
From Typed Assembly Language to Proof Carrying Code

Alex Vaynberg
Advisor: Peter Lee

April 30, 2004

1 Introduction

This paper describes a translation between two meth-
ods of certifying binary code. By certified binary
code, we mean code that comes with a mathemat-
ical justification that the code will not perform oper-
ations that will cause undesired effects. Such oper-
ations include writing to arbitrary point in memory
and jumping to an arbitrary point in the code.

Before the methods for certifying code were de-
veloped, two approaches existed for showing that the
code was safe to run.

1. The author places a cryptographic signature on
the program.[7] This guarantees that the code
is the code written by the the person whose sig-
nature is shown. Thus, the user can trust that
the author did not place dangerous code into
his program. However, it is a poor method, as
the author may unknowingly produce danger-
ous code due to bugs and vulnerabilities.

2. The interpreter / virtual machine can babysit
the code.[7]. This method, although guaran-
teeing that all dangerous instruction will not
execute, tends to be quite slow.

The certified code approaches differ from the tra-
ditional approaches:

• There is no need to trust the author. The au-
thor supplies all the information necessary for
the software user to easily check the program.

• There is no need to check the code at runtime.
All the checking is done before running, leaving
pure native binary to run on the actual ma-
chine. Thus the overhead is a one-time cost.

The methods for certifying code are Typed As-
sembly Language (TAL) and Proof Carrying Code

(PCC). Other than their goal of producing safe pro-
grams, these methods are not very similar, utilizing
very different approaches to guaranteeing safety. This
is a consequence of how TAL and PCC programs are
produced. TAL is typically compiled from languages
that are already considered safe. PCC is well suited
for the cases where static safety is not so obvious, or
the conditions for safety are complex.

The goal of this work is to produce a translation
from TAL to PCC. The reasons to why the transla-
tion is useful are as follows:

1. One system, but not the other, might be in-
stalled on the user’s machine. Having a trans-
lator would eliminate the absolute need to have
both systems. Moreover, it may be undesir-
able to have both systems since each requires a
special program to inspect the code, and verify
that it is indeed safe. This means that there
would be two systems which may have safety
compromising bugs.

2. The alternative to translation is retargetting.
This means that a compiler for some language
would have to know how to produce code for
both systems. Given that the process of gen-
erating TAL if quite different from process of
generating PCC, it is very likely that a single
compiler will target a single system. Hence a
translation would be useful.

3. The scientific community has already recog-
nized that there is a connection between TAL
and PCC [2]. This translation is another step in
formalizing and understanding this connection.

The main outcome of this research is a complete spec-
ification of a translation from TAL to PCC. Addition-
ally there is a proof that the translation of any safe
program in TAL is a safe program in PCC that per-
forms the same computation. Thus, we show that

1



the PCC method for ensuring safety is at least as
powerful as the method used by TAL.

1.1 Typed Assembly Language

1.1.1 Type System

Programs can execute operations that may not be
specified, or even dangerous. Consider trying to add
a function to a number, or writing to arbitrary lo-
cation in memory. A program that does this may
end up in an undefined state or possibly crash. To
prevent this, we use a type system.

A type system is a set of inductively defined rules,
such that any program that satisfies the rules can not
ever execute an operation that results in an undefined
state. This is achieved by keeping track of all data
and checking that it is only used in the way that it
can be used. The way a specific piece of data can be
used is called a type.

The advantage of having a type system is that a
simple check that a program satisfies the rules guar-
antees that the program will never be in an undefined
state. There is no need to run or debug the program
to determine this. It is a logical impossibility for the
program to be well-typed and end up in an undefined
state.

1.1.2 Typechecking

Typechecking is a process of checking that a pro-
gram is valid in a given type system. This involves
determining a type for every expression in the pro-
gram, such that it is consistent with the rules. In
some cases it is impossible to automatically determine
types. This is resolved by using type annotations, a
syntactic construct that explicitly defines a type for
a specific expression. These ambiguities frequently
occur when determining the types of functions, and
some languages require the types of functions to be
explicitly specified.

Once the entire program has been typed in accor-
dance with the rules, a program is called well-typed.

1.1.3 Typed Assembly Language

Typed Assembly Language is a generic platform-
independent assembly language reinforced with a
type system. Since the type system is sound, any
valid program written in TAL is safe.

The TAL code that is used in this paper is de-
fined in the Morissett et al.[4] The type system al-
lows for integers, tuples, recursive functions, existen-

tials (packages of related information), and polymor-
phism. [4]

This typed assembly language can and has been
made precise for various architectures with small ad-
justments. There is a working implementation for
the x86 architecture: TALx86[3], which includes a
compiler for the PopCorn language, which is a safe
language that is similar to C[3].

1.2 Proof Carrying Code

Proof Carrying Code (PCC) is a different approach
to certified code, designed by George C. Necula and
Peter Lee.[5] The idea behind PCC is that each as-
sembly instruction is associated with a clause in first-
order logic that specifies the conditions required for
the instruction to be safe, as well as how the state is
altered.

Considering the definitions of machine instruc-
tions and an idea of what it means for the program
to be safe, one can define a set of rules called the
Verification Condition generator (VCgen). When the
rules are applied to a program, they result in a state-
ment in first-order logic, that is called the Verification
Condition (VC) of the program.[1] If the statement
is true, then at any point during execution of a pro-
gram, the program is always in the state where it is
safe to execute the next instruction.

At certain points in the program it is hard to de-
termine the required set of conditions needed for VC
to be true. For example, functions and loops may
need to contain additional conditions than are not
obvious from the code. These are accommodated by
a special INV instruction that specifies invariants for
entry into that block of code. Specifying incorrect in-
variants can not circumvent the safety of a program,
since the invariants only serve as guides, and not as
declared truths.

In order for the code to execute natively on a real
machine, once the program is checked, the INV in-
structions are stripped to allow the code to run just
like any native binary.

The last part of the PCC program is the guarantee
of the truth of the VC. This is a precise, machine-
checkable proof of the VC. A trusted proof checker
can be used to check the proof. If the proof is valid,
then the VC of the program is true, and hence the
program can never execute an instruction while in the
state that contradicts the safety requirement for that
instruction.

The typical work-flow of a PCC-certified program
is:

2



1. Code provider generates a PCC program by
compiling from some source language. The re-
sulting program contains INV instructions, as
well as other information that will be helpful in
generating the proof.

2. Provider runs VCgen to generate the VC (the
logical statement about safety of the program).

3. Provider generates the proof of the VC (using
the extra information in the assembly). This
proof is attached to the program.

4. The user gets the code and the proof.

5. The user regenerates the VC using VCgen. This
is done so that the provider could not provide
an incorrect VC for the program.

6. User checks the proof of VCgen, which is an
easy problem.

7. User is now sure that the program satisfies the
safety that is demanded by VCgen, and pro-
ceeds to run the program.

2 Translation

2.1 The Starting Point

A precise definition of a TAL program consists of 3
items:

1. Starting Heap. A heap is a set of word-sized
labels that point to large values that are stored
in memory. There are two types of values that
can exist in the heap: code/function (making
the label a jumpable location), or a tuple. The
items in the tuple may contain any word-sized
values including labels back into the heap.

2. Starting Register File. A register file is an
initial set of word-sized values that are assigned
to registers before the program is run. The val-
ues may include labels into the heap.

3. Starting Code Block. This is a block of as-
sembly instructions that is executed upon run-
ning the program. These differ from the code
blocks in the heap by the fact that there are no
labels pointing to the starting code block. This
means that the instructions in the starting code
block can be executed only once.

The code values in a heap of TAL program look
like this:

code []{r1:<>,r2:int}
mov r1, r2
haltint

Each code block contains a code header which de-
scribes the type requirements on arguments. In the
example above, the code requires that r2 (register
2) contains an integer, and that r1 is a pointer to
an empty tuple(unit). The representation of that is
not specified, and can be simply treated as any value.
The rest of the code value is a list of instructions that
is well-typed given that the

{r1 :<>, r2 : int}

is indeed true.
The mathematical definition of well-typedness for

code is specified like this:

Ψ; ∆; Γ `TAL I

This means that the instructions I are well-typed in
the context of a heap with a type Ψ, and a register
file with type Γ. ∆ is a list of type variables that are
needed to express polymorphism, and full explana-
tion is beyond the scope of the paper. However, it is
handled in the tech report available from the author.

The well-typedness of the code is checked through
the use of inductive rules such as the one for move:

Ψ; ∆; Γ `TAL v : τ Ψ; ∆; Γ{rd : τ} `TAL I
Ψ; ∆; Γ `TAL mov rd, v; I

(s-mov)

Below the line is the definition of the safety of any
execution starting with the mov. Above the line is the
requirement for the declaration below the line to be
true. Thus in the example

code []{r1:<>,r2:int}
mov r1, r2
haltint

the code block is safe if r2 is an integer, and the
haltint is well typed in the same initial heap, and
with r1 and r2 being integers. The former is true by
the requirements on the parameters, and the latter is
true since the haltint instruction safety is given by
the rule:

Ψ; ∆; Γ `TAL r1 : τ

Ψ; ∆; Γ `TAL haltτ
(s-haltτ )

An additional observation about TAL code is that
it is always in a continuation passing style.[4] This

3



means that any halt instruction exits the program
immediately, and that any jump taken is permanent,
i.e. there is no way to get back to that point in the
code, except to recursively call the function.

2.2 The Destination

The definition of PCC does not specify anything
about initial heap or registers. The PCC program
is considered safe when each block of code has a VC
that is true. The VC for a block of code is gener-
ated based only on the the instructions in that block
through a procedure called VCgen. VCgen is a de-
terministic function from assembly instruction to a
logical term, and is completely specified in the PCC
tech report.[6] Here is a snippet of the VCgen:

Instruction VC
MOV rs, rd [rs/rd]V Ci+1

BNE rs, n (rs = 0 ⊃ V Ci+1) ∧
(rs 6= 0 ⊃ V Ci+n+1)

INV P P

The above rules state that MOV followed by some
code would have a true VC if and only if the oper-
ations that follow it have a true VC given that rd

is replaced by rs. This captures the meaning of the
MOV operation, and puts that meaning into the log-
ical definition of truth for a block of code. Similarly,
the VC of the “jump if not zero” instruction captures
the meaning of checking wether the register is zero,
and jumping to the appropriate location in the code
afterwards.

The VC of the INV instruction is interesting, as it
is completely specified by the program. The invariant
is supposed to be both necessary and sufficient for the
VC of the operations that follow it to be true. As-
suming that the invariants are placed at every entry
point, the VC of the entire program is∧

i INV

(INVi ⊃ V Ci+1)

Here is an example of a PCC code block that is
similar to the one for TAL:

INV r2 : int
MOV r1, r2
RET

Assume that the requirement for exiting the program
is r1 : int. Thus the VC of the RET is r1 : int. Notice
that the requirement on the entry point of the block
is similar to the one in the TAL example. We require

that r2 be an integer, and require nothing of r1. The
VCgen of the code segment above is:

r2 : int ⊃ [r2/r1]r1 : int

which simplifies into

r2 : int ⊃ r2 : int

which is clearly true. This means that when we jump
into the code block with r2 being an integer, we exit
the code block only in the ways that satisfy the in-
variants of the program. In this case it is the RET
invariant of r1 : int.

One extra feature is needed for the PCC that is
the destination of a TAL translation: an alloc func-
tion. This is achieved by introducing an ALLOC d, v
trusted assembly instruction that allocates v words of
heap, and places the address into d. The VCgen for
this instruction is an obvious one, which introduces
the section of memory as readable and writable in
the VCgen of the instructions that follow. In PCC
terminology, the rule is:

v > 0 ∧ ∀0≤i≤v(v⊕ i : rw addr)

2.3 Translation

The goal of the translation is to take a TAL program
that is well typed, and convert it into an equivalent
PCC program which has a true VC. There are two
things that need to be converted: the values and the
instructions. The values need to have a conversion
mechanism because certain data might not be repre-
sented the same way in PCC as it is in TAL. A good
example is a function pointer, something that TAL
has, and PCC lacks. As a result, function pointers
have to be represented as indexes, which are then
compared, and appropriate jumps taken.

Thus there are two functions defined: TV for
value translation, which can be seen in figures 2 and
1, and TRANS for instructions translation, defined
in figure 3. Since there may be values embedded in
the instructions, TRANS will use TV to decode the
values.

The code translated using TRANS and TV has
no guarantee of safety by itself. The way to establish
safety is to convert the type information into invari-
ants, such that the VC of the instructions will be true.
Recall the rule for the mov instruction in TAL:

Ψ; ∆; Γ `TAL v : τ Ψ; ∆; Γ{rd : τ} `TAL I
Ψ; ∆; Γ `TAL mov rd, v; I

(s-mov)

4



TVwval(pack [τ, w] as ∃α.τ ′ : ∃α.τ ′ wval)
⇒ TVwval(w : [τ/α]τ ′ wval)

TVwval(l : τ wval) ⇒ l
TVwval(i : int wval) ⇒ i

Figure 1: Word-size Value Conversions

TV(r : τ) ⇒ r
TV(w : τ) ⇒ TVwval(w : τ wval)
TV(?τ : τ 0) ⇒ 0
TV(w : τρ) ⇒ TVwval(w : τ wval)
TV(pack [τ, v] as ∃α.τ ′ : ∃α.τ ′)

⇒ TV(v : [τ/α]τ ′)

Figure 2: Value Conversion

TRANS(mov rd, v; I) ⇒ MOV rd, TV(v); TRANS(I)
TRANS(haltτ ) ⇒ RET
TRANS(ld rd, rs[i]; I) ⇒ LD rd, i(rs); TRANS(I)
TRANS(st rd[i], rs; I) ⇒ ST rs, i(rd); TRANS(I)
TRANS(jmp v) where v : ∀[].Γ′ ⇒ JMP (TJUMP(v))

TRANS(beq r, v; I) ⇒ BEQ r, TJUMP(v); TRANS(I)
TRANS(add rd, v1, v2; I) ⇒ ADD rd, TV(v1), TV(v2); TRANS(I)
TRANS(mallocrd[τ ]; I) ⇒ ALLOCrd, sizof(τ); TRANS(I)
TRANS(unpack [rd, α] as v; I) ⇒ MOV rd, TV(v); TRANS(I)

TJUMP(v) ⇒ n where n is the offset to the code that will inspect TV(v), and will make the jump to the function,

whose address is stored in v. Formal description requires more machinery than is developed in this paper. Precise

specification is shown in the technical report available from the author.

Figure 3: Instruction Translation

5



This rule shows how the typing is determined at a
precise point in the code. The Ψ; ∆; Γ capture the no-
tion of current state. The top left clause captures the
requirements that the value must satisfy, and the top
right clause does the recursion, to indicate that the
rest of the code is well-typed.

This exact notion can be translated into PCC as
proving

TT(∆; Γ, TV(v) : τ) TCTX(Ψ; ∆; Γ{rd : τ}) ⊃ VCgen(I)
TCTX(Ψ; ∆; Γ) ⊃ VCgen(MOV TV(v), rd; TRANS(I))

where TCTX captures the invariants in the current
state of heap and registers, and TT captures an in-
variant of one specific value based on its type.

The idea is to select TCTX and TT such that the
PCC analog is provable. The functions that work for
the entirety of TAL are shown in the figures 4 and
5. It should not come as a surprise that the TCTX
depends on TT, since the register file and the heap
consist of values.

2.3.1 Functions

The definitions above have specified how to translate
blocks of code given a translation of a context. How-
ever this does not cover the entry point. In TAL the
“code” statement defines the starting context of the
block of code, as well as defines the minimum set of
requirements (types of heap and register, i.e. Ψ; ∅; Γ)
on the state so that the machine can jump to it. This
is exactly the job of the INV instruction in PCC. Thus
a simple TCTX(Ψ; ∅; Γ) will produce the necessary in-
variant, as well as the needed starting context for the
block of code that follows.

Going back to the example:

code []{r1:<>,r2:int}
mov r1, r2
haltint

The translation prescribes that the code directive
gets translated into

INV r2 : int

since the empty tuple type <> is an empty conjunc-
tion. Thus the PCC example is a translation of a
TAL example.

2.3.2 Final Touches

The last few difficulties in translations are the start-
ing and halting. The halt is actually quite easy: sim-
ply define the VCgen of RET to be TT(r1 : τ) where τ

is the type of a halt instruction. Obviously this means
that all halts must result in the same type, which is
not true in TAL. However, this is a very minor point,
since we can define the return value to simply hold
any type. Since the program stops running after exit-
ing, forgetting the halt type will not affect any other
part of the program.

The loader is a much more sensitive issue. The
idea is by the time the program loads, the heap and
the initial registers have a proper type, and for PCC
they must have an invariant which is translation of
the types.

An example would be a TAL program that starts
with a tuple in the heap, and r1 having a label that
points to the tuple. The precise definition is:

({l1 7→< 5, 4 >}, {r1 7→ l1}, I)

This sounds simple enough, but PCC has no di-
rect way of dealing with this. There are many possi-
ble solutions to this problem, but the simple one is to
simply have PCC load the values into memory and
check them for consistency with the invariant.

Since the starting memory is consistent, and every
code block has a true VC given the starting memory,
the entire program has a true VC. Thus the entire
program is safe.

3 Theorems

Just because the translation is well-specified, it does
not mean it is correct. To be sure that the translation
works we need answers to the following:

1. Does the translation result in PCC programs
that have true VCs? This is a consequence of
the preservation of safety theorem, which states
that given a well-typed program in TAL, the
translation produces a program with a true VC.

2. Can the translation handle any TAL program?
This is a simple corollary of preservation of
safety, and that the translation is defined for
all possible programs.

3. Does the translated code perform the same
computation? The correctness theorem an-
swers that question by showing that the TAL
program and a PCC program start in isomor-
phic states. Furthermore, if TAL program eval-
uates an operation to get to the next state, then
the translated program can take one or more

6



Figure 4: Definition of TT
TT(α, ∆; tv : τ) ⇒

∨
T∈α [T/α] [TT(∆, v : τ)]

TT(·; tv : int) ⇒ tv : int
TT(·; tv : τ 0) ⇒ true or perhaps tv : int
TT(·; tv : τ 1) ⇒ TT(·; tv : τ)
TT(·; tv :< τϕ1

1 , . . . , τϕi

i , . . . , τϕn
n >) ⇒

∧
i(tv⊕ i : addr ∧ TT(sel(rm, tv⊕ i) : τρi

i ))
TT(·; v : ∀[].Γ) ⇒

∨
f:∀[].Γ(tv = f)

This means that r has the index (pc) of one of the functions that are of this type.
TT(·; tv : ∃ α.τ) ⇒

∨
T∈α TT(·; tv : [T/α] τ)

TCTX(Ψ; ∆; Γ) ⇒
∧

l:τ∈Ψ TT(∅; l : τ) ∧
∧

r:τ∈Γ TT(∆; r : τ)

Figure 5: Definition of TCTX

steps, to end up in a state isomorphic to the
state of the TAL program. What this means is
that the final state of the TAL program will be
isomorphic to the final state of the PCC pro-
gram, meaning that the programs are equiva-
lent.

Together, these theorems mean that the translation
is indeed correct.

4 Conclusion and Future Work

The work resulted in a precise description of the in-
ductive translation from TAL to PCC, along with a
proof that such translation is correct, i.e. any valid
TAL program results in an equivalent valid PCC pro-
gram. The next step is to construct an actual imple-
mentation of the translation. The translator should
convert TALx86 into Touchstone PCC, which are
working implementations of the TAL and PCC as de-
scribed earlier.

Looking ahead, there is an open problem to show
the opposite translation (PCC into TAL). This task
would require fitting various logic statements into a
type system. A possible interesting outgrowth of that
work would be an instantaneous type system, which
is specific to the program and its safety requirements,
generated on the fly, and is accompanied by a proof
of soundness. Once the PCC to TAL translation is
designed, it would mean that the PCC and TAL are
different, yet equivalent approaches to certifying bi-
nary code.

References

[1] Floyd, R. W. Assigning meanings to programs.
In Mathematical Aspects of Computer Science
(1967), J. T. Schwartz, Ed., American Mathemat-
ical Society, pp. 19–32.

[2] Hamid, N., Shao, Z., Trifonov, V., Mon-
nier, S., and Ni, Z. A syntactic approach to
foundational proof carrying-code, 2002.

[3] Morrisett, G., Crary, K., Glew, N.,
Grossman, D., Samuels, R., Smith, F.,
Walker, D., Weirich, S., and Zdancewic,
S. TALx86: A realistic typed assembly language.
1999.

[4] Morrisett, G., Walker, D., Crary, K., and
Glew, N. From System F to typed assembly lan-
guage. ACM Transactions on Programming Lan-
guages and Systems 21, 3 (1999), 527–568.

[5] Necula, G. C. Proof-carrying code. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Langauges
(POPL ’97) (Paris, Jan. 1997), pp. 106–119.

[6] Necula, G. C., and Lee, P. Proof-carrying
code. Tech. Rep. CMU-CS-96-165, Carnegie Mel-
lon University, November 1996.

[7] Necula, G. C., and Lee, P. Safe ker-
nel extensions without run-time checking. In
2nd Symposium on Operating Systems Design
and Implementation (OSDI ’96), October 28–31,
1996. Seattle, WA (Berkeley, CA, USA, 1996),
USENIX, Ed., USENIX, pp. 229–243.

7


