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Abstract
This work explores a particular approach to testing a developmental filesystem – comparing its
behavior with that of a reference implementation in a live environment, that is, one consisting of
real users, precious data and non-synthetic workloads. We believe such a configuration has the
potential to offer unique insight into the system's behavior as well as aid the debugging effort.
The  major  areas  considered  are  live  synchronization  of  NFS  servers  and  comparison-based
analysis  of  an  NFSv3  request-response  stream.  The  work  will  include  the  construction  and
subsequent experimental usage of a tool, dubbed the NFS Tee, which will serve as a key testing
mechanism in the Parallel Data Lab's Self-* Storage project.

1. Background
The Parallel Data Lab's Self-* (pronounced “self star”) Storage project [1] seeks to drastically
reduce the amount of human intervention required to administer  a large-scale storage system,
employing a variety of techniques to increase the system's autonomy while granting the human
administrator  control  over  high-level  service  goals.  Self-*  is  a  complex  system with  a  rich
assortment of interacting components.

At  the  heart  of  Self-* lies  a  distributed object  store.  Users  do not  interact  directly  with this
component, instead communicating with various “head-ends” which translate between existing
network storage protocols (NFS, AFS, etc.) and Self-*'s internal protocol. One reason behind this
design decision was that  supporting well-established protocols would ease deployment of the
prototype and thus allow the system to be tested under workloads produced by real users. These
workloads are likely to be richer and more varied than those obtainable via traces and simulation
alone.

Certain  issues  arise.  Users  are  unlikely  to  entrust  their  daily  work  and  valuable  data  to  an
unproven developmental system, even if it exports familiar interfaces. Given that a way is found
to mitigate that shortfall of confidence, the newly obtained workloads must be harnessed to aid
debugging and gain insight into the developmental system's behavior. Our system addresses these
issues in an NFS context. From here on, we refer to it as the tee1. 

2. Introduction
The  tee  provides  users  with  industry-standard  levels  of  reliability  and  availability  by  doing
exactly that – storing their  data  on a commercial  filer,  and fulfilling their requests  from that
machine. It forwards a duplicate of the request stream to the Self-* NFS head-end and compares
the results produced with those produced by the commercial filer.

As a pre-requisite to performing those comparisons, the tee replicates filesystem objects from the
commercial filer to Self-* and maintains synchronization between the two. Doing this efficiently,
in a live environment and without resorting to locking proved to be a significant challenge.The

1 In light of similarities between it and the UNIX tee utility.



tee's location in a deployed Self-* environment is depicted in the following diagram. A single
RPC transaction is taking place. Each arrow style depicts a unique RPC packet. The NFS filer is
the “reference” server and the Self-* NFS head-end is the “developmental” server.

The tee performs three functions:

1. Relays each user request to both servers, reference and developmental. Relays the reference
server's response back to user.

2. For each request, compares the developmental server's response with that of the reference
server. The comparison logic used is discussed later.

3. Replicates the contents of the reference server onto the developmental server and maintains
synchronization between the two copies of each object.

It is subject to the following primary design requirements:

1. It should be transparent. Its behavior as observed by a client should be indistinguishable from
that of the reference server. The tee may perturb the request and response stream at most to
the extent of the underlying network.

2. Functionality non-essential to client sessions (function 2 and 3, above) should be hot-
pluggable, meaning able to start running without causing any downtime.

3. It should have minimal impact on client-perceived throughput and response time.

4. It should be robust. File service to users should continue uninterrupted despite faults in
components not essential to providing that service.

10TB of data and 100*106 filesystem objects [2] were used as ballpark figures to guide the initial
design.

To perform its functions, the tee must be fully interposed between user systems and the reference
server such that it sees every request that reaches the reference server and every response that
gets sent  back.  In the  absence  of that  assumption,  the  tee  would not  be able  to conclusively
determine the state of each filesystem object at all times. This would jeopardize its ability to
perform function 3 and consequently, function 2. For the same reason, filesystem objects must
not be modifiable via other channels.

The rest of this paper is laid out as follows. Section 3 describes the tee's architecture at a high
level and touches on some of the support facilities which were implemented. Section 4 discusses
the approach to tackling the problem of synchronization, presents the resulting algorithms and
describes their implementation. Section 5 does the same for comparison. Section 6 describes the
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testing  and  evaluation  methodology  and  [presents  the  results  obtained  thus  far].  Section  7
mentions some possible future work, and Section 8 concludes.

3. Architecture
The tee's high-level architecture is depicted in the following diagram. The implementation was
done in C++. The State Threads library was used as it is particularly well-suited to network I/O-
bound  applications,  and  provides  a  non-preemption  property  that  greatly  simplifies
implementation. Various components of note are described below.

Relay (A).  The tee's user-visible component is an RPC relay2 which multiplexes user requests
onto  a  single  connection  with the  reference  server  and relays  its  responses  back.  Each  RPC
packet flowing from the clients to the reference server, and back, is made available on a read-
only basis to the plugin via shared memory buffers (B).

NFS plugin  (C – J).   The NFS plugin  implements  the  tee's  comparison  and synchronization
functionality.  In  the  interest  of  fault  isolation,  it  runs  as  a  separate  process  from the  relay.
Communication with the relay is performed over a local socket, and consists of small messages
containing (shm key, offset) pairs.

Live  object  table  (D).   This  hash  table,  keyed on  reference  filehandle,  stores  the  combined
working  set  of  the  comparison  and  synchronization  modules.  Each  entry  contains  the
corresponding developmental filehandle and various other object-specific fields. As data in this
table is expected to be heavily accessed, it is kept in core at all times. It can be thought of as level
1 of a 2-level, internally managed cache of object-related data.

2 Based on code by John Strunk.
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Global object table (E).  This table, intended to be implemented as a b-tree, is a superset of the
live object  table,  representing all  objects  on all  exported filesystem trees in a space-efficient
manner. The table's core utilization will be managed by manually “paging” portions of it between
core and disk. Essentially, the size of the live object  table and the  “paged in” portion of the
global object table combined is kept less than the amount of physical memory in the system.

Dispatcher (C).  The dispatcher receives RPC buffer location information from the relay for each
RPC that flows from client to reference server and back. It updates internal data structures (D, E,
F) and enqueues objects that describe work onto the comparison and synchronization modules'
work queues.

Synchronization  & comparison modules (H & G).  Described in sections 4 and 5, respectively.

The following support facilities were implemented but not depicted in the architectural diagram.

NFSv3 & RPC client library, Server classes.  Functions representing NFSv3 calls and a simple
RPC client library were implemented. These are transport-independent, performing network I/O
via a transport-specific server object. Each server object exports a raw I/O interface in addition to
an RPC call interface.

Thread groups.  A thread group is an abstraction encapsulating the following components:  a
work queue, shared data, and a set of threads each with their own server object. Work is assigned
to the thread group, and the threads spend their lifetimes processing work on the queue. Threads
can be started and stopped at any time by altering the number of active threads in the thread
group.

4. Synchronization
What does it mean for an NFS object to be synchronized? Let Or and Od be two objects. Let A be
the  set  of  arguments  to  an  NFS  request,  and  let  R be  the  set  of  return  values.  Let

f :O×AR be an NFS request,  i.e.  a function that  given an object  and an argument as
input, returns a value. Then, Or and Od are synchronized if, for any f, f(Or, Ai) = f(Od, Ai). In other
words, two objects are synchronized if an NFS request performed on each of them with the same
arguments can be expected to return the same value3. This expectation  lays the foundation for
comparison-based verification of the two programs which claim to implement the protocol.

The definition above becomes useful once we know, besides the arguments in a request,  what
object state affects the value computed by it, as it is this state that we must replicate. This is less
implementation-specific  and more constrained than one might  think, as NFS requests and the
objects they operate on are very similar to those found in conventional filesystems. Thus, using
that knowledge and the NFS protocol definition, it is possible to determine with some certainty
what constitutes an object's state.

The following table describes what we consider state for each of the NFS object types. 

Directory Regular file Symlink Special file

1. Attributes

2. Directory
entries (name-
type pairs)

1. Attributes

2. File data (bytes)

1. Attributes

2. Stored pointer

1. Attributes

Table 1  Definition of "state" for NFS object types

Besides returning a result, an NFS request may transform an object to a new state. If it does, we

3 The concept of equality referred to here is not strict equality – Section 5 elaborates.



call it a “write”. An object's lifetime consists of a sequence of states with transitions between
adjacent states brought about by writes. This is depicted in Figure 1, which shows a period in the
lifetime of two objects.

In Figure  1,  wi,  ...,  ri,  wj is  the  request  stream passing  through  the  relay from users  to  the
reference server. R1, ..., Rn represent consistent states (states between 2 writes). For any object, it
is crucial that we replicate a consistent state – otherwise, the results of future comparisons are
indeterminate (recall that to compare f(Or) and f(Od), must have Or = Od and that on the reference
server, requests always take consistent states as input). 

As will be seen,  replicating a consistent state does not imply we must  read a consistent state.
With regular files, we can get away without  doing the latter (exactly how is explained later).
With directories,  however,  we don't have this  luxury.  The reason is  that the NFSv3 calls  for
reading a directory behave unpredictably across directory operations [3]. Thus, upon detecting a
change we are forced to rescan the directory from the beginning.

After a consistent state has been replicated, the object's state on the developmental server (D2 in
the figure) corresponds to the object's state on the reference server some time in the past (R3 in
the figure). Notice that in the time it took to replicate R3, 2 writes and a read have reached the
reference server. With respect to the request sequence w3, ..., w5, Or and Od are synchronized.
However,  with  respect  to the  request  sequences  r1,  ...,  w5 and w4,  ...,  w5,  Or and Od are  not
synchronized (w3(Or) and w3(Od) are). The question then is how to deal with writes that occur
during the synchronization procedure. There are 3 possible ways:

1. Resynchronize  from  scratch.   Basic  synchronization  takes  this  approach,  as  shown  in
Figure 1. If Or changed during replication (detected by noticing m4 and m2 – the object's
mtimes – differ), synchronization is restarted.

2. Store the writes in their original format.  In this approach, the original write RPCs are
buffered and played back after initial replication completes. This approach was not chosen
due to space concerns, and because the 3rd approach had the potential to be more efficient.

3. Store  the  writes  in  an  internal  format.  In  this  approach,  the  writes  are  parsed  and

Figure 1  Basic synchronization of 2 objects
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converted into an internal representation (called a “changeset”) that is then committed to
the developmental server after initial replication completes. This approach was used both
for  directory  and  regular  file  synchronization,  and  is  elaborated  on  in  their  respective
sections.

Ways 2 and 3 prevent having to resynchronize from scratch when an object changes during initial
replication – useful for busy objects.

Regardless,  once  initial  replication  completes  and  intervening  writes  have been handled,  the
object is synchronized. Comparison is “turned on” for the object and all subsequent requests that
reference it are forwarded to the developmental server for comparison. This continues until the
object  loses synchronization, which occurs  when it  undergoes  write sharing. Write sharing is
elaborated on in section 4.3.

4.1.  Directory synchronization

The  algorithm  for  directory  synchronization  is  as  follows.  O is  the  tee  data  structure  that
represents the object pair Or, Od.
1 sync(Directory Or, Directory Od, bool initial):
2   if (initial):  // initial replication
3     d_dirlist = scandir(Od)
4
5 i_mtime = get_mtime(Or)
6 O.clear_changeset()
7 r_dirlist = scandir(Or)
8 f_mtime = get_mtime(Or)
9
10 if (i_mtime != f_mtime):
11   return RETRY_LATER
12
13    enqueue(intersection(d_dirlist, r_dirlist)) // for traversal
14 Od.remove(d_dirlist – r_dirlist)
15    Od.create_n_enqueue(r_dirlist – d_dirlist)  // after creating,
16    // enqueue for sync
(continued)

Figure 2  Synchronization of a directory
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17  // commit changeset (intervening writes)
18  while (!O.changeset_empty()):
19    Od.remove(O.rem_set)
20 Od.create_n_enqueue(O.add_set)
21
22  return SYNCED

In lines 13 & 14 the difference between the 2 directories  is computed and initial  replication
performed (D2 = Wx(D1) in Figure 2). In lines 17–19, the changeset entries (intervening writes)
are committed to the developmental object. In Figure 2, the changeset is represented by Wcs and
is formed from w3, w4 and w5. A directory object's changeset consists of two sets of (name, type,
filehandle) tuples, one containing entries to be created and the other, entries to be removed.

Special handlers for the various directory operations (CREATE, REMOVE, etc.) are executed by
the dispatcher upon receipt of a successful response to those requests. The handlers update the
changeset for the referenced directory by adding or removing an entry. If an entry that is being
added or removed is currently in the opposing set, it is simply removed from the set and network
I/O is conserved.

Directory synchronization replicates (name, type) entries within each directory and enqueues all
the entries it encounters for synchronization (in effect, traversing the filesystem tree). The task of
synchronizing  an  object's  data  is  left  to  its  object-specific  synchronization  handler.  Thus,  a
directory can be deemed synchronized despite the fact that some or all of the objects pointed to
from it are unsynchronized.

To handle hard links, before an object is created, it  is looked up in the object table using its
reference filehandle. If the object exists and has a reference-developmental filehandle mapping, a
hard link is created instead of a new object.

4.2.  Regular file synchronization
The regular file synchronization algorithm is as follows.
1 sync(RegFile Or, RegFile Od, bool initial):
2   if (initial):  // initial replication
3     i_mtime = get_mtime(Or)
4 O.clear_changeset()
5 (buf, f_mtime) = read(Or, 0) // read 1st unit
6
7 if (i_mtime != f_mtime):
8   return RETRY_LATER
9
10 truncate(Od)
11 write(Od, 0, buf)
12
13 while (Or.eof()):  // replicate rest of file
14      (buf, f_mtime) = read(Or, ++curr)
15   write(Od, curr, buf)
16  
17  while (!O.changeset_empty()):  // commit changeset
18    (start, end, len) = O.changeset_pop()
19 if (Or.cached(start, end, len)):
20   write(Od, start, len, cached_buf)
21 else:
22   (buf, _) = read(Or, start, len)
23   write(Od, start, len, buf)
24
25  if (f_mtime == i_mtime): return SYNCED
26  else if (O.changeset_last_mtime >= f_mtime): return SYNCED
27  else: return RETRY_LATER



A few points worth mentioning:

• The changeset for a regular file is a list of extents; each item within the list stores the tuple
(start_offset,  end_offset,  cached_data).  The  list  records  the  regions  of  the  file  that  were
modified by intervening writes. When a successful write is observed, and its post-operation
mtime corresponds to a state after the initial read, the extent that was written to is inserted
into  the list,  coalescing if  necessary (adjacent  extents  are  combined & after  an insert,  no
extents overlap). As an extra optimization, a certain amount of data written is cached to avoid
additional  network  I/O and  server  load  for  small  writes.  The  amount  of  data  cached  per
regular file is kept below a certain value.

• For regular files, it is not necessary to read the entire file in a consistent state. Instead, it is
sufficient to read the first arbitrarily sized unit consistently (lines 3–8 in the pseudocode). The
reason we must do this has to do with updating the object's changeset upon observing a write.

In Figure 3, our first read took place at R1. Clearly, all writes that occurred subsequent to R1

should be recorded in the changeset. In the figure, it is easy to see that this corresponds to all
writes with a post-operation mtime4 greater than m1. Consider, however, what would happen
if Or changed while we were performing this initial read (the post-operation mtime observed
on line 5 differed from the mtime observed on line 3). This means that between those points,
any number of writes took place. When do we begin recording changes in the changeset, i.e.
what  is  the  minimum post-operation  mtime for  which  we update  the  extent  list  with  the
written-to extent? If we begin at  i_mtime, a write occurred at i_mtime+1 and our initial
read  read  the  state  at  i_mtime+2,  we  may erroneously  overwrite  upon committing  the
changeset. If we begin at  f_mtime as observed on line 5, our initial read read the state at
f_mtime-2 and a write occurred at f_mtime-1, we may miss the contents of the write.

4 The NFSv3 WRITE call returns the mtime of the file after the operation completed.

Figure 3  Synchronization of a regular file
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Thus, by beginning changeset updates between the initial mtime sample and the initial read,
and by ensuring that no changes took place between the initial mtime and the post-operation
mtime of  the  read,  we are  guaranteed  to  observe  exactly  the  writes  we want.  Viewed  in
another  light,  we  have  successfully  “named”  the  consistent  state  at  which  we  began
synchronization. Each consistent state can be labelled by the post-op mtime of the write that
caused the transition to it.

• After our initial replication (by line 17) we arrived at state D4 which is consistent with R1 but
not with subsequent states. See Figure 3. In the Or sequence, the red rectangle represents the
region of the file that we are replicating at that point  in time. In the Od sequence, the red
rectangle represents the growing region that has been replicated. The blue rectangles represent
the region of the file  that  was overwritten by the most  recent write.  Note that state D4 is
inconsistent with R2 and R3, but by committing the changeset (replicating observed changes),
state D5 becomes consistent with R3.

This  changeset  update  policy  is  likely  to  save  us  significant  amounts  of  time  when
synchronizing large files that undergo small changes.

• We do not bother reading the initial contents of Od, comparing that with what we read from
Or, and committing the difference. Firstly, upon synchronizing O for the first time we must do
a full scan of Or in any case. Doing a full scan of Od and then computing and committing the
difference between Or and Od would impose additional network and computational load over
simply overwriting Od, at no apparent benefit.

4.3.  Write sharing
Write sharing is the condition where there are 2 or more outstanding requests on an object at a
server such that the order in which the requests were actually executed cannot be determined by
an external observer. Because we cannot determine the state of the object after an occurrence of
write  sharing  by  observing  the  request  stream,  we  consider  that  the  object  has  become
unsynchronized and enqueue it for resynchronization.

The write sharing detection algorithm is as follows. Assume w2 arrived after w1. In the diagram,
w.req and w.ack are the times at  which the request's  call  and reply are observed by the tee,
respectively.

bool sharing(Request w1,Request w2):
  if (w2.req < w1.ack ||

NOT_RECVD(w1.ack)):
    if (ISWRITE(w2)&&ISNEUTRAL(w1)||
    |   ISREAD(w2)&&ISWRITE(w1)):
    | return true
    else
    | return false

A “neutral” request is one that neither modifies
nor  accesses  an  object's  state.  The  algorithm
checks if the execution windows of the requests

overlap, as observed by the tee. A request's observed execution window is guaranteed to fully
overlap its actual execution window – the period it spends at the server, and thus the period in
which it possibly contends with another request – for the following 2 reasons:

1. the request cannot have begun executing on the server prior to  w.req (server would not
have received the call)

Figure 4  Example: write sharing detection
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2. the request  cannot have finished executing on the server  after  w.ack (the reply cannot
have been sent after execution completed)

Thus, the algorithm may produce false positives, but never false negatives.

4.4.  Synchronization module
The synchronization module is responsible for replicating the various filesystem trees exported
by the reference server onto the developmental server,  and for keeping them synchronized.  It
takes the form of a thread group with a priority queue containing pointers to the object table
entries of objects queued for synchronization. These include objects newly encountered since the
last invocation of the tee, and objects for which an occurrence of write-sharing was detected.

An object's synchronization priority is equal to the sum of the weighted moving average of its
access frequency and the synchronization priorities of objects descended from it in the filesystem
tree. Backpointers that depict child-parent relationships are opportunistically established within
object  table  entries.  When an object  is  accessed,  the  weighted  moving average of  its  access
frequency is updated, and the path from it to the root is traversed as far as possible, updating the
synchronization priority of each object along the way. Doing this optimizes the following case
that is likely to arise frequently in the early stages of synchronization – if an object's name does
not exist, it cannot be created until all directories from its parent to the filesystem root have been
created.

The hope is that by synchronizing entries in order of their access frequency, the tee can quickly
reach a state where the majority of responses can be compared, since access frequencies within
each exported tree are likely to vary significantly.

The overall synchronization procedure is bootstrapped by the dispatcher by enqueueing, for each
exported tree, an entry corresponding to its root directory.

5. Comparison
As touched on in Section 4, given that two objects Or and Od are synchronized, we can compare
the  results  of  executing  f(Or,  A)  and  f(Od,  A)  on  the  reference  and  developmental  servers,
respectively.  f is an NFS request and  A is an argument list. Although server implementors are
given significant freedom in building their implementations, the NFS protocol is, in most cases
reasonably specific about the semantics of each request. Thus, if 2 servers claim to implement
the protocol and one is accepted to be correctly implemented and robust, a discrepancy in the
behavior of the other is at least worth a close look. The primary advantage of the tee with respect
to  such  verification  is  its  ability  to  perform comparison  under  a  live,  continuously  varying
workload – one which may give rise to behavior that would be unproduceable via a synthetic test.

An  NFS  request  takes  arguments  and  returns  results  in  a  format  similar  to  a  C  struct.
Fundamentally,  for  each field  comprising a response,  we are concerned with the  question of
whether it is comparable, and if so, by what method. A comparison rule expresses the derivation
of an answer from the information available  to the comparison module for  each request:  the
request itself, the pair of responses, data on write sharing (if any). For instance, a rule may state
that if the request is a “lookup”, the resulting filehandles are uncomparable.

A set of comparison rules have been formulated by studying the protocol. The set will be refined
based  on  the  experienced  gained  from  experimenting  with  the  tee.  In  the  common  case,
comparison amounts to testing the byte equality of a field. Some fields, however, require special
handling (eg: time-related fields must be compared within a certain delta) – in such cases, a field-
specific  handler  is  invoked  during  comparison.  A  few  example  rules  are  given  below  in
pseudocode (assume the default is that every field is comparable by simple equality). 



1 // concept of “dirty set” described in Section 5.1
2 if (write_sharing) {dirty_set}.comp = !BITWISE | SPEC_HANDLER
3 ... other general rules ...
4
5 fattr3.{nlink,used,fsid,fileid}.comp = NO_COMP
6 fattr3.{atime,mtime,ctime}.comp = !BITWISE | SPEC_HANDLER
7 ... other field-specific rules ...
8
9 if (reqtype == SETATTR && obj_ctime) obj_wcc.comp = NO_COMP
10 if (reqtype == LOOKUP) obj_fh.comp = NO_COMP
11 if (reqtype == LOOKUP && !synced(resp.obj)) obj_attr.comp = NO_COMP
12 ... other request-specific rules ...

The rule on line 5 states that a number of subfields in an fattr3 field are uncomparable. There
can be 2 reasons for this. First, certain information may simply be different by virtue of the fact
that the servers are separate entities – for instance, the physical  space used by a file (used)
depends on the block size of the underlying filesystem. Other information cannot be compared
because  in  extremely rare  instances,  a  property of  an  object  may deliberately  be allowed to
diverge between the reference and developmental servers, thus causing the field that depends on
it  to  be uncomparable.  This  is  done due to  practical  concerns  imposed by the  design of the
synchronization procedure. An example is the nlink field – the link count of a file. If a file's
synchronization encompassed this field, all names for the file would have to be created before
requests on it could be compared – a seemingly unnecessary sacrifice of comparison data.

Ideally, rules  would be expressed in a simple high-level  language of a form not unlike those
commonly used in packet  filters.  Rules written in this language would then be interpreted at
runtime. This would allow the ruleset to be modified at runtime without having to restart the tee.
Because the NFSv3 protocol is of a tractable size and does not change often, rules are currently
hard-coded. Each NFS request type is represented by a single “request class”, which contains
request-specific rules and inherits general and type-specific rules.

When a discrepancy is encountered,  a log entry is made. This entry contains the request  and
response packets5 and some object-specific statistics – number of successful/failed requests of
each  type,  number  of  outstanding requests  when  the  discrepancy occurred,  etc.  Periodically,
server-wide statistics are logged – number of requests of each type (and the number of times each
result code was seen), level of concurrency, etc.

Write sharing and the algorithm used to detect it are described in section 4.3. Because the actual
execution order of shared writes cannot be determined at the tee, their results are uncomparable.

5.1.  Comparison module
The comparison module consists of a thread group with a queue containing pointers to request
table entries, each representing a request. Workers grab a unit of work, forward the request to the
developmental server, wait for responses from both servers, then execute the comparison logic on
the response pair.

5 In the case of requests that potentially take or return large amounts of data, like READ, WRITE,
READDIR and READDIRPLUS, the amount of this data that gets logged is limited.



6. Evaluation
In all the following experiments, PostMark was used as the load generator, running on one client
or  multiple  independent  clients  controlled  from a  central  location.  [client  configuration,  tee
configuration, network configuration]. Unless specified otherwise, the reference server ran the
Linux 2.6.5 kernel NFS server on a Debian 3.0 system. [ref server configuration].

[PostMark provides a rather biased workload – use SPEC SFS as well]

6.1.  Relay & NFS plugin
To  measure  overhead  on  user  activity,  throughput  (requests/second)  and  latency  (difference
between time the response was sent  to the client and time the request was received from the
client) are measured in the following experiments. In each experiment, each quantity is measured
versus number of clients.

1. No tee, clients talk directly to reference server – baseline

2. Relay only – overhead of relay component

3. Relay and NFS plugin – overhead of plugin component

6.2.  Synchronization
The effectiveness of the synchronization algorithms is characterized by how quickly the objects
that make up the server's working set can be synchronized. Call this the “convergence rate”. To
assess the convergence rate of the various combinations of core synchronization algorithm and
priority assignment policy, we measure the proportion of requests that are comparable versus
time,  taking  into  account  those  that  are  uncomparable  due  to  write  sharing.  For  basic
synchronization,  only  priority  assignment  policy 2 is  used.  For  synchronization  with  change
tracking, each priority assignment policy is used. This results in a total of 5 experiments.

  Core algorithm

1. Basic synchronization (restart from scratch if object changes)

2. Synchronization with change tracking

  Priority assignment policy

1. weighted moving average (WMA) of access frequency

2. WMA of access frequency with parent updates

3. random

4. zero (this produces FIFO behavior)

6.3.  Comparison
Accuracy of comparison is defined as the proportion of implementation faults that are detected
(assume  that  the  faults  produce  detectable  discrepancies). To  measure  this,  the  following  2
experiments will be conducted.

1. Use  the  unmodified  Linux  2.6.5  kernel  nfsd  as  the  reference  server.  Augment  the
developmental server with a simple fault injection mechanism that injects “faults” both at
the filesystem layer and the NFS server layer. For instance:

1. Filesystem layer: change/remove/create files and directories

2. NFS server layer: perturb response fields while maintaining a count of the number of
requests affected, by request type



Run a workload through the tee to the 2 servers. Compare the number of discrepancies
detected with the number of faults injected, either by object or by request type.

2. Run  a  workload  through  the  tee  to  2  identical  servers.  The  number  of  discrepancies
detected should be zero.

To measure the performance of the comparison procedure, rate of comparison and rate of request
receival (both in requests/sec) are measured while varying the load factor.

An  interesting  additional  experiment  would  be  to  measure  the  discrepancies  detected  while
running  a  workload  through  the  tee  using  two  different  existing  NFS  implementations  as
reference and developmental server, for instance the FreeBSD kernel nfsd and the Linux kernel
nfsd.

7. Future work
Idle detection & rate throttling.  Detecting periods of system idleness would allow the resources
consumed by the synchronization and comparison modules to be controlled by limiting their rate
of processing. This would help reduce the overhead on user activity.

Visualization & analysis tools.  Making sense of the discrepancies logged is a task deliberately
left to programs outside the tee for performance reasons. Tools that specialized in the analysis
and user-friendly display of this data would complement the tee nicely.

8. Conclusion
[depends on the results obtained]

It  is  hoped that  the  tee  will  serve both  as  a  proof  of  concept  regarding a  comparison-based
approach to system verification, and as a valuable testing tool in the Self-* development cycle.
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