&b=1 

0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 1 0 0 0 0 0 0 
0 1 0 1 0 0 0 1 
0 1 1 0 0 0 1 0 
0 1 1 1 0 0 1 1 

a 

b 
b 

a 

B 

A 
Player 1 

Player 2 

 Hidden Variable (l) 
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1 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 
1 0 1 0 1 0 0 0 
1 0 1 1 1 1 0 0 
1 1 0 0 0 0 0 0 
1 1 0 1 0 1 0 1 
1 1 1 0 1 0 1 0 
1 1 1 1 1 1 1 1 

Table V.a 
 

 The first four columns are essentially the instructions carried by the particles in the 

hidden variable model. Each row in this table forms a vector in an eight dimensional real space. 

Denote by C the convex hull of the sixteen vertices taken as vertices in this space. The dual 

representation of this hull is given by the intersection of a finite number of half-spaces that may 

be represented as linear inequalities. The above procedure can be applied to any general 

experimental setup that takes the form discussed in this section. In [13] and [14] Pitowsky shows 

that deciding whether a vector p is in this polytope is NP-Complete. However, in [4] and [16] use 

available linear programming packages [15] and Mathematica to solve for small cases of this 

problem such as GHZ.  

 

Note that this approach allows us to test for all possible violations that occur in an 

experimental setup given a specific quantum state. We can simply perform a search on these 

inequalities using random input states until we encounter violations, hence allowing us to 

enumerate all such cases. The gives a somewhat systematic approach to identifying cases in 

which quantum information proves useful.  

 

V) Multi-Prover Interactive Proof Systems 

 

 The aim in this section is to present better motivated examples on using quantum 

information by developing connections to multi-prover interactive proof systems. Two-prover 

interactive proof systems were introduced by Ben-Or, Goldwasser, Kilian and Wigderson in [9]. 

Formally, a multi-prover interactive proof system for a language L is a game between a verifier 

and k ≥ 2 provers that interact on a common input in a way that satisfies the following properties: 

 

•  The verifier’s strategy is a probabilistic polynomial time procedure 

•  The only interaction allowed is between the verifier and each of the provers. (No 

communication can take place between the provers once the game has begun). 

•  A prover does not know the message exchanged between the verifier and any other 

prover. 

•  Completeness: For every x œ L, there exists a prover strategy P such that when 
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interacting on the common input x, the prover P convinces the verifier with probability at 

least 2/3 that x œ L 

•  Soundness: For every x – L, when interacting on the common input x, any prover 

strategy P convinces the verifier with probability at most 1/3. 

 

We take the provers to be computationally unbounded. Now, the setup for a 2-prover 

system would be similar to the situation in Fig. IV.a.  

  

  

 

 

 

 

 

 

 Here we investigate what happens in these proof systems when the provers can share 

entanglement. Note that one may now think of the two provers as the two players in a game 

similar to what was discussed in preceding sections. The setup obtained is similar to the one 

shown in Fig. IV.b. We now give an example of a two-prover one round proof system that is 

classically sound but become unsound when provers are allowed quantum strategies.  

 

 

 

 

 

 

 

 

 

 

Figure IV.b 

IV.1) 2-Coloring a Cycle 

 
 Here, the two provers try to convince a verifier of 2-coloring a cycle of length N in a graph 

such that all the adjacent nodes in the cycle are of different colors, except nodes which 1 and N 

which should have the same color. This is trivial when N is odd (just assign the coloring) and 

impossible when N is even. However in the quantum case, even when N is even the provers can 

convince the verifier that they know such a coloring with a high probability based on the scheme 

Verifier 

 
Prover 1 

 
Prover 2 

 
Verifier 

     Figure IV.a 

 
Prover 1 

 
Prover 2 

 
Verifier 

Classical 
Communication 

Classical 
Communication 

Entanglement 
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in [10]. 

  

 The verifier asks prover 1 for the color of a random node and prover 2 the color of one of 

the adjacent nodes. If the provers succeed in giving the correct answers to the verifier in repeated 

experiments (with a new random edge chosen) then the verifier would be convinced that they 

know such a coloring. For the classical provers, the probability to fail is at least 1/N. So, the 

probability to convince the verifier 5N times is given by: 

 

          (10) 

 

 The quantum provers can do much better by sharing an EPR pair. When a player is 

asked the color of a bead i, he measures the spin component in the direction iθ  n the x-z plane 

which makes an angle 
Ni

πθ =  with the z axes. The probability to succeed 5N times using this 

scheme is: 

 

          (11) 

 

  So, for N = 100, the quantum strategy allows almost a 90% chance to succeed, 

compared to a 1% for the classical provers. Cleve discusses a slightly different version of the 

same scheme for Odd Cycle games in [11]. 

  
IV.2) 3-SAT Proof System 

  
 This example is given in [11], which is based on a slight variation of the “Magic Square” 

discussed in [12]. Here the authors construct a specific instance of 3-SAT, where the resulting 

formula is not satisfiable, but for which there exists a perfect quantum strategy using a two-prover 

proof system. The “Magic Square” game essentially relies on the fact that there does not exist a 3 

x 3 binary matrix such that each row has even parity and each column has odd parity. Now, 

player 1 is asked to fill in the values of a row or a column, and player 2 is asked to fill in a single 

entry corresponding to one of the three entries given to player 1 (chosen randomly). There is no 

classical strategy that would allow the players to obtain this correlation in every run of the game. 

However, using a quantum strategy player 1 would always be able to meet the parity conditions 

and player 2’s answer would always be consistent to player 1’s solution. 

  

 The generally used two-prover proof system for 3-SAT is similar to the setup of the game 

discussed above. The verifier sends Prover 1 a clause in the formula and Prover 2 a variable 
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from that clause. Prover 1 returns an assignment to the variables that satisfy the given clause and 

Prover 2 must return a value for the received variable which is consistent with Prover 1’s 

assignment. Now, let the variables x00, x01, x02, x10, x11, x12, x20, x21, x22 correspond to the 3 x 3 

binary matrix. 

 

 

 

 

 

 

 

 
 The parity conditions for the first row are satisfied if and only if x00 ∆ x01 ∆ x02 = 0. There 

are similar restrictions on the remaining rows are columns. The above 24 clauses are enough to 

express the six parity conditions. Even though this formula is unsatisfiable, the quantum strategy 

from “Magic Square” game may be used to convince the verifier with certainty that this instance is 

satisfiable. 

 

VI) Summary 

 
 This paper presented a general framework in terms of co-operative games that may be 

useful in understanding quantum entanglement. We note that all the cases where Bell inequalities 

are violated can be considered as games between players where by sharing an entangled state 

they are able to improve their expected payoff. The winning events are determined by whether 

the players are able to obtain certain correlations in their output based on their private input 

signals. Enumerating the Bell inequalities for a given experimental setup allows us to search for 

these quantum advantages.  

 

 One immediate possibility for future work is to determine a more refined approach to 

search for violations given the list of inequalities produced by the method in Section IV. This also 

allows for numerical studies of these games, hence possibly simplifying the search for generating 

useful multi-player quantum games [17]. 

  
 The convex polytope discussed in Section IV is contained within a larger region that is 

allowed by quantum physics. How could we go about determining the surface of this region? 
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Appendix 

 

 A bimatrix game consists of two players (I and II) each of whom has a finite number of 

actions (pure strategies) from which to choose. Let x be a mixed strategy (probabilistic distribution 

over the rows and columns) of player I (the row player) and y a mixed strategy of player II (the 

column player).  

Strategy x is a m-vector, where xi ≥ 0 and ∑
=

m

i
ix

1

= 1     x = 
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Strategy y is a n-vector with similar constraints. The payoffs for the strategies of I and II 

are given by two m x n matrices A and B respectively. Assume WLOG that matrix elements for A 

and B are positive. This is unrestrictive because all the entries in A and B can be made positive 

by adding sufficiently large scalars. This doesn’t affect the equilibrium solutions.  

 

The entry aij is the payoff to player I, when he plays his i-th pure strategy and the 

opponent (player II) plays the pure strategy j. According to the mixed strategies x and y, the entry 

aij contributes to the expected payoff of player I with weight xiyj. So, the expected payoff for player 

I is (adding up all the entries of A weighted by the corresponding entries of x and y) 

 

 

 

 

 Similarly, the expected payoff of for player II is xT By. A Nash equilibrium is a pair of 

strategies (x, y) such that neither I nor II have an incentive to change strategy, i.e. 

       

&   for all vectors x’ and y’ 

 

 Such an equilibrium solution always exists. So, given the matrices A and B, the problem 

is to find a mixed strategy equilibrium. It is not known whether there is a polynomial algorithm for 

this problem.  

 

A correlated equilibrium is nothing more than a Nash Equilibrium where each player may 

receive a private signal before the game is played. The players may base their choices on the 

signals received. A correlated equilibrium results when each player realizes that the best he can 

do is to follow the recommendation, provided that all the other players do likewise. 
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