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Abstract

Behavior-based agents are becoming increasingly used across a variety of imple-
mentation platforms. The common approach to building such agents involves im-
plementing the behavior synchronization and management algorithms directly in
the agent’s programming environment. This process makes it hard, if not impossi-
ble, to share common components of a behavior architecture across different agent
implementations. This lack of reuse also makes it cumbersome to experiment
with different behavior architectures as it forces users to manipulate native code
directly, e.g. C++ or Java. In this thesis, we provide a high-level behavior-centric
programming language and an automated code generation system which together
overcome these issues and facilitate the process of implementing and experiment-
ing with different behavior architectures. The language is specifically designed to
allow clear and precise descriptions of a behavior hierarchy, and can be automat-
ically translated by our generator into C++ code. Once compiled, this C++ code
yields an executable that directs the execution of behaviors in the agent’s sense-
plan-act cycle. We have tested our framework with different platforms, including
both software and robot agents, with various behavior architectures. We experi-
enced the advantages of defining an agent by directly reasoning at the behavior
architecture level followed by the automatic native code generation.



Chapter 1

Introduction

Agent and multi-agent systems play a very important role in many different areas
including robotics, auctions, and web applications. They provide an elegant and
efficient solution for the control problems in those areas. There have been many
research projects on different agent behavior architectures in order to find the
optimal solutions for certain applications. Most of the architectures however may
be applicable across platforms and can be reused to solve a variety of different
problems.

1.1 Motivation

The common current approach to applying agent and multi-agent systems to a new
platform is to implement the entire architecture even though there can be a large
overlapping with a previously implemented architecture framework such as the
behavior management code. For an example, the “search and rescue” behavior
for on-ground vehicles should be very similar to that of underwater ones; the
only difference is the underlying mechanism for actuating the vehicles. It can be
redundant to reimplement the entire architecture. Moreover, one usually needs to
experiment with different behavior architectures in order to find the optimal one
for the current platform. Within the current approach, one will have to manipulate
the native code of the implementation which is very much time consuming and
error prone.
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1.2 Example of a Behavior-based System

A well-known example of a behavior-based multi-agent system is robot soccer in
which several teams of robots compete against each other. One particular team
is the CMPack’03 from Carnegie Mellon University [6]. The CMPack’03 is
composed of several autonomous legged soccer robots as in Figure 1.1. Each
robot has its own vision and motion system. The vision system will provide the
robot the perception of the objects and the position of itself on the field. The
motion system allows the robot to perform certain actions in the environment such
as walking in a particular direction, or kicking the ball using a particular type of
kick.

The CMPack’03 also has a behavior system to coordinate the robots towards
achieving a specific goal. Each robot is considered as an agent that is capable
of making individual autonomous decisions contributing towards the team goals.
Each behavior is represented as a finite state machine which may contain encap-
sulated state machine. The transitions between the states are dependent on the
condition of the world and the robots themselves. Those transitions can be arbi-
trarily complex.

Figure 1.1: A picture of the AIBO.

Each agent is assigned a specific role. The agents playing offense can be
assigned one of the three separate roles: primary attacker, offensive supporter and
defensive supporter. There is only one agent in the role of primary attacker at
one time. This is maintained through using a token to ensure mutual exclusion.
The primary attacker will move directly to the ball and attempt to score while the
supporting attackers will use a potential field to position themselves.
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1.3 Our Previous Work in Agent Programming

In MONAD [7], one of our earlier works, we develop an intuitive and flexible
scripting language which enables designers to easily build a team in the form of
an augmented behavior hierarchy. This behavior hierarchy facilitates modification
of various parameters of a team, such as the structure of the hierarchy itself and
the negotiation protocols to be used by the agents during synchronized execution
of the hierarchy. In order to execute the team structures specified by MONAD
scripts, the MONAD architecture includes a run-time distributed behavior-based
control engine called SCORE (Synchronized CoORdination Engine) which is
able to execute any team design specified by the MONAD scripting language.
SCORE synchronizes the execution of behaviors across multiple agents, drawing
on a user-designed reusable library of negotiation protocols that support different
team-control designs.

In more details, the MONAD system is composed of several key components
as in Figure 1.2 which work together to provide a flexible framework for multi-
agent programming. The components provided by the designer include both of-
fline script and code, in the form of the team program, team description file, ar-
bitration execution code, and behavior execution code. The team program and
description file are both written in a format specified by the MONAD architec-
ture, while the arbitration and behavior execution must be written and compiled
to native code. Given these inputs, the MONAD architecture provides synchro-
nized execution of the team program through SCORE which acts as a distributed
coordination system for the entire team. Each agent on a team runs an identical
copy of SCORE and initializes it with the same team program and a team descrip-
tion file, along with an index which uniquely identifies to SCORE which agent it
is controlling.

Using the scripting language greatly reduces our time and effort in implement-
ing a new behavior architecture as well as experimenting with different parameters
of the architecture. However, the scripting language has a restricted expressive-
ness. It can only represent behavior hierarchy in the form of a Direct Acyclic
Graph. Furthermore, SCORE is designed specifically for the MONAD platform.
One will have to modify and incorporate SCORE into another platform before us-
ing it and this may be infeasible due to constraints of resources such as processing
power, or storage.
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Figure 1.2: An overview of the MONAD system.

1.4 Our Novel Framework for Agent Programming

We conjecture that it will be beneficial to generalize the scripting language and
the behavior control routines in MONAD (SCORE) to platform-independent and
automate the process of generating these behavior control routines for a specific
platform. Through this, we are separating the process of designing agent behavior
architecture for high-level behaviors and incorporating the architecture to a given
agent platform with implemented platform-dependent atomic behaviors. A de-
signer, once specialized in one agent architecture, can reapply the architecture in
existing agent platforms with minimum additional effort.

Towards that goal, this thesis introduces a novel framework composed of an
intuitive and flexible high-level behavior-based language (HLBL) that can be used
to describe easily the architecture for an agent to facilitate the designing process,
and a code generation system (B2C) to automate the integrating process. To our
best knowledge, this work contributes the first platform-independent behavior-
based programming language that is combined with an automated translation to
native code.

Using the given high-level language, the designer can build an agent in the
form of an augmented behavior hierarchy. This hierarchy will be specified in
the behavior description file, which will indicate how the execution of behaviors
should unfold at runtime. The given behaviors can be combined in different ways
by the structure of the behavior hierarchy, leading to a variety of patterns of behav-
iors executed by the agent. This system allows changes in the behavior hierarchy
to be made at an intuitive level without the need to change native code. Further-
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more, when applying the architecture to a different platform, the designer can
usually reuse part of the behavior description file. Thus the framework can signif-
icantly facilitate the process of developing and experimenting an agent behavior
architecture.

Given the behavior hierarchy description file as input, the code generation
system will generate the correspondent C++ code. After being translated, the be-
havior hierarchy is output as a ”.cpp” file where each behavior in the hierarchy
is a function in the .cpp file. The root of the hierarchy acts as the entry point to
the agent control routines. The user then compiles and links this file with the rest
of the project and at some point in the main program calls the function represent-
ing the root behavior in the hierarchy. This begins automated execution and the
translated framework will handle running the behaviors from this point onwards
(Figure 1.3).

Since the behavior description in HLBL is independent of the platform, we
were able to applied the framework of HLBL and B2C to various agent plat-
forms, both robot and software agents. In particular, we have developed a behav-
ior control for the AIBO (Figure 2.3 and Figure 2.4), and two software agents in
simulated environment (Section 4.1 and Section 4.2) in a very short time. The
framework also allowed us to quickly set up different behavior architectures for
experimentation in the pursuit of the optimal one. This demonstrates the advan-
tages of using the framework in agent programming.

1.5 Reading Guidelines

After Chapter 1 of introduction, Chapter 2 and 3 present two main components
of the framework respectively: the High-Level Behavior Language (HLBL) for
designing agent behavior architecture and the Automated Code Generation (B2C)
system for integrating the architecture to an existing framework. Chapter 4 shows
several applications of HLBL and B2C as well as the advantages through using
the new framework. Chapter 5 concludes the thesis and briefly discusses about
possible extension of the framework.
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Figure 1.3: An overview of the connection between HLBL and the Translators.



Chapter 2

High-Level Behavior Language

High-level behavior language (HLBL) is a very flexible yet intuitive language
which a designer can use to implement the behavior architecture for the agents. It
is also platform−independent so that an agent architecture implemented for one
specific platform in HLBL can be reused in the solution for another platform.
HLBL allows the designer to focus more on the structure of the behaviors without
being burdened with the tedious implementation details. It also facilitates process
of experimenting with a variety of behavior architectures in finding the optimal
one for a given problem.

2.1 Representation and Execution

In HLBL, the behavior control routines for an agent have the representation of a
behavior hierarchy. HLBL is flexible enough to also represent any finite state ma-
chine in which each state is correspondent to one behavior. Thus the complexity
of agent’s behaviors is not restricted to any form.

Starting from the root of the hierarchy which serves as the entry point, the
agent will execute the behavior and make the appropriate transitions based on the
conditions of itself and the environment. Following is an example of a behavior
hierarchy with 7 behaviors from B0 to B6 as shown in Figure 2.1. The labels
SC, EC, and A denotes the set of starting, ending conditions and the action for
each behavior respectively. Ci stands for the conditions for the agent to make the
transition to behavior Bi. All those fields will be discussed further in the next
paragraphs.

Each behavior is associated with a set ofstarting conditionsand a set ofend-

7
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Figure 2.1: A behavior hierarchy

ing conditions. The starting conditions determine when a behavior is applicable
and the ending conditions determine when the agent should stop executing the
current behavior. Each behavior is also associated with a goal that the agent tries
to accomplish through the behavior. This goal is included in the set of ending
conditions. As an example, the ending conditions of B2 are E2, E1, and E0. If
any of those conditions evaluates to true, the agent will stop executing B2. The
agent will then make the appropriate transition.

There are two types of transitions from one behavior:sequentialtransition
to a following behavior anddecompositionalto a child one. The child-behaviors
represent the alternative ways to accomplish the goal of the parent. The following
behaviors share the same parent with the followed if there is any and they contains
the sequence of goals that the agent needs to accomplish in the specified order to
achieve the goal of the parent behavior. In figure 1, B1 has two direct children
B2, and B3 and one indirect child B4 since B4 follows B3. If the agent chooses to
execute B3 instead of B2, it will have to also accomplish B4 in order to accomplish
B1.

When making a decompositional transition, the agent is considered as still try-
ing to achieve the goal of the parent behavior. Thus, the set of ending conditions
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of a behavior contains as a subset the union of the ending conditions of its ances-
tors. In contrast, the agent has to accomplish the goal of the current behavior first
before it can make a sequential transition. For an example, the ending conditions
of B3 is E3, E1, and E0 since B0 and B1 are the ancestors of B3. Once the goal of
a behavior is accomplished, if there is no following behavior, the agent will make
the transition back to the parent of the current behavior.

There can be anaction for each behavior. The action can be any behavior
but preferably an atomic execution behavior. Atomic behavior is the behavior at
the lowest level of the behavior hierarchy and it is not composed of any other
behaviors. The action will be carried out and completed for every sense-plan-act
cycle that the agent stays in the current behavior until either the ending conditions
meet or the agent can make a transition to the child-behavior. All the behaviors
having no children must have an action. In figure 1, B1 does not have an action
but B2 to B6 must have an action because they do not have any children.

Once the ending conditions of a behavior are met, the agent will stop executing
the current behavior. If the goal of an ancestor of the current behavior has been
accomplished or if the behavior does not have any following, the agent will return
to the parent behavior. Otherwise it will make the transition to the following
behavior.

A behavior can also have aninitialization and afinalization function. The
agent will call the initialization function when it first starts executing the behavior
and the finalization function when it finishes the execution, returning to the parent
behavior or making the transition to the next behavior.

While making a transition, either decompositional or sequential, if there is
more than one option, the agent will have to make the choice between the avail-
able behaviors. Thus each behavior will be associated with one decision making
mechanism calledresolutionfor each transition it has to make. The designer can
either define a resolution method using HLBL or use one such as random or al-
ternating choices provided by B2C. Each resolution is essentially an ordered set
of mappings from condition sets to choices. When the agent tries to make a deci-
sion, the first set of conditions satisfied will result in the associated choice being
the result. For an example, from B1, the agent can make a sequential transition to
either B5 or B6. Based on the conditions C5 and C6, the agent will decide which
behavior it should make a transition to.

In Figure 2.2, we show the pseudocode for the agent to execute the behavior
hierarchy.
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Figure 2.2: Pseudocode for the execution of the behavior hierarchy.

2.2 Example of the Representation and Execution

In this section we will give an example of using the specified behavior hierarchy
representation in implementing a program for the AIBO and how the program will
be executed during run-time. This is part of the implementation we have done to
evaluate the HLBL and the B2C system.

The AIBO is supposed to have the following behaviors:

• When it is placed on the ground, it will walk, trot, or run until it is lifted
from the ground.

• If it is lifted straight up, it will wave its tail. If it is tilted to the left, it will
turn on its middle left LED; if to the right, it will turn on its middle right
LED.

Following is the correspondent behavior hierarchy:
The AIBO will start its execution from the ”Lifted Straight Behavior”. It will

perform the action ”Waving Tail” as long as the AIBO is in this behavior. There
are two sequential transitions from this behavior: to ”Tilted Behavior” when the
AIBO is tilted, and to ”On Ground Behavior” when the AIBO is actually on
ground. Thus the set of ending conditions of this behavior is composed of the
conditions ”Is lifted” and ”Is back on ground”.
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Figure 2.3: Behavior hierarchy for the AIBO.
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If the AIBO makes a transition to the ”On Ground Behavior”, we can notice
that the behavior has three decompositional transitions beside the two sequen-
tial transitions. The two sequential transitions are: to ”Tilted Behavior” when
the AIBO is tilted, and to ”Lifted Straight Behavior” when the AIBO is lifted
up straight. The ”On Ground Behavior” has three children: ”Walk”, ”Trot”, and
”Run”. When the AIBO starts executing ”On Ground Behavior”, since there is
no action associated with this behavior, it will immediately make a transition to
a random one among the behavior’s children. Those children are atomic execu-
tion behaviors of the AIBO in the world. The ”On Ground Behavior” also has a
finalization function ”Stop Moving.” Thus it will call this function once the AIBO
stops executing the behavior. The set of ending conditions is composed of the
conditions ”is lifted” and ”is back on ground”.

Similarly, the ”Tilted Behavior” has two decompositional transitions: to ”Set
LED-Middle-Left” if the AIBO is tilted left and ”Set LED-Middle-Right” if the
AIBO is tilted right. Based on the condition the AIBO will make the appropriate
transition. Since ”Tilted Behavior” has a finalization function ”Turn off LED”, the
AIBO will execute this function once it finishes executing this behavior. The two
sequential transitions are: to ”On Ground Behavior” when the AIBO is actually on
the ground, and to ”Lifted Straight Behavior” when the AIBO is lifted up straight.

2.3 HLBL Syntax and Specification

The language was designed to be a direct representation of the formal structural
features of the agent as described in the previous section. The fields and keywords
available are as follows:

• behavior <behavior−name> The behavior keyword specifies that the fol-
lowing information from this point until an end keyword is used to describe
a behavior

• startswhen<condition> The startswhen keyword is followed by a condi-
tion that uses a Boolean expression composed from the condition functions.
This expression is called the applicability condition.

• endswhen<condition> The endswhen keyword is similar to the startswhen
keyword, but specifies the conditions upon which a particular behavior should
cease execution.
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• children <child 1> <child 2>. . .<child n> The children keyword de-
scribes the list of child behaviors reachable from the current behavior. These
child behaviors correspond to a decompositional transition from the current
behavior. This keyword is optional and if omitted, there is only one way to
accomplish the behavior

• following <following1><following2>. . .<following> The following key-
word specifies the next same-level behavior that should be executed after
the current behavior. This keyword denotes sequential transition and it is
optional.

• child−resolution<resolution−name> The child−resolution keyword spec-
ifies the decision making method that should be run at the current behav-
ior, when deciding which of its alternative child decompositions should be
taken. This keyword is present if and only if the behavior has some child.

• following−resolution <resolution−name> The follwing−resolution key-
word has similar meaning as the child−resolution keyword except that it is
dedicated for sequential transitions only.

• action <action−name> The action keyword is optional for behaviors with
children but mandatory for the ones without. It specifies the atomic execu-
tion behavior that the agent needs to carry out within the current sense-plan-
act cycle.

• initialize <action name> The initialize keyword is optional. It specifies
the action that the agent needs to carry out once when it starts executing
the behavior. This keyword is useful for resetting some internal state of the
agent

• finalize <action name> The finalize keyword is similar with the initialize
keyword. It is optional and can be used to specified the action that the agent
needs to carry out once when it finishes executing the behavior.

• resolution <resolution name> The resolution keyword specifies that the
following information until an end keyword is used to describe a method for
the agent to make the choice among the behaviors that can be transitioned
to.

• cond <condition> The cond keyword denotes the condition for one of the
mappings in the behavior. It must be followed by a choice keyword
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• choice<behavior name> The choice keyword follows a cond keyword to
specify the behavior must be chosen if the followed conditions evaluated to
true.

2.4 Example of Behavior Description in HLBL

behavior LiftedStraight
endswhen istilted ‖ is on ground
following Tilted OnGround
following resolution statebased
action WaveTail

end
behavior OnGround

endswhen istilted ‖ is up straight
following LiftedStraight Tilted
following resolution statebased
children Walk Trot Run
child resolution RANDOM
finalize StopMoving

end
resolution statebased

cond istilted
choice Tilted
cond ison ground
choice OnGround
cond isup straight
choice Lift straight

end

Figure 2.4: The HLBL code of the AIBO

In Figure 2.4 we are showing part of the code for the behavior architecture of
the AIBO with the behaviors described in Section 2.2 and Figure 2.3. There are
two behaviors and one resolution function mentioned here:Lifted Straight be-
havior,On Ground behavior, andstate basedresolution function. As described
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in Section 2.2 and Figure 2.3, the AIBO will stop executingLifted Straight be-
havior when either it is tilted or it gets back on the ground. Thus theendswhen
field contains the strings ”istilted” and ”is on ground”. These strings denotes
the condition checking functions in the platform-dependent library that need to be
checked for the ending condition of the behavior.

When the AIBO stops executingLifted Straight behavior, it will make a tran-
sition to eitherTilted or On Ground behavior based on its current state. The
names of those two behaviors appear in thefollowing field of the behavior. The
keywordfollowing resolutiondenotes thestate basedfunction that will be used
to decide which behavior the AIBO will make the transition to. Thestate based
function simply maps the current state of the AIBO to the appropriate behavior: if
the AIBO is tilted, it will make the transition toTilted , else if it is on the ground,
it will make the transition toOn Ground. TheLifted Straight also has an ac-
tion field which isWave Tail . This action is an atomic execution function that is
included in the platform-dependent library.

Similarly, theOn Ground behavior also has theendswhen, following, and
following resolutionfields with the same meaning as inLifted Straight behavior.
However it does not have an associated action but three children instead. Thus
the action field is missing and there are the extrachildren andchild resolution
fields. The three children ofOn Ground areWalk, Trot, andRun as specified
in thechildrenfield. These three behaviors are atomic execution functions in the
platform-dependent library. The string RANDOM following thechild resolution
field indicates that the AIBO will use the built-in random resolution method to
decide which child it should execute. The AIBO will stop moving once it finishes
theOn Ground behavior as specified by thefinalizefield.

2.5 Summary

HLBL is an intuitive and flexible platform-dependent scripting language that al-
lows the designer to easily develop behavior-based architecture for agent system
in the form of augmented behavior hierarchy. It increases reusability of code
across different platforms since one particular architecture can be reused in simi-
lar solutions for other problems. HLBL also allows designer to easily modify the
behavior architecture by tweaking the behavior hierarchy, the applicability condi-
tions, and resolution methods in finding the optimal solution. Thus it can greatly
reduce the developing and experimenting time and effort for the designers.
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Automated Code Generation

For an existing platform, there is a platform-dependent library of condition check-
ing functions and atomic execution behaviors. Given the API of the provided
library, the designer will specify the agent’s behavior architecture in a behavior
description file using the HLBL.

The B2C system will then translate this file into correspondent C++ code.
Once compiled, this code will yield an executable that can perform the specified
behavior control routines.

Figure 3.1: The process of generating agent control routines.

3.1 Platform-dependent Library

The library is composed of a set of condition−checking functions and a set of
behavior execution functions. The condition checking functions are boolean func-

16
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tions without arguments which compute some function of the current world state
as perceived by the agent. As an example, the AIBO has sensors to detect if it is
on the ground or not. Thus it has the boolean function ison ground which will
return true if the AIBO has its feet on the ground and false otherwise.

The set of behavior execution functions, which can be called at the end of
each perception−thought−action cycle of the agent, support the actual execution
of the agent in the world. These functions return nothing and also take in no
arguments. For example, a behavior might have an execution function ”Walk()”
and thus as long as that behavior is active, the Walk() function will be called
at every thinking cycle. The actual interior workings of the Walk() function are
platform−dependent and as the agent merely calls the function Walk(), the actual
execution of the function may involve sockets, threading operations, or any other
code necessary to actuate the agent in the world. The library also includes a set of
atomic execution functions which are the lowest level behaviors and not composed
of any other behaviors.

3.2 Auto-translation of the Behavior Description to
Code

There are two similar models available. They only differ in the control flow of the
programs.

3.2.1 Implicit Continuous Control Model

B2C will take the behavior description file as input and generate a .cpp file with
all the necessary links. Each behavior will be translated to a C++ function that
has no argument and returns no value. A behavior makes transition to another one
through the correspondent function call. The function begins with an if−statement
that will terminate the function when the starting condition is not met. The body
of the function is a while loop that will run until the ending condition is met.
Inside the while loop, the action of the behavior will be called first and then the
resolution function to get the name of the child for transition. The agent will call
the function of the chosen child behavior if there is any.

After the while loop, the finalization function will be activated. The agent
will then call the resolution function to choose one of the following functions.
Upon receiving the result, the agent will call the function of the chosen following
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behavior if there is any; otherwise it will return to the parent.
As indicated in previous sections, the set of ending conditions of a behavior

include the ending conditions of its ancestor. Therefore B2C will recursively prop-
agate the ending conditions of one behavior to its children until no new condition
is added to a behavior. This guarantees each behavior will inherit all of its ances-
tor’s ending conditions. If there is a loop of behaviors, the program will terminate
when all the behaviors in the group have the same set of ending conditions.

The resolution method will be simply translated to a function that takes in no
argument and returns the name of the chosen behavior. The function is composed
of several if−statement in the same order as the condition−choice pairs described
by the designer. Each statement will return a string when its if−condition is met.
At the end of the function, if no condition is evaluated to true, the function will
return an empty string.

In this model, the stack of the behaviors that the agent currently executes is
implicitly maintained by the function-call stack of the compiler. Once the agent
starts executing the behavior control routines, the main control flow of the pro-
gram will remain inside the behavior control routines until the agent finishes the
root behavior. Thus if the agent needs to process any perceptions of the world or
perform any action in the world, it must possess another thread running in parallel
with the behavior control routines thread, or the perceptions and the actions must
be fast not to block the execution of the behaviors. The agent will carry out the
Planning cycle continuously based on the conditions of the agent and the world.

In Figure 3.2 we show the native code version of part of the behavior architec-
ture generated by B2C. The behaviors are described in Figure 2.3 and the corre-
spondent behavior description file written in HLBL code is provided in Figure 2.4.
Thecall function function is a helper routine that will call the appropriate func-
tion based on the names of the function.

3.2.2 Explicit Discrete Control Model

In this model, each behavior is translated to a function in a similar fashion as in
the previous model. The only difference is that there is an explicit behavior stacks
for the behaviors the agent is executing. The behavior at the top of the stack is
the active one. For every Planning cycle, the agent will check the appropriate
conditions first and then either perform the active behavior or make a transition
to another one. If the next behavior is the parent of the current one, the agent
will just need to pop the current behavior off the stack; otherwise it will also have
to push the new behavior to the stack. With the explicit stack, the main control
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Figure 3.2: An excerpt from the translated code in Implicit Continuous Control
Model.

flow of the program can be returned to an outer caller. Thus the agent can carry
out the Planning cycle step by step and it does not have to invoke planning unless
necessary.

In Figure 3.3 we show the native code for the same behaviors as in Figure 3.2
but with the Explicit Discrete Control Model. Note the main difference is in the
helper functioncall function and operate. The functioncall function uses a
stack and a counter to keep track of the behaviors and make the trasitions. The
functionoperatecalls the behavior at the top of the stack everytime it gets exe-
cuted.
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Figure 3.3: An excerpt from the translated code in Explicit Discrete Control
Model.

3.3 Experimentation with Different Behavior Archi-
tectures

To change the behavior hierarchy, the designer can simply edit the behavior de-
scription file. Once translated again, the new code will reflect the changes in the
behaviors. There are several ways that a designer can tweak the behavior archi-
tecture such as changing the links between behaviors, the starting and ending con-
ditions, the action associated with the behavior, or the resolution methods. These
result in a wide range of performance of the agents. Since all the changes are
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made in HLBL, the designer can spend little time and effort to experiment with
different agent architecture. In Figure 3.4, we show an example of the changes in
the native code correspondent with the changes in the behavior description file.

Figure 3.4: An example of how the translation reflects the changes of the behavior.

3.4 Summary

Given the platform-dependent library and the behavior description file, the B2C
system will automatically generate native code correspondent to the desired be-
havior control routines. There are two control models that an agent designer can
choose from: explicit and implicit control model, based on whether the designer
wants to have control over each planning step or not. B2C allows a designer to
develop a behavior architecture and easily experiment with different parameters
of the architecture using HLBL instead of native code. The translation of HLBL
code to native code needs to happen only once.
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Application of HLBL and B2C

HLBL and B2C have been applied in several scenarios. One of them is imple-
menting behavior control routines for the AIBO. An example of the behaviors
was shown in Figure 2.3. An excerpt of the correspondent behavior description
file written in HLBL and the translated C++ code were shown in Figure 2.4 and
Figure 3.2, respectively. Beside the program for AIBO, we have also developed
two very different simulations utilizing HLBL and B2C: the Maze Game and the
Space Game.

4.1 The Maze Game

The first simulation is a Maze Game in which the agent has to find the path from
one given square in a maze to a target square. The agent can only move from
one square to another side adjacent square when there is no wall between the two
squares. The platform-dependent library is composed of functions for condition
checking and atomic execution behavior such as checking if there is a wall on a
particular side of the agent or moving the agent to an adjacent square in a particular
direction. The game uses a very simple command line. There is one thread for
the agent’s behavior control routines and one for updating the world state, and the
agent interacts with the world through appropriate function calls. The world state
evolves in discrete time steps. Each step is defined by a movement of the agent.

Figure 4.1 show a complete run of the agent finding a path from the given
square to its destination. The dotted lines represent the walls and the star symbol
represents the agent. There are 18 steps in total and the order of the steps is from
the top to the bottom first and then from the left to the right. The main part of the

22
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Figure 4.1: A screenshot of the Maze Game.

HLBL code for the agent is shown in Figure 4.2. The agent will attempt moving
towards the target using the shortest path and backtracking if necessarily. The
memorization of visited squares is done as part of the platform-dependent library.

4.2 The Space Game

The second simulation is a Space Game in which the agent acts as a space ship try-
ing to break down oncoming asteroids. In contrast to the other game, this game has
a more complicated Direct3D display as in Figure 4.3 and runs as a continuous-
time simulation. The world states evolves without waiting for an action from the
agent. The space, however, is discretized into squares such that the agent can only
move from one square to another side adjacent square. The asteroids will move in
on straight lines perpendicular with the surface that contains the agent. The agent
can only shoot at the asteroids once it is aligned with them. To interact with the
world, the agent uses sockets instead of function calls as in the Maze Game. The
platform independent library includes functions and behaviors such as checking if
there is an asteroid coming close by or moving one step in a particular direction.
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behavior SearchMaze
endswhen IsAtGoal
children GoVertically GoHorizontally
child resolution SearchMazeSplit

end
behavior GoVertically

endswhen !ShouldGoVertically
children MoveDown MoveUp
child resolution GoVerticallySplit

end
behavior MoveDown

endswhen !CanWalkDown
action WalkDown

end
behavior MoveUp

endswhen !CanWalkUp
action WalkUp

end
behavior GoHorizontally

endswhen !ShouldGoHorizontally
children MoveLeft MoveRight
child resolution GoHorizontallySplit

end
behavior MoveLeft

endswhen !CanWalkLeft
action WalkLeft

end
behavior MoveRight

endswhen !CanWalkRight
action WalkRight

end

Figure 4.2: Part of the code of the agent for the Maze Game.
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Figure 4.3: A screenshot of the Space Game.

The code for the agent is shown in Figure 4.4. The agent will attemp to
move to the closest square that is aligned to an oncoming asteroid. The behav-
iors GoVertically andGoHorizontally allows the agent to move to the desired
position. Once it have an asteroid in range as indicated byHasTargetStraight
function, it will stop moving and start shooting at the asteroid usingShootaction.
Both of the condition checking function and the atomic action are provided from
the platform-dependent library.

4.3 Advantages of Using HLBL and B2C

The agents in both games were running using compiled C++ code automatically
translated from behavior description file in HLBL. HLBL significantly reduced
the time required to implement the behavior control routines for these agents, and
B2C allowed rapid integration of the routines into the underlying platform. More-
over, even though these two games are very different, the agents in these games
still share a large part of their architectures, especially evident in the top-level be-
haviors. An example is given in Figure 4.5. The agents in both games have very
similar behavior ”GoVertically”. The only difference is their ending conditions.
Thus, we were able to reuse several parts from the behavior architecture of the
agent in the Maze Game when implementing the agent for the Space Game. This
further facilitated the process of developing the agent.

With the behavior architecture implemented in HLBL, it is very easy to tweak
different parameters such as the dependency between behaviors, the applicability
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behavior ShootAsteroid
endswhen TimeIsOver
children KeepPosition GoVertically GoHorizontally
children resolution ShootAsteroidSplit

end
behavior KeepPosition

endswhen !HasTargetStraight
execution Shoot

end
behavior GoVertically

endswhen !ShouldGoVertically —— HasTargetStraight
children WalkDown WalkUp
children resolution GoVerticallySplit
following KeepPosition

end
behavior WalkDown

endswhen !ShouldGoDown
execution MoveDown

end
behavior WalkUp

endswhen !ShouldGoUp
execution MoveUp

end
behavior GoHorizontally

endswhen !ShouldGoHorizontally —— HasTargetStraight
children WalkLeft WalkRight end
children resolution GoHorizontallySplit
following KeepPosition

end
behavior WalkLeft

endswhen !ShouldGoLeft
execution MoveLeft

end
behavior WalkRight

endswhen !ShouldGoRight
execution MoveRight

end

Figure 4.4: Part of the code of the agent for the Space Game.
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and ending conditions, or the resolution methods. We could focus on program-
ming the agents at the abstract behavior level without being burdened with the
implementation details. Therefore we were able to experiment with many differ-
ent behavior architectures in a short time in the pursuit of the optimal one. Our
experience with using HLBL and B2C as described above demonstrates the advan-
tages of using the framework to implement and experiment with agent behavior
architectures.

Figure 4.5: An example of reusing behaviors.

4.4 Summary

We have applied HLBL and B2C in developing agent behavior controls for the
AIBO on the existing platform of CMRoboBits, and for two simulated environ-
ment Maze Game and Space Game. The successful implementation of several
agent behavior architectures with different goals and structures on different plat-
forms demonstrates the capability of HLBL to represent a wide range of behavior
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architectures including finite state machines. It also demonstrates the capability of
B2C to generate native code from HLBL code of the behaviors and integrate that
code to different platforms including software and hardware ones. Using HLBL
and B2C, we have experienced several advantages such as more rapid developing
and experimenting process, and better reuse of the implemented behavior archi-
tecture.
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Conclusion

The main contribution of this thesis is a novel framework for agent programming
with two main components HLBL and B2C. HLBL is a platform-independent lan-
guage with which one can design modular behavior architectures at the abstract
behavior definition level. With this intuitive and flexible language, a designer can
make rapid modifications to an agent’s behavior architecture for experimentation
and testing purposes. The automated code generation component, B2C, further
facilitates the process of developing and experimenting with different behavior ar-
chitectures by allowing designers to quickly integrate complex HLBL hierarchies
directly into their agent’s code. HLBL and B2C also help increasing reusability of
agent architectures across platforms as part of an implemented architecture can be
easily reused on another platform. We have implemented several agent behavior
architectures on a variety of platforms to demonstrate these advantages of using
HLBL and B2C. Possible extension of the framework may include developing
a graphic interface for HLBL to further facilitate the designing process and ex-
panding HLBL and B2C to allow an agent to execute more than one behavior in
parallel and to support multi-agent systems.
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