Extended Filesystem Functionality for Self
Managing Storage Systems

Terrence Wong
Advisor: Greg Ganger
Grad Students: Andrew Klosterman, Mike Mesnier

April 30, 2004

Abstract

The Parallel Data Lab is in the midst of developing the next generation
of distributed storage systems. Dubbed Self-* (Self Star) Storage, this
system will improve management efficiency among a cluster of machines
at a single location where the machines are connected to one another
through a high speed network. Omne of our goals in building the first
instances of this system is to use as much existing code as possible while
compromising nothing in terms of desired Self-* Storage functionality. We
already have a filesystem, called, S4 that we would like to use as the basis
of permanent storage in the Self-* Storage system. This research report
describes mechanisms that allow an existing filesystem, like S4, to be
coerced into supporting the functionality that Self-* Storage demands.

Contents

1 Introduction

1.1 Self-* Storage
1.2 S4
1.3 Persistent data for Self-* Storage using S4
14 Roadmap

2 Self-* Storage Requirements

2.1 Object naming
2.2 Enumerate
2.3 Clone e
24 Delete

3 Implementation

3.1 Mapping Table
3.2 Enumerate
3.3 Clone,phase 0
3.4 Copy-on-Write Clone, phase 1
3.5 Delete
4 Results
4.1 Enumerate e e
42 Clone

5 Future Work
5.1 Copy on Write Clone, phase 2
52 Benchmarks

6 Conclusions

7 Acknowledgements

10
10
11

11
11
13

13

13

1 Introduction

It is a commonly observed trend that data storage requirements are increasing,
creating demand for data storage centers. As the density of storage increases
and the cost of storage decreases, data centers find themselves managing an
increasing amount of storage space. Unfortunately, the cost of management is
not getting cheaper. It is estimated that the administrative effort requires one
human for every 2 terabytes of storage [1]. With petabyte scale storage coming
in the near future, the human element will be a very expensive component of a
storage system.

The rest of this section describes two storage systems that are relevant to this
research. Section 1.1 introduces a storage system that we are currently building
at the Parallel Data Lab. Section 1.2 follows with a description of a storage
system that we are building on.

1.1 Self-* Storage

We feel the solution to the costly administration problem is to design a new
type of storage system from the ground up. Current computer systems force
administrators to micro manage resources by requiring that they set parameters
for every possible choice. The goal of Self-* Storage [2][3] is to develop a man-
agement hierarchy, similar to those found in real life, which allows various parts
of the system to be guided by superiors and human goals but free to implement
their requirements to the best of their ability.

Self-* Storage is a distributed storage system utilizing large amounts of cheaply
available hardware at a single location. It runs several services that will allow it
to configure, tune, organize, heal, and manage itself. A human administrator is
needed to occasionally replace failed hardware and to input goals that the system
should try to achieve. These goals are in the form of bandwidth requirements,
availability, storage space, and other performance metrics that the end user
desires.

The implementation of Self-* Storage is divided into two phases. The first
part, Ursa Minor, is a lightweight version of the design whose purpose is to
demonstrate the fundamentals of the system. The second phase, called Ursa
Major, will be the full fledged system with all optimizations running and all
functionality available.

1.2 S4

S4, the Self Securing Storage System [4], is an older project at the Lab. It is a
versioning filesystem that doesn’t version on every file close; S4 versions every
time the data is changed. S4 also validates and stores the name of the client and

each operation that it makes. Unlike conventional versioning filesystems where
old versions of files are removed by the cleaner when more space is required,
the existence of old versions is guaranteed for a specific amount of time. This
time period, called the recovery window, is set to a week to give administrators
enough time to detect and understand system compromises. Using these se-
mantics, S4 can help identify a malicious user and the time that the user began
altering data. The last valid version of a file can then be recovered. With all
data guaranteed for a reasonable amount of time, the malicious user is unable to
cover their tracks by hiding the methods they used to compromise the system.

S4 is an object storage system. An object storage system is unlike a conventional
filesystems where data is stored and accessed by blocks organized into files which
are organized into a directory hierarchy. S4 instead stores and retrieves files
based on the file name and the offset into the file. The files are assigned a
numbered identifier in a flat namespace. S4 will return a 64 bit number to
identify the object that has just been created by a client request. Note that
the client must stored this value in order to access the file later and therefore a
conventional filesystem layer can be written on top of S4.

In addition to supporting normal objects, S4 also supports a special table ob-
ject. While a table object is internally similar to a normal object, S4 provides
functionality to allow the insertion, lookup, and deletion of key/data pairs. The
table information is stored in a B+ tree where internal pointers are indexed by
64 bit hashes of the first key of the block pointed to.

1.3 Persistent data for Self-* Storage using S4

Self-* Storage relies primarily on S4’s table object to store information. Using
erasure codes, Self-* Storage encodes blocks of data into shares which are then
stored in S4 tables as key/data pairs. The system can later recall some number
of these shares to reconstruct the original block of data. Each Self-* Storage
object is represented by shares on some number of S4 drives. These drives have
a table object allocated for the Self-* Storage object. The shares are distributed
to the various drives and stored in the table using the block number into the
object that the share represents as the key, and the share data itself as the data.

1.4 Roadmap

Section 2 defines additional requirements of the existing code. Section 3 de-
scribes our solution to the requirements listed in section 2 and is followed by
preliminary benchmark results in Section 4. Section 5 explains work in progress
that will further improve performance.

2 Self-* Storage Requirements

As S4 was designed before Self-* Storage was conceived, S4 does not provide all
of the functionality that Self-* Storage requires.

2.1 Object naming

Since Self-* Storage is a distributed storage system, it will rely on many instances
of S4 running on various machines to store data. As a result, we need a global
object identifier since the identifier issued by one S4 drive is meaningless to a
different drive. We chose a 128 bit object identifier (OID) that the Self-* Storage
system will assign when it creates an object.

There is clearly a conflict if S4 chooses an object identifier (S40ID) when a
create is called but the Self-* Storage systems is designed to assign the object
identifier (SSOID) as well. Thus, we use an S4 table object as a mapping table
to translate from the SSOID to the S40ID.

2.2 Enumerate

Self-* Storage needs to be able to get a list of OIDs of current objects in the
system for its own purposes. A client will never need to call enumerate directly,
but the system will need it for the cleaner (clears out versions older than the
recovery window to reclaim space) and for crash recovery (verify system meta-
data to drive metadata). The system may not want to enumerate the entire
object space, so the enumeration should allow a specific range to be specified.

2.3 Clone

Making copies of objects is essential. A clone of an object is an identical copy of
the object’s data and metadata assigned to a new identifier. The two objects,
while identical, are completely independent, and modifications to one are not
reflected in the other. Creating a clone of an object can be done by physically
copying the data from the object to its clone, but a copy-on-write scheme is more
efficient. In this case, one set of data masquerades as both copies of the cloned
object and is only duplicated if one of the objects is modified. If we assume
that some subset of objects is never modified, time costs and storage space are
reduced. S4 must support a clone operation over a range of objects. A range of
objects is defined to be any OID whose value falls between a start OID and end
OID inclusive. The caller specifies a range of Self-* Storage OIDs to copy from
(source) and the range of OIDs to copy to (destination). When called, the clone
operation takes every existing object in the source range and copies it to the
appropriate OID in the destination range. Any objects that might exist in the

destination range at the time of the clone call should be deleted. This is done
because the clone function at the drive level cannot be called unless validated by
a service called the metadata service. If the metadata service determines that
the ranges are valid, then the only explanation for the existence of a lingering
object in the destination range is that this particular drive did not receive the
delete call on those objects or that the objects have not been cleaned.

The range clone operation is useful for creating snapshots of the filesystem for
future read only recovery. In addition, clone can also be used for less common
operations like a read-write filesystem fork or even the basic “cp” shell command.

2.4 Delete

Since the integer based namespace supports operations over ranges of OIDs,
it is natural to require a way to delete objects en masse. Furthermore, we
assume that the table objects are populated with key/data pairs where the keys
are meaningful integers much like the OIDs. Therefore it also makes sense to
require a table entry release over a range of keys within a table object.

3 Implementation

Since Self-* Storage is a large project with many people working on it, keep-
ing modified code separate is important. As such, our implementation of the
requirements took the form of wrapper functions sitting on top of the S4 API
layer. Our goal was to provide the necessary functions with as few changes to
the S4 drive as possible in order to minimize the amount of code conflict with
the team member who was working on the S4 drive code.

3.1 Mapping Table

There is clearly a conflict if S4 chooses an object identifier (S40ID) when a
create is called but the Self-* Storage systems is designed to assign the object
identifier (SSOID) as well. Thus, we use an S4 table object as a mapping table to
translate from the SSOID (key) to the S40ID(data). While the generic S4 table
is sufficient for the requirements, it is not very efficient. We expect the S4 drive
to be heavily populated with objects, so we cannot use 64 bit hashes as indexes
to organize the 128 bit Self-* Storage OID since there would be 254 collisions
per hash. Furthermore, since the keys need to be stored in a sorted fashion (see
Enumerate, below), the only hash function that would allow that would be the
one that simply returns the high 64 bits of the key. We expect, for simplicity,
the Self-* Storage system to create new objects in increasing numerical order,
which means that every 264 objects created will have the same hash. Searching

Self-* Storage

84 commands (create, insert, lookup,...)
+enumerate+clone

| 54 Extensions l

S4 commands

Figure 1: The location of our code as extensions to the S4 API

a B+ tree with a high number of collisions will be very expensive, and must be
avoided.

In order to combat this problem, we created a new table type by adding a flag bit
to the table’s metadata to signify it as a mapping table. We then modified the
relevant S4 functions to understand that this particular table type has 128 bit
indexes, i.e. the key itself unhashed, for internal block pointers. As a fortunate
consequence of removing the hashed key indexes, the mapping table stores the
key/data pairs sorted by key which provides for a very efficient enumerate.

3.2 Enumerate

Enumerating over the S4 table type is easy because of the nature of a B+ tree;
the data is all stored in a row across the very bottom of a B tree. Enumerating
a particular range simply requires starting at the beginning of the data and
walking across while checking each key, returning those that fall in the specified
range. This isn’t really efficient however, if we consider a very dense S4 object
space and a very small enumeration range. The enumeration essentially has to
look at each object in the S4 drive no matter how small the range is.

We altered the table to keep the table sorted by key which allowed for enumer-
ations to run in time relative to the size of the enumeration range rather than
the size of the table. Instead of enumerate being required to walk across the
bottom of the entire tree, it does something more closely resembling a lookup of
the first SSOID in the enumeration range. Rather than returning the data as a

Self-* Storage Object | 54 Object
SSOMD 251 401D 16
SSOID 252 401D 24
$SOID 253 540D 17
SSOID 255 S40ID 18
SSOID 257 S40ID 96
SSOID 258 S40ID 47
SSOID 259 S40ID 42

3. I've created S40ID 42

2. Create SSOID 259

Self-* Storage 1. Create SSOID 259

Figure 2: Creating an object inserts an entry into the mapping table

01| 09| 16

= LN

01] 0307 09 | 14 16| 20

data |data | data |data | data | data | data | data |data |data | data | data |data |data |data

1011 202 *50%| 206|\07 | 008 | 908| 90| 212 |14 | 315| 516| 41 230 22 | 123
a

Enumerate 200300 o

Figure 3: Inefficient enumeration over a generic S4 table object

normal lookup would do, enumerate simply walks across the bottom from there
copying everything into a buffer until it reaches the end of the enumeration
range, reaches the end of the B+ tree data, or fills the buffer.

3.3 Clone, phase 0

A basic clone can be implemented using the mapping table and the enumeration
function. The first step is to enumerate the destination range and delete any
objects that are there as per the requirements. The second step is to enumerate
the source range. Every object in the source range gets copied directly to a
new S4 object and the new SSOID to S40ID mapping gets inserted into the
mapping table. It is clear that this method is not efficient. Cloning on a large
range of objects means that the caller has to wait for each object to be copied
which is potentially very time consuming.

01 91

N
NS

2
OII 022 1035 |0 071 |0B0 (OBS (099 (122 (141 ifi 174 | 202

0
01 | 03| 07 09| 14

165
IS O 1 I
84 | 84 | 84 84 |84 | 84 | 84 [84 | 84 4 | 84 | 84 | 84
Enumerate 070 s 145>\—/<071, 080, 088, 089 .

Figure 4: A better enumeration over a S4 table with sorted keys

3.4 Copy-on-Write Clone, phase 1

A better solution to the problem is a simple copy-on-write scheme that adds
minimal complexity to the system. This method is implemented in Ursa Minor
and is modeled in a fashion similar to a hard link in an inode based filesystem.
Instead of immediately copying the file as was done in phase 0, a new entry
is simply inserted into the mapping table to translate the new clone’s SSOID
to the original object’s S40ID. A table storing reference counts for S4 OIDs is
added to track the number of SSIODs that are related to the particular S40ID
in order to determine if a modification to that object requires it to first be
copied. All functions that modify objects are updated to understand the need
to copy S4 objects that have reference counts higher than 1 before modification.
Read functions do not require any modifications at all since the copy on write
information is contained in the mapping table that they already use.

3.5 Delete

Since there are ways to create and list objects over ranges of SSOIDs, it is
also useful to delete objects over ranges. In addition to allowing deletion of
objects over ranges, we allow deletion of key/data pairs by key within a table
object. Deleting a range of objects is very similar to an enumeration over the
same range. The delete function traverses the table looking for the beginning
of the range, but instead of copying found objects into a buffer as in the case of
enumerate, the function releases the objects by marking them as deleted. The

Self-* CObject 34 Object 34 CObject ERef Count
S50ID 251 540D 16 340ID 16 3
S50ID 252 54010 24 340D 17 2
S50ID 253 34010 17 340ID 18 1
350ID 255 340ID 18 34010 24 1
S50ID 257 340D 16
S50ID 258 340ID 17
S50ID 258 340D 16

Figure 5: Example of the mapping table (left) and reference count table (right)
after a clone operation

S4 cleaner eventually frees the associated resources for reuse. In the same way
that deleting ranges of objects removes the appropriate key/data pairs from the
mapping table, deleting a range of keys from within a table object removes the
appropriate key/data pairs from the table associated with the particular object.
However since the shares stored in a generic S4 table object are not guaranteed
to have sorted keys, the range delete will have to walk the entire bottom of the
B+ tree in order to ensure all of the keys in the range are released.

4 Results

We ran our tests on a single Pentium 4 2.66ghz machine with 1GB of RAM. The
S4 drive ran on the local machine which stored the data on a Seagate Cheetah
10K.6. The 36GB disk drive spins at 10,000 RPM and utilizes the Ultra320
SCSI interface.

4.1 Enumerate

We tested the speed of an enumeration over a variable range of objects. As
figure 6 shows, the speed of an enumeration is linear with respect to the number
of objects being returned. This is expected because the time cost is dominated
by the data collection at the bottom of the tree. The cost of the enumerate
is acceptable even for large numbers of objects because large enumerations will
be broken up into segments by the system in order to maintain a manageable
buffer in which to store enumerated objects. We expect the system to perform
some operation on the subset of objects before continuing the enumeration; the

10

0.0012 :
"enumerate.data"

0.001 - *

0.0008 / Y

0.0006 |- /‘/ 4

0.0004 |- =

s L / 7

L

1 1 | 1
0 2000 4000 6000 8000 10000
Number of Objects

Enumeration Time (seconds)

o]

Figure 6: Enumeration time over variable number of objects

enumeration will have negligible time cost relative to the system operation on
the returned object list.

4.2 Clone

We also did speed tests on the clone operation over a variable number of objects.
The graph in figure 7 shows that the clone operation is more expensive than
an enumeration over a comparable range. While it is linear for most of the
test, there is an unusual increase in the amount of time required to clone at
approximately 8500 objects. Although we were able to determine that the cause
is in the block allocation portion of the S4 drive’s table insert function, further
work will have to be done to understand exactly why the insertion time is so
high and whether or not it can be reduced.

5 Future Work

5.1 Copy on Write Clone, phase 2

While the version of clone for Ursa Minor is functional, it can be improved.
Even though the copy on write scheme saves time and space, in that the object
copy is delayed, there are still metadata operations required for each cloned
object to be reflected in the mapping table and range table. As the number of

11

T T
“clone.data”

06 -

04 -

Copy on Write Clone Time (seconds)

02 - =

0 1 1 1 | 1 | 1 | 1
] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Objects

Figure 7: Clone time over variable number of objects

objects in S4 grows, a clone operation could potentially encompass a range of
objects so large that inserting one entry into the mapping table for each object
is too time consuming, as figure 7 shows.

The copy on write clone that we are working on for Ursa Major will have another
table, which we call the “range table”. When a clone is called in Ursa Major,
the source and target ranges are simply inserted as keys and data into the range
table, allowing the function to return quickly. All of the S4 functions that access
objects will have to be updated to understand that the mapping table is not
the only source of information as to the existence of objects. This will increase
complexity, but we believe the increased overhead of checking both tables will
be negligible and that the amount of time saved when clone is called over a large
densely populated range will be considerable.

The consequence of the range table is that the mapping table will no longer be
the authoritative source of whether or not a particular object exists. The range
table may describe a particular object to be a chain of clones of previously cloned
objects. The system would have to do several table operations and compares
to follow the chain, which eventually leads back to the original object in the
mapping table. We are still exploring the tradeoffs associated with storing
information in the range table as opposed to the mapping table. It seems to be
the case that the tradeoffs are directly associated to the expected usage patterns
that the system will see. If large dense ranges are cloned, it is certainly a good
idea to quickly insert them into the range table. However if very small or sparse
ranges are cloned, it makes sense to simply evaluate them right away to save the
range table from getting bogged down with trivial entries. The solution to this

12

is not trivial, though, because we do not know how the client will use the system
and therefore the terms “large dense ranges” and “small or sparse ranges” are
poorly defined. Since we don’t want to have to limit the user’s options, we have
to consider all possibilities. With so many variables to consider, however, we feel
the next step is to describe particular usage patterns that will be most popular
and optimize the range table for those. Other less common clone operations will
work, but the user will be advised that system performance may not be optimal
in those cases.

5.2 Benchmarks

Although we were able to obtain data on the time required to enumerate and
clone objects, we were unable to determine the impact of the copy-on-write
scheme compared to the immediate copy scheme. We were also unable to cal-
culate how much of an impact the copy-on-write scheme has on performance
when a modified object is actually copied in a table insert or delete call due to
the lack of real world workloads. Unfortunately, the rest of the Self-* Storage
system for Ursa Minor is not yet complete, and until it is, our benchmarking is
limited to functionality independent of the usage pattern..

6 Conclusions

This work proposes mechanisms to allow Self-* Storage to be built on top of
an existing filesystem called S4. After exploring the requirements that Self-*
Storage puts on S4, we found that wrapper code for the S4 API was sufficient
in providing functionality such as object enumeration, range clone, and range
delete. While the new functionality of S4 is useful for Self-* Storage, however,
the potentially large number of mapping table operations required for a large
clone can make the implementation for Ursa Minor insufficient for performance
reasons. A proposed range table based copy-on-write clone for Ursa Major may
reduce clone overhead to an acceptable level.

7 Acknowledgements

I would like to thank my advisor, Greg Ganger, for giving me this opportunity.
I would also like to thank Greg, Andrew Klosterman, John Strunk, and Mike
Mesnier for guiding me in this project.

13

References

[1]
[2]
[3]

[4]

Total Cost of Storage Ownership - A User-oriented Approach, Gartner-
Consulting, 15 February 2000

G. Ganger, J. Strunk, A. Klosterman, “Ursa Major Design Document,”
Parallel Data Lab.

Ganger, G.R., Strunk, J.D., Klosterman, A.J Self-* Storage: Brick-based
storage with automated administration, Published as Carnegie Mellon Uni-
versity Technical Report, CMU-CS-03-178, August 2003.

Self-Securing Storage: Protecting Data in Compromised Systems. Strunk,
J.D., Goodson, G.R., Scheinholtz, M.L., Soules, C.A.N. and Ganger, G.R.
Appears in Proc. of the 4th Symposium on Operating Systems Design
and Implementation (San Diego, CA, 23-25 October 2000), pages 165-180.
USENIX Association, 2000.

14

