
TaskPort: A Task Management Interface in an
Intelligent Cognitive Assistant System

Yili Wang

School of Computer Science
Carnegie Mellon University

yiliw@andrew.cmu.edu

Advisor: Prof. David Garlan
School of Computer Science
Carnegie Mellon University

garlan@cs.cmu.edu

Abstract

People are spending an increasing amount of time
handling everyday routine tasks in their daily lives. To help
people work more efficiently, Carnegie Mellon University is
currently developing the RADAR (Reflective Agent with
Distributed Adaptive Reasoning) system, a software-based
cognitive personal assistant. The task manager is an
essential component of the RADAR system that manages
high-level tasks and coordinates communications among
other intelligent assistants in a personal space. The task
manager interface is an application that would not only
allow the users to browse, create and modify tasks, but also
provide more intelligent functionalities regarding task
management. In this paper, we discuss the motivation, and
an implementation of such task manager interface, called
TaskPort. To better understand the elements that provide an
edge in efficiency and productivity for the user, we explore
various techniques used in the task manager interface and
attempt to resolve several interesting challenges, such as
flexibility, usability, scalability, and integration.

1. Introduction

As more and more communications among people
are done electronically, computer users are pressed to
keep track of a growing number of everyday routine
tasks, such as answering emails, scheduling meetings,
allocating space and resources, or updating various
personal or project websites. Alone, such tasks are
easy to accomplish and do not require too much time.
However, the process of managing a large amount of
these tasks becomes repetitive, confusing, and even
chaotic at times. Moreover, these tasks may also vary
greatly in complexity and time span. For instance,
coordinating a large project meeting takes weeks or

even months to complete and requires handling myriad
of information sources and dozens of people, whereas
answering a personal email takes only a few seconds
of the user’s attention and needs no additional pieces
of information at all. Consequently, task management
need to account for such change in complexity and
thus making the problem even more difficult and less
efficient.

The issue of task management is especially relevant
to people whose jobs consist mainly of interacting with
other people, for instance, managers, professors, and
salespeople. Imagine handling tens and even hundreds
of emails everyday with varying degrees of importance
and settings, negotiating many meeting places and
times with colleagues and clients, heading or
participating in various projects that have very
different requirements and due dates. It is crucial for
those who work in a collaborative environment to be
able to not only monitor status of the currently active
tasks but also find tasks from the past, such as “the last
time I a meeting with Mr. X”, or “the presentation I
gave two months ago”. This is more than merely
remembering where that presentation is stored on disk
or when that meeting took place. This is a matter of
finding the entire process of how the task was
completed – the steps taken to accomplish the task and
any artifacts resulted from the task. The problem is
worsened since these people tend to work in multiple
environments as well, moving from clients to clients,
or offices to homes. As they move from location to
location, they must be able to carry their tasks with
them as well. Efficiency is greatly hindered when they
do not have access to their tasks or the ability to track
their progress.

People currently deal with task management in
many different ways. Some like to leave a variety of
post-it notes, each filled with important task
information. Others like to write extensive to-do lists
either on paper or in notepad that may be organized
according to their priority, category, and the people
involved. Some even organize pieces of task
information in various folders according to some form
of categorization. These methods often serve as good
reminders for people and what they need to
accomplish. However, they certainly are not sufficient
as task management tools. Any information written on
loose papers could be lost. Even when we assume all
task information is well kept, these methods do not
offer capabilities to access all task related information
and to check current status beyond the most basic
levels.

There are a few commercial products on the market
today that are designed to assist users in managing
their tasks. These tools are software-based task list or
to-do list that are often offered together with other
calendar or email applications. Some examples are
To-Do List functionality in Microsoft Outlook and
Oracle Collaboration Suite. However, these tools are
mostly one-dimensional offering just yet another way
for users to record reminders and do not have much
flexibility in their functionalities.

One better solution to the problem is to hire as
many personal assistants or secretaries as one needs in
order to manage all his / her tasks. These assistants
must be not only accessible at all times but also
knowledgeable about all task related information, such
as one’s calendars, contacts, emails, other relevant
information, as well as one’s personal preferences.
Evidently, this solution is not plausible in all situations
or even at all in some cases. Thus, an interesting
research problem arises: how do we effectively
manage our overflowing tasks without the help of
these all-knowing ubiquitous personal assistants?

The main goal of our research is to provide a
framework for an interface that allows users to
efficiently manage all their tasks, specifically a system
that offers scalability, flexibility, and usability. Our
task management interface has been developed as part
of the RADAR project at Carnegie Mellon University.
RADAR takes advantage of the fact that many of the
user’s routine tasks are highly automatizable and uses
advance technologies in machine learning, knowledge
representation and cognitive systems to create a
software-based cognitive personal assistant that
provides a solution to the problem posed above. In
this paper, we first introduce the RADAR system, the
functionalities of the various components including the
role of the task management interface. We then

explore the specifics of the problem domain in
designing a task management interface. We finally
proceed to explain the solution offered by our design
and its usage and implementation.

2. Related work

<Empirical investigations, agent research, etc.>

3. What is RADAR?

Reflective Agent with Distributed Adaptive
Reasoning (RADAR) is a large five year project
developed by Carnegie Mellon University. It aims to
create a software-based personal assistant, making
extensive use of cognitive systems technology. It not
only fully understands the user’s tasks, preferences,
and the changing environment, but also anticipates and
fulfills the user’s information needs. It greatly
increases the user’s work efficiency by automatically
handling some of the user’s routine tasks and provides
suggestions for the user on others. The system also
intelligently adapts to the user’s behavior over time
and is capable of handling unexpected situations and
requests without reprogramming. Consequently, such
cognitive personal assistant is capable of filtering user
emails, scheduling meetings, and allocating resources
in a way that the user would do so.

RADAR is built upon the idea of “intelligent
agents”, or tasklets, each specializing in a particular
area. CMRadar project, for instance, is an “intelligent
assistant” software that specifically tackles the problem
of calendar scheduling where traditional tools such as
Outlook and MeetingMaker are passive tools that
require significant user attention. It aims to produce an
intelligent and more active calendar scheduling system
that possesses the capabilities to automatically
schedule and negotiate preferred meetings, read and
respond to routine email meeting requests, and in
general greatly reduce the time overhead of meeting
scheduling. There could be other tasklets as well. For
example, a Webmaster Tasklet would actively assist
users in updating a particular project website on a
monthly basis; an Email Tasklet would intelligently
organize one’s emails according to the people and
events involved and filter out unwanted spam. The
grand challenge of RADAR is to be able to enable
organization after an unexpected crisis. In a crisis
situation, the system will have to handle a flood of
messages that require attention and response, to
schedule urgent meetings, to solve problems outside
the usual boundaries, and to perform even better next
time.

Figure 1 is an illustration of various components in
the RADAR system. Information is categorized into
three separate levels: raw, structured, and knowledge
based. Most commercial products today exist only at
the first level. Software applications such as Microsoft
Outlook, Word, and Eudora deal directly with file
systems and stores emails and other information as raw
files. RADAR system takes task management to the
next levels by enabling storage for user plans, goals,
preferences and strategies in additional to the
traditional storage. This additional RADAR
information can be further categorized as either
structured or knowledge based. Intelligent agents
(tasklets) such as CMRadar access and enrich such
information while actively assisting users with specific
types of tasks.

Even though tasklets, working separately, can be
considered specialized personal assistants, they cannot
solve more complex problems. Most tasks in the real
world require cooperation and communication between
one or more tasklet. A simple example of a complex
task is meeting scheduling. In order to schedule a
meeting between several people, the organizer needs to
first find a time that is available to all participants.
Then, the organizer also needs to find a room that is
available at the meeting time that is suitable for the
meeting. You can easily imagine that a calendar
tasklet may be able to accomplish the first part of the
task by negotiating an appropriate meeting time for all
meeting participants. However, in order to find an
available room at the meeting time, we need to use a
space planning tasklet. Now the question becomes

how these individual tasklets would communicate with
each other to accomplish a common task.

The solution to the problem in the RADAR system
is the component called Task Manager (shown in the
middle of the Figure 1). The task manager provides
communication, coordination, and basic notification
functionalities among tasklets for a single or multiple
users. It keeps a relational structure database of all
tasks for the user. The database not only includes high
level information regarding the tasks, such as task
description, due date, and importance level, but also
maintains records of tasklets that are responsible for
these tasks. The task manager may also maintain a
knowledge base library that overtime learns from the
user’s behavior and intelligently adapts to the user’s
preferences. Furthermore, the task manager is the
central point where multiple users can interact with
each other. In the RADAR system, every user is
assumed to have a task manager, but not necessarily all
the available tasklets. Therefore, task manager takes
on the responsibility of coordinating efforts in
accomplishing various tasks between multiple users
where the available tasklets for each user may differ.

So far, we have seen how the RADAR system can
intelligently automate and assist certain routine tasks,
regardless of their complexities. One important piece
missing is how the users would easily interact with the
system in a manner that is most efficient for them.
Individual tasklets may provide user interfaces by
extending existing functionalities of applications such
as Microsoft Outlook. It is also crucial for the task
manager to have its own user interface that would help

Tasklets
<Space Planning,

Webmaster,
Calendar,

 …>

Level 3:
Knowledge

Level 2:
Structure

Level 1:
Raw

KB KB

RDB
/RDB
ODB

U

M C

U

M C

U

M C

Task
Manager

Applications
<Outlook, Netscape,

Word, Eudora,
…> Task Mgr

UI

Figure 1 Basic architecture of RADAR system.

the users manage all their tasks and communicate with
the tasklets. The task manager interface component
(shown in the center bottom of Figure 1) would
provide these essential functionalities that allow users
to easily access their various tasks and manage the
tasklets through the task manager backend. In the rest
of the paper, we will focus on the development of task
manager interface and the various challenges
encountered in its development.

4. Task manager interface problem domain

In this section, we will describe the basic concepts
and requirements for developing a task manager
interface.

From a user’s perspective, we feel that there are
five basic areas that a task manager interface must
address. First, the task manager interface must have
the flexibility to allow users to maintain tasks
regardless of their level of complexity, time span, and
current status. As we mentioned before, traditional
commercial task lists fail because they are one-
dimensional applications that are only suitable for
maintaining a small amount of generic tasks. These
applications do not distinguish between tasks with
varying levels of complexities or time span. They are
merely a poor alternative to keeping hand written
reminders.

Second, the task manager interface must be user
friendly and be fully aware of what the user is trying
to accomplish. It should be helpful and provide
functionalities that would assist the users in monitoring
and accomplishing their tasks. People continue to
choose hand written to-do lists and other traditional
methods for task management over commercial tools
because these tools are far less convenient for the users
and present little additional support or value for their
users. Any implementation of the task manager should
address the problem by offering convenience and
useful functionalities to the users. This concept of
usability also extends to the notion of accessibility.
For users who often work in multiple environments,
they should be able to access their tasks and obtain the
most current status from all locations.

Third, the task manager must address the problem
of scalability. The task manager needs to be able to
effectively handle thirty tasks as well as thirty
thousand. The issue of scalability not only applies to
performance in a traditional sense but also relates to
representation of the tasks. A naïve way of simply
listing tasks in a table may be scalable in terms of
performance. However, this simple design suffers
from the lack of ease for navigation and clarity when

representing a large amount of tasks to the user. On a
day to day basis, most users only care about their most
relevant and active tasks, such as homework that they
need to complete at the end of the week or meetings
that they should schedule for the project that they are
actively participating. Yet, they would also need to
reference events and tasks from the past in order to
remember the exact steps taken to accomplish a certain
type of tasks. The task manager interface should take
into account how people would likely to use the
application when addressing the problem of scalability
and provide a suitable solution that allows not only
actively monitoring of only the most relevant tasks but
also the ability to view all previous tasks if necessary.

Fourth, the task manager interface must be easily
extensible as the architecture of the overall RADAR
system changes and new functionalities are developed.
The structure of the interface must be flexible so that
existing components can be improved and additional
components can be added without too much change in
the existing code.

Finally, because the task manager interface is
developed as part of the research effort of the RADAR
project, it must provide seamless integration to the
rest of the RADAR system as illustrated in Figure 1.
The task manager interface must actively communicate
with the task manager backend to not only obtain the
most current information regarding user tasks and
tasklet availability but also relay user changes in the
tasks to the task manager so that the information could
be passed to other interested parties. It should also
provide capabilities of communicating with tasklets in
order to attain additional information on automated
tasks that is not directly stored in the task manager.
Moreover, the task manager interface should adhere to
the basic principles of the RADAR project. That is it
should employ technologies to enable the development
of a software-based cognitive personal assistant that is
capable of improving itself from adapting to the user’s
preference or behavior.

From a functionality standpoint, the task manager
interface should provide both basic and more advanced
tools for the user. At the very least, the interface
should allow the user to browse and modify all their
tasks and be able to create new ones. It should be able
to send and receive messages regarding to changes in
these tasks (updates, creation, or removal). It should
also provide appropriate response in case of error or
failure with the system. Additional feature can be
added to increase user productivity and usability.

5. An implementation for task manager
interface

In this section, we describe a prototype system for
task manager interface that we have developed over
the past year. This implementation attempts to address
the problems described in the previous section or to
provide the first steps towards that direction.
Technical details regarding the implementation are
given in Section 7. We will first discuss the basic
functionalities of the prototype system and then
describe how the system deals with the issues of
flexibility, usability, scalability, and integration. Keep
in mind that this prototype for task manager interface
has been developed partly independently from the task
manager backend and rest of RADAR. Since we are
still in the early development stage for the RADAR
system, many components are still merely black boxes.
Some features in this prototype are still not integrated
with or even supported by the larger system.
However, these features are shown and described in
this paper as how we envisioned the user interaction
would be like with the task manger interface after these
capabilities are completed in the backend. The main
goal of implementing these features is to explore those
characteristics of the interface that would increase user
productivity and work efficiency as well as to present a
proof of concept. I will denote these unsupported or
unintegrated features with the symbol “*” in the
following sections.

5.1. Defining user tasks

A task in the task manager is defined to be any
everyday activity of the user such as scheduling a
meeting, preparing a presentation, updating a project
website, or writing a paper. A task may involve one or
more participant and may contain of one or more
subtasks as well. Table 1 shows the various task
attributes stored in the task manager. The listed task
information is stored in a relational database on the
task manager backend and can be accessed by the task
manager interface.

Table 1. List of task attributes

Id Unique identification number of the
task

name Name of the task
description More detailed description of the task
state Current state of the task (new, ready,

running, completed, suspended, failed,
canceled or deferred)

importance Importance of the task (highest, high,
normal, low, or lowest)

startDate Starting date of the task
dueDate Due date of the task
createDate Date when the task is originally

created
endDate Date when the task is officially ended,

either completed, canceled or failed
lastUpdateDate Date when the task is last updated by

the user or any responsible tasklet
ownerId Unique identification number that

indicates the owner of the current task
parentId Unique identification number for the

parent task in cases where the parent
task contains subtasks

5.2. Understanding basic functionalities
through a simple scenario

The basic functionalities of TaskPort include 1)
browsing, 2) creation, and 3) modification of a user’s
tasks. Users must be able to browse or modify all
tasks whether it is current or from the past and also be
able to create new tasks. To familiarize with the basic
flow of the application we present a simple scenario
that involves a day in the life of Alice, who is a student
at Carnegie Mellon University.

Figure 2. Screenshot of Alice's personal task

assistant

Alice starts the day by logging into TaskPort and
examines her list of tasks. Figure 2 is a screenshot of
the application that Alice’s sees. Alice currently has
three separate tasks: 1) update RADAR website, 2)
finish thesis paper, and 3) email Bob. Under each task,
various task attributes are also displayed. These
include the task due date, the task state, and the
assistant that is currently responsible for the particular

task. The colored bars on the right side represent a
quick way of identifying the state of a task. In this
case, Alice chooses to use light green to represent
“ready” state, orange to be “running” and dark green to
be completed.

After viewing all the current tasks, Alice decides to
create a new task for scheduling a group meeting with
her project teammates. Figure 3 displays a short form
that she fills out in order to define the new task. A
similar form is used for modifying a task. The tabs
“advanced”, “history”, and “notes” are more relevant
for task modification than for task creation. When
Alice clicks the “create” button, a createTask message
is sent to the task manager backend and a new task
with a new unique task id is created accordingly on the
task manager database. Ideally, the RADAR system
would be able to parse the title and description of the
task definition and would in turn search a knowledge-
based library to decide whether this particular task
could be broken down into a series of subtasks. For
instance, “schedule group meeting” is a complex task
that could be broken down into “negotiating a meeting
time” and “finding available room for the meeting”.
Assume that this intelligent component does exist, then
TaskPort receives the subtasks information from the
task manager backend and displays the newly created
task and subtasks in its browser (shown in Figure 4).
For now, since intelligent black box is not
implemented, Alice could either manually create the
subtasks or leave the new task as is.

After creating the new task of scheduling a group
meeting and its subtasks (either automatically or
manually), Alice is ready to start one of the subtasks,
which is to negotiate an appropriate meeting time with
her teammates. She accordingly changes the state of
that subtask from “new” to “ready” (shown in Figure.
4). Negotiating meeting times among multiple people
is the specialty of calendar tasklets. All calendar
tasklets register their interests with the task manager
backend so that they would be notified when a new
calendar type task is created. Alice checks her Tasklet
Manager to see which tasklets are currently available.
She sees that besides her personal task assistant she
also has a calendar assistant that is currently operating.
Thus the calendar tasklet receives a message from the
task manager backend about the group meeting subtask
and decides to become the responsible tasklet. Alice’s
calendar tasklet changes the task state for meeting time
negotiation again from “ready” to “running”.
Consequently, TaskPort receives the status change
message through the backend and updates its display in
the browser. The assistant attribute is changed as well
as the task state attribute. We can see from Figure 4

that “CalendarAsst15”, the tasklet id for Alice’s
calendar tasklet, is now displayed as the assistant.

Figure 3. Screenshot of dialog for creating a new

task

Figure 4. Created new tasks and its subtasks in

hierarchical display

Ten minutes later, Alice decides to check on the
status for the meeting scheduling task. However, she
notices that the task state for “calendar negotiation”
subtask has been changed to “suspended”. Feeling
slightly concerned and confused about the situation,
she double clicks on the task attempting to find some
explanation for the task suspension. Under the
“advanced” tab, Alice sends a request message to the
task manager in order to retrieve some status
information from the calendar tasklet. After attaining
that information, task manager sends a respond
message back to TaskPort*, stating that the task state
has been updated to “suspended” because a teammate
Bob’s calendar tasklet cannot be contacted and Alice’s
calendar tasklet is currently waiting for a response (see

Figure 5). Relieved after seeing that status report,
Alice returns to her other work.

5.3. Establishing flexibility

As described in the previous section, traditional
task management tools are not flexible in their
definition of a task as well as how they display tasks.
TaskPort overcomes this problem from both protocol
and implementation levels. At the protocol level, our
definition of a task is different from the traditional
sense because it allows task hierarchy and task states.
A hierarchy task structure is imperative to supporting
tasks with varying complexities. We have already seen
a good example of this in the simple scenario presented
above. A very simple task such as “email Bob” would
not have any subtasks whereas a more complex task
such as “schedule meeting” has two subtasks. Task
state, in addition to a hierarchical structure, enables
TaskPort to represent tasks that are not merely
reminders and span over a longer period of time and
involve multiple steps and stages. When the change
history of task state is recorded, it creates a valuable
journal of how the task is eventually accomplished or
failed. The user may look back any time in the future
and receive an exact account about the task. This may
be useful for the user to successfully accomplish a
similar task in the future or to avoid a mistake made in
the previous task.

At the implementation level, TaskPort presents
several unique methods of displaying user tasks and
thus extending the idea of flexibility. TaskPort
incorporates the concept of a taskbin, which is simply
a collection of tasks that share some similarity. For
instance, we can create a taskbin to contain all tasks
that are due today. Since people are already familiar to

the idea of categorization, the idea of taskbins should
be intuitive. Taskbins allow users to organize tasks
and view them in different categories, just as how they
save files in various folders. Taskbins may also
maintain a hierarchical structure where subgroups of
tasks could be created within a taskbin. Moreover,
taskbins may overlap. In other word, any particular
task is allowed belong to one or more taskbins. The
underlining reason for allowing overlapping taskbins is
that intuitively, a task may share similarities with
different sets of tasks when different attributes are
considered. The user, for example, may want to see
both the tasks that are due today and currently
suspended tasks. If a task is suspended and is also due
today, then it will appear in both taskbins.

Furthermore, TaskPort supports two perspectives
for viewing tasks, dashboard view and search engine
view. Figure 1 illustrates the dashboard view of the
task. The dashboard is designed to be condensed and
compact and only occupies a small portion of the
user’s desktop. One disadvantage of using a full
blown application such as Outlook is that it requires
the entire desktop; it is difficult to monitor the status of
tasks while doing other things on the computer. The
dashboard view is inspired by the look of desktop post-
it notes, which are small workspaces that people use to
keep reminders and other notes. The dashboard
inherits the compactness of post-it notes and yet
provides a more organized view of tasks rather than

just reminders. It should be used to display only the
few most relevant tasks.

Figure 5 Search engine view of the same tasks as shown in Figures 2 and 4

search engine, on the other hand, employs a more
traditional look. Tasks are displayed in a table form
with support for a hierarchical structure. Figure 5
presents a screenshot of Alice’s search engine
displaying the same tasks as in the dashboard view

(Figure 1). We can immediately notice that the search
engine view is much larger in appearance. However, it
facilitates the process of searching, sorting, and
filtering on a large set of tasks.

With these two perspectives on viewing tasks, the
users may choose either perspective at appropriate
times. One way of using these two perspectives
together is to keep the dashboard open at all times in
order to monitor the most active and current tasks and
to utilize the search engine whenever we need to find a
particular task in the past.

5.4. Creating usability

Usability applies to the overall utility and
convenience that the task manager interface provides
to the user. TaskPort aims to understand what the
users are trying to accomplish and offers useful
functionalities that increases productivity of the user.

User preference is one area that TaskPort focuses
on. Evidently, different people prefer different looks
and have different ideas about how tasks should be
displayed in the user interface. Therefore, it is crucial
the any task manager interface to allow users the
ability to define the looks of their interface. TaskPort
acknowledges this issue and takes the first steps in
creating a completely user-defined interface. It
currently presents three main areas capable of user
customization. First, the user has complete control
over how many task attributes are visible in both the
dashboard view and the search engine view (shown in
Figure 6). In the dashboard view, for example,
displaying few task attributes would make the
application more compact. On the other hand,
displaying more task attributes would show more
information in a glance and require the user to click
less for more information. Second, the users can
define the color codes that indicate task state on the
right of the task display in the dashboard view (see
Figure 1 to see what the color bar looks like). Alice,
for example, defined pink to be “new” state, light
green to be “ready”, orange to be “running” and so on.
Bob, on the other hand, may have a completely
different set of colors that are intuitive to him in
representing these task states. Third, users can
customize which taskbin collections should be shown
at startup of the application in the dashboard view.
Since the dashboard is designed to display only the
more relevant tasks, it is imperative that TaskPort
provides a way for the users to define what “relevant”
actually means.

Figure 6. Users have full control over what task

attributes are displayed in both the dashboard view
and the search engine view

Figure 7. Screenshot of Alice’s profile manager

Figure 8. Form used to set up a new task collection

Figure 7 and 8 illustrate how the user could create such
unique profile regarding task collections. Figure 7
shows a list of taskbin collections that the user has
already defined. The user may create a new collection,
edit existing ones, or delete any defined collections.
The user can also choose to include any of the
predefined task collections shown on the right side. In

this case, Alice has already defined two taskbins for
her dashboard: 1) tasks that are overdue and 2)
calendar tasks that are currently suspended. Figure 8
shows the setup menu for creating a new collection to
display all active tasks that are due in the next week.
The user first chooses a unique identifying name for
the task collection. Then the user adds one or more
definitions for the collection by selecting any of the
available task attributes. Finally, the user decides
whether these definitions all need to be true or need
only one to be true in order to include a particular task.
In other words, both AND or OR operators can be
used between these definitions.

User preferences are stored locally where the task
manager interface is installed. It is reasonable for a
user to keep completely separate and different
preference profiles on a work computer as opposed to
a home computer. For instance, the task collections
shown in the dashboard would evidently be different
across different settings. In a work environment, the
user would be interested in work related tasks, where
as in a personal environment, more personal tasks
would be the user interest.

Besides supporting user preferences, TaskPort also
provides other useful tools such as the calendar tool.
With the calendar tool, the user is able to create
customized to-do lists for any particular day or week.
Figure 9 presents a list of tasks that are due or need to
be started on April 21, 2004. Users can also find out
the work density of any month by using the “show
density” functionality in the calendar tool. For
instance, a very busy day would be marked as red
whereas a free day would be white. This is a useful
capability that assists users in deciding which days are
freer and which are busier. With that valuable
information, users can more efficiently spread out their
work load and other schedules. Currently, TaskPort
employs a naïve algorithm in determining workload.
The total density of a particular day is calculated by
simply adding up the scores of all tasks that are either
due or need to be started on that day. In future
implementations, a more sophisticated prioritization
scheme could be used to improve the analysis of
workload.

Figure 9. To-do list organized by whether a task is

due or need to be started on a particular day (I’ll
replace this screenshot with a better one.)

5.5. Achieving scalability

Scalability is a major issue for many user interface
application. It applies to not only performance of the
application but also effectively representation of large
amounts of tasks. Task manager interface is not an
exception. Since it is common now for a user to have
several thousand emails, the task manager interface
must be able to handle several thousand tasks as well.
The difficulty here is to represent such large amount of
tasks in an efficient and user friendly manner.

TaskPort alleviates the problem of scalability of
three different ways. First, TaskPort enables filtering
on the existing tasks since users are often only
interested in a small subset of tasks at a particular
moment. TaskPort implements filtering at two
locations. One is the task collection profile in the
dashboard view that we have just discussed in the
previous section (see Figure 8). The other is the
“advanced search” option in the search engine view.
Advanced searching function uses the same interface
as the setup for a new task collection. The only
difference is that instead of display the resulting
filtered set as a collection in the dashboard view, it
returns the results in search engine.

Second, categorization techniques can be used to
further organize results from filtering or directly on all
the tasks. To categorize tasks is to organize tasks
based on some unique task attribute, such as the task
state, the date ranges, or the task names. We already
introduced the idea of categorization in our discussion
regarding the calendar tool. A customized to-do list
(see Figure 9) for a particular day organized by
whether the task is due or need to be started can be
regarded as first filtered on the task start date or due
date then categorized on the action that the user needs
to take (whether to start or finish the task). Similar
categorization is enabled in the search engine view.

Finally, the concept of having a dashboard and a
search engine tool in TaskPort provides a good
foundation of dealing with scalability issues. After
users define a good profile of task collections to
display in the dashboard, they only need to pay
attention to the relevant tasks displayed in the
dashboard as opposed to all existing tasks. Moreover,
having the search engine also allows users to find any
tasks from the past.

5.5. Enabling extensibility

Since the development of the task manger interface
will be continued in the next few years, we attempt to
design TaskPort such that it can be easily extended to
include new functionalities and to improve existing
functionalities.

As we have discussed in section 5.4, a large portion
of TaskPort is based on the ideas of customizable task
collections and flexible organization views. Therefore,
it is crucial that additional filters, sorters, and
organizers can be easily implemented to support this
architecture. The following is a list of filters, sorters,
and organizers that are currently implemented in the
TaskPort interface:

 NameSorter: Compares tasks by their names
 DescriptionSorter: Compares tasks by their

descriptions
 StartDateSorter: Compares tasks by their start

dates
 DueDateSorter: Compares tasks by their due

dates
 ImportanceSorter: Compares tasks by their

relative importance levels
 NameContainsFilter: Filter on whether the

task’s name contains the specified word(s)
 DescriptionContainsFilter: Filter on whether

the task’s description contains the specified
word(s)

 StatusEqualsToFilter: Filter on whether the
task’s status is equal to the specified value

 DueDateIsBeforeFilter, DueDateIsAfterFilter,
DueDateisFilter: Filters that check whether the
task’s due date is before or after the specified
date, or in the specified week, month, or year

 StartDateIsBeforeFilter, StartDateIsAfterFilter,
StartDateisFilter: Filters that check whether the
task’s start date is before or after the specified
date, or in the specified week, month, or year

 DueDateOrganizer: Group all tasks according
to their due dates (e.g. due today, tomorrow,
later this week, later this month, later this year,
and other)

 StatusOrganizer: Group all tasks according to
their status

 NameOrganizer: Group all tasks alphabetically
according to their names

Any new sorter, filter, or organizer can be easily

implemented by following the appropriate interfaces
defined in the TaskPort interface. The new
functionalities including the corresponding UI
components will be integrated into the interface
without changing any other parts of the system.

5.5. Enabling integration

Integrating the task manager interface with the rest
of the RADAR system is an important step in building
a sophisticated cognitive personal assistant such as
RADAR. Integration applies both at the
communication level and also the design level.
TaskPort establishes the foundation for achieving such
seamless integration.

From the communications perspective, the current
implementation of TaskPort is able to 1) register itself
with the task manager backend, 2) create new task in
database, 3) update existing tasks by changing any of
the task attributes or deleting any tasks, and 4) un-
register itself once the user has closed the application.
By now, we are very familiar with these basic
functionalities. More integration is needed as more
components are developed and defined in the future.
One example of that is the “obtaining status”
functionality mentioned in section 5.2.

Integration at the design level is just as important as
that at the communications level. The basic concepts
of the task manager interface should align with those
of the larger RADAR system. Learning, for instance,
is an indispensable component of RADAR. Hence,
any task manager interface must also incorporate the
ideas of learning in its implementation. Due to the
time restriction of this project, current implementation

of TaskPort does not directly have learning elements.
However, we provided the stepping stones for
developing these learning elements in the future. One
way learning could be incorporated into TaskPort is
that the interface could intelligently observe and learn
from user behavior. For instance, if TaskPort learns
that the user always seems to expand the hierarchy
structure for a particular task at application startup, it
may automatically expand the tree for the user in the
future. Current implementation of TaskPort has put an
internal messaging system in place, where every tree
expansion, tree collapsing, task update, task creation
and task modification is recorded. This is valuable
user behavior data that could be used later to develop a
more intelligent task manager interface.

6. Implementation and technical details of
TaskPort

The current implementation of TaskPort is
developed in Java using Eclipse’s SWT (Standard
Widget Toolkit) libraries. We made the decision to
use SWT as opposed to Java Swing and AWT for the

following three reasons. First, SWT contains support
for mobile devices such as a PDE. Since the task
manager interface will be eventually extended to a
ubiquitous environment, portability becomes an
important consideration. Second, since SWT uses
native widgets in its implementation, any user interface
written with SWT gives the user a feeling of a native
application across platforms. Third, using the native
graphics library also makes SWT faster than Swing.

Figure 10 shows the basic architecture of the
TaskPort interface and its connection with the task
manager backend.

7. Conclusion and future work

TaskPort serves as a good foundation for creating
an effective task manager interface. Ultimately, the
goal of our research is to build an intelligent and user
friendly task management tool that is fully integrated
with the RADAR system and increases user
productivity. The following is a summary of how
TaskPort takes the first step in creating such task
manager interface.

1. Provides users the basic capabilities to browse,

JMS Queue
JMS Topics

Event Bus

Standalon
e

Pub/Sub

RMI

Dashboard Search
Engine

Task Synchronizer

Filters, sorters, & categorizers

Task collections
Task

Coordinator

Task Store
APIs

Task
StoreRMI

JDBC

Pub/Sub

Task Manager

Java
Bean

Relationa
l

Figure 10 Basic architecture of the TaskPort interface and its connection with the Task Manager
backend

modify and create tasks
2. Establishes flexibility at both the protocol level

and implementation level. At the protocol
level, a hierarchical task structure is defined
allowing the support for tasks with varying
complexities. At the implementation level, the
concept of taskbin collections is put in place to
enable categorization of tasks. Moreover, two
perspectives of the application: the dashboard
view and the search engine view providing
both a compact and condense summary of the
most relevant tasks as well as a more
comprehensive tool that allows searching and
categorization on all tasks.

3. Creates usability by being fully aware of user
preferences as well as providing other useful
tools. Users have the ability to customize how
much task detail is displayed, how the color
scheme should look, and what collection of
taskbin collections should be shown in the
dashboard. A calendar tool is capable of not
only creating customized to-do lists but also
providing an analysis on user workload.

4. Achieves scalability by implementing filtering
and categorization on the tasks as well as two
perspectives that are appropriate for displaying
either small or large set of tasks.

5. Enables integration with the task manager
backend via both a Java RMI protocol and a
publish / subscribe messaging system that is
able to register and un-register the interface
and to create, update, and delete tasks.

There is still much room for improvements in

TaskPort. Future work can be categorized into
protocol, implementation, and evaluation levels. At
the protocol level, an even more detailed and flexible
task definition could be developed. For example,
besides the basic task attributes that we have
described, a task could also maintain its full history
allowing users to track the progress of the task at both
current and future times. Furthermore, in the current
implementation, tasks are independently entities.
However, in the real word, tasks are inevitably
dependent on one another. Therefore, the definition of
tasks could also maintain an ordering system that
would allow complete workflow management.

At the implementation level, many features in
TaskPort can be enhanced or extended. For example,
user customization could be extended to other aspects
of the interface including the overall look of the
application as well as the specifics of how tasks are
displayed (not only how much details should be
displayed, but how they should displayed). Moreover,

learning could be incorporate into the task manager
interface making it an intelligent agent. For instance,
the interface could learn to deal with failure depending
on user actions. In addition, TaskPort needs to be
extended to a ubiquitous working environment. In
order to achieve that, the interface must first deal with
portability and connectivity issues.

At the evaluation level, it is important to conduct a
complete user study of TaskPort in order to discover
the strengths and weaknesses of the application from
the users. Certain features might intuitively appear
useful; however a user study could reveal that it may
actually hinder the efficiency of the user.

8. Acknowledgements

We would like to thank Professor David Garlan,
and Wei Zhang, a graduate student working on the task
manager architecture and backend implementation for
their ideas, support, and feedback on the project. We
would also like to extend our thanks to all members of
the Task Manager group.

We would also like to sincerely thank Mark Stehlik
for all his help in making this senior thesis possible.

9. References

[1] Bellotti, V., and Smith, I., “Informing the Design of an
Information Management System with Iterative Fieldword”.
Symposium on Designing Interactive Systems 2000. 227-
237.

[2] Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I.,
“Taking Email to Task: The Design and Evaluation of a
Task Management Centered Email Tool”, In conference
proceedings on human factors in computing systems
(CHI2003). April 5-10, 2003, Fort Lauderdale, Florida. 345-
352.

[3] Bergman, R., Griss, M., and Staelin, C., “A Personal
Email Assistant”, HPL-2002-236. August 2002.

[4] Kreifelts, T., Hinrichs, E., and Woetzel, G., “Sharing To-
Do Lists with a Distributed Task Manager”, ECSCW ’93,
Proc. Third European Conference on Computer-Supported
Cooperative Work, Kluwer Academic Publishers, Milan,
Italy, September 15-17, 1993.

[5] Sousa, J. P., “Task-based Everyday Computing: An
Infrastructure”, Submitted for publication, April 2004.

	1. Introduction
	2. Related work
	3. What is RADAR?
	4. Task manager interface problem domain
	5. An implementation for task manager interface
	5.1. Defining user tasks
	5.2. Understanding basic functionalities through a simple sc
	5.3. Establishing flexibility
	5.4. Creating usability
	5.5. Achieving scalability
	5.5. Enabling extensibility
	5.5. Enabling integration

	6. Implementation and technical details of TaskPort
	7. Conclusion and future work
	8. Acknowledgements
	9. References

