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Abstract

While a lot of research has gone into the study of type-safety, it has been done with simple contrived
languages. There has never been a rigorous formal proof of this important property for any real
language. Also, some prior work has gone into providing a definition of Standard ML [1], but it is
known to contain bugs and was done entirely by hand. This could be greatly improved upon by a
machine checkable definition of Standard ML along with a proof of type-safety for it. We have done
this using Twelf, a formal logic tool designed for formalizing logics and formulating meta proofs.



Contents

1 Introduction

1.1 Some Definitions . . . . . . . . . . . . L e e e e e e e
1.1.1 Type-Safety . . . . . . . . e e
1.1.2 Regularity . . . . . . . . e

1.2 Motivation . . . . . . . . L e e e e e e e e e e e

The Elaborator

Methodology

3.1 Naming Scheme . . . . . . . . . L
3.2 Other Choices . . . . . . . . . . e e
The Proofs

4.1 Regularity . . . . . . . e e
4.2 Extending Stores . . . . . . . . oL e e e e e e e
4.3 Substitution . . . . . . oL L e
4.4 Canonical Forms . . . . . . . L L
4.5 Preservation and Progress . . . . . . ... ... oo

Harper-Stone Bugs
Poplmark Challenge
Conclusion

Future Work

10

11

12

12



1 Introduction

1.1 Some Definitions
1.1.1 Type-Safety

Type-safety is the property of a program of never getting stuck. This means that, when run, the
program will either loop forever or return a value. This means that it can never seg-fault or get
stuck in other ways. We say a language is type-safe when every program in that language is type-
safe. Type-safety is typically proved using the preservation and progress lemmas. Preservation
states that if a well-typed program or expression takes a step (is a evaluated a little) then the
resulting expression is still well-typed. Progress states that any well-typed expression is either a
value or can take another step.

1.1.2 Regularity

Some other nice features of programming languages are collectively called regularity conditions.
These conditions on the language state things like if some expressions e has a type t, then t is a
well-formed type.

1.2 Motivation

It has long been believed that Standard ML is a type-safe language, but there has never been
a formal proof of this property. In fact, type-safety has not previously been proved for any real
language. While type-safety has been much studied, it has remained a theoretical property of small
contrived languages. It is time for this theoretical property to become real.

There are other problems with the current state of the art in programming language design.
The current best for designing languages is to write down a series of judgements on paper and
assert that they are reasonable. It is not uncommon for these definitions to contain errors and omit
rules and cases. It is then necessary, when implementing a compiler or interpreter, to reason about
the rules and exactly what they mean. When bugs become apparent, it is necessary to determine
the “correct” way to resolve them and this can lead to different results in different implementations.

ATl of these issues have been addressed simultaneously by defining Standard ML and proving
it type-safe in Twelf. Twelf is an implementation of LF based on the Curry-Howard isomorphism.
LF is a framework for defining logics such as Standard ML. Twelf allows us to prove metatheo-
rems about these logics. By defining a language in Twelf many possible opportunities for bugs
are eliminated. Harper-Stone, for example, uses a judgement which is not defined (see section 5).
Twelf does not permit this and thus eliminates this opportunity for a bug. Further bugs become
apparent while proving theorems, such as regularity and type-safety, about the language as the bugs
frequently make these theorems false. The theorems themselves must be correct to pass Twelf’s
theorem checker.

In addition to these correctness benefits, Twelf provides the unique opportunity of running
the definition itself via proof search. While this is incredibly inefficient, it eliminates the need to
interpret the definition to determine how corner cases should be handled and provides an accurate
metric for determining the correct behavior of compiler test cases. It should be possible to improve
the efficiency by using real numbers when running proof search rather than zero and successor.



2 The Elaborator

The Harper-Stone definition of Standard ML[1] provides an explicitly-typed lambda calculus re-
ferred to as the internal language or IL and an elaboration from Standard ML (called the external
language or EL) to the internal language. The internal language is simpler than Standard ML as
the syntactic sugar and other redundancies have been removed without losing any expressive power.
As the elaborator provides a direct mapping from ML programs to IL programs, it is immediately
clear that the IL is at least as expressive as the EL. Furthermore, it is sufficient to prove theorems
for the IL since every EL program maps to an IL one.

Another benefit of this method is that new languages can be defined by an elaboration to the
existing I, and thus immediately obtain any results shown for the IL for free. If the IL is not
sufficiently rich to support an elaboration from a new language then it can be extended and Twelf
will guarentee that the relavent cases will be added to all the existing theorems. This provides
the opportunity of extending Standard ML and of designing new languages and obtaining safety
guarentees with little effort.

At this point in time, the IL is defined in Twelf (see Appendix A), but the elaborator exists only
in the Harper-Stone paper[1]. While the elaborator should be written in Twelf and could probably
be so without significant difficulty, this has not yet happened. There are no interesting theorems
to prove about the elaborator; it is only necessary to show that one exists. This has already been
done by Harper and Stone on paper[1l] and so the only benefit of doing it in Twelf would be to
show that their work is correct. This will be done at a later time.

3 Methodology

3.1 Naming Scheme

When approaching a large project it is important to remain organized or else the whole thing is
likely to collapse around you. One way of resolving this problem is by using module systems to
break a large project into smaller pieces. Unfortunately for us Twelf does not yet have a module
system so we did not have this option. Instead we attempted to simulate it as best as we could
through the way code was divided among files and the general naming scheme.

When picking names for judgements, rules, lemmas, etc., we tried to maintain a convention of
separating parts of the name with slashes and pretending that everything to the left of the slash
was the name of a module and everything to the right was the name of the specific judgement or
lemma. ok/con, for instance, means that con is a judgement in the ok module. Similarly ok/kind,
ok/exp, and others represent judgements in the ok module. All of these judgements are in the
same “module” because they have similar meanings - they all express the well-formedness of some-
thing. While this convention can sometimes lead to very long names for heavily nested modules,
it was mostly successful in preventing name-space collisions and allowing rules names to be easily
remembered. It was, however, more difficult to make lemma names follow this convention while
adequately expressing the meaning of the lemma in the name.

A naming scheme for variables in judgements and lemmas was also used and was much easier to
stick to. Variables were usually named for the first letter or two in their type - E or e for expressions,
C or c for constructors, etc. If there were multiple variables with the same type, then they were



distinguished with primes or numbers - E’ or E2. Derivations were named after the primary variable
that they were related to along with a brief name in lower case saying what sort of derivation it is.
Thus Cok would be a derivation of ok/con ST C K and C’ok would be a derivation ok ok/con ST
C’ K. If there are multiple derivations that have the same main variable then a prime is added on
the end of one of the derivation names. Thus Cok’ might be a derivation of ok/con ST’ C K.

3.2 Other Choices

One of the nice features of Twelf is that it allows you to use the Twelf context to represent the
context of the logical system being defined in Twelf. One of our first choices was to take advantage
of this opportunity to eliminate the need to represent the context explicitly or prove substitution
(as it follows for free from Twelf’s substitution). This worked out fairly well, except for some issues
involving the store. The issues that arose here are explained further in sections 4.2 and 4.3. Despite
these complications, using Twelf’s context was a definite win.

Another choice that we made was to faithfully follow the Harper-Stone[1] definition of Standard
ML. While we considered revising the definition to use singleton kinds instead of translucent sums,
we decided that it was best to use the existing definition for two reasons. Firstly we had a better
idea of what the issues were that we would run into using the existing definition. Secondly our
primary goal was to show that an existing language could be formalized in a computer-checkable
way and important theorems like type-safety could be proved. We felt that sticking with the exist-
ing definition was more faithful to this goal. We later came to regret this decision when it became
necessary to define algorithmic constructor equivalence (as mentioned in section 4.5).

Despite trying to remain faithful to Harper-Stone[1], there were a few differences. First of all we
omitted signature equivalence as it does not come up anywhere in the definition and is, therefore,
unnecessary. Another less significant change was the choice to omit floats. Adding floats to the
language should not make the proofs any more difficult than adding integers and characters, but
the process of formalizing the IEEE floating point spec is an entire project of its own. The most
significant change was in the way evaluation works. Harper-Stone does evaluation using a stack,
but makes no distinction between whether it is presently evaluating a term or returning a value.
Instead, Harper-Stone bases its decision on how to proceed on whether the current term is a value
or not. If it is a value, then it returns it. If it is not a value, then it evaluates it some more. Doing
things this way would require a notion of what it means to not be a value and makes it a little more
difficult to reason about what it going on. Instead, we have chosen to split the rules into those
that correspond to evaluating, those that correspond to returning, and those that correspond to
raising an exception. We keep track of our present state and evaluate inwards until we reach a base
value (constants, empty lists, etc.) and then start returning up the stack and raising any exceptions.

Our overall approach to deciding the order in which to define things and prove theorems was to
go back and forth between introducing new definitions and proving theorems about them. There
were a lot of different ways that we could have interleaved making definitions and proving theo-
rems. We could have defined everything and then proved all of the theorems or introduced a few
terms from a family, proved all the theorems, and then introduced a few more terms covering all
the additional cases as we went along. Our approach was to introduce entire families at a time
and then prove the theorems that require them. We chose this path for a few reasons. Firstly,
introducing a few terms at a time might lead to proving theorems in a way that won’t work when all
the remaining terms in the family have been added. It also tends to be annoying to need to go back



and constantly update theorems to cover the remaining cases. This might seem to suggest that
we should have defined everything before proving any theorems, however we found that proving
theorems was an excellent way to find bugs and determine what representations will and will not
work. Thus, by proving theorems as soon as the families they depend on are complete, we were
able to find the bugs and other issues as early as possible so that correcting them impacted only a
minimal set of other things.

4 The Proofs

4.1 Regularity

Before proving type-safety, a large number of regularity conditions were proved (see Appendix B).
These conditions basically tell us that anything appearing in a derivation must be well-formed.
Thus, we can infer ok/con ST C kind/t given that we know ok/exp ST E C and other similar
results. These proofs were done primarily to catch bugs and demonstrate that the regularity con-
ditions in the back of Harper-Stone[l] do, in fact, hold. As it turns out, however, they were also
useful during the proofs of preservation and progress.

While the proofs of regularity were fairly straight-forward, strengthening came up a few times.
When one projects from a module there is a requirement that the projected expression, constructor,
or module does not depend on the things that appear before it in the module. Strengthening arises
when we need to find a proof that whatever is projected is well-formed. In order for the module to
be well-formed, it must contain a proof that everything inside is well-formed, however these proofs
may depend on the other things in the module. Thus we need a strengthening arguement to show
that if the projected term is independent of the rest of the module, then the proof that it is well-
formed is also independent of the rest of the module. Rather than prove strengthening, we chose
to make an additional assumption that whatever was projected from the module was well-formed.
This shifts the burden of strengthening onto whomever originally showed that the projection was
sound.

4.2 Extending Stores

Over the course of preservation it becomes necessary to show that extensions to the store preserve
typing. The basic intuition behind this is that adding new tags or references to the store doesn’t
break anything. Anything that was well-formed with the old store can just ignore all the new things
and the old derivation is almost identical to the new one. A problem, however, arises anytime we
declare variables. Consider, for example, the typing rule for a lambda expression. This rule requires
{c:con}ok/con ST ¢ K’ -> ok/con ST (C c) K as one of the premises. This premise states that
if ¢ is a constructor and ¢ has kind K’ in a store with type ST then (C c) has the kind K in a
store with type ST. The problem arising in evaluation is that the store can be extended over time.
In particular, if there is a proof of ok/con ST’ C’ K’ and a proof that ST’ is an extension of ST
(that is everything in ST is in ST?’) then we would like to conclude ok/con ST’ (C C’) K. This
does not, however, follow from Twelf’s substitution as ok/con ST’ C’ K’ relies on the wrong store.
A substitution lemma, therefore, is necessary.

Before proving substitution, we reformulated the assumption to better indicate what was really
being assumed. What one would really like to say is that if ¢ is well-formed at kind K’ in some



future store (extension) ST’ of ST then (C ¢) is well-formed at K in that same future store. The
problem is that saying that would require writing down the future store when we write down the
rule. Trying to do this is futile as the same problem as before results - we don’t know now what
that future store will be. Instead we need to say that if ¢ is well-formed at kind K’ in all future
stores, then (C ¢) is well-formed at kind K in the current store. Rather than write this, it is simpler
to say that ¢ must be well-formed at X in every store. This is sufficient because we know that the
proof that (C c) is well-formed at K can only ever mention the current store (or if we extend the
store then the extended store). We can then simplify our assumption further by just saying that
c has kind K’ irrespective of the store. Thus, our premise for lambda expressions is now {c:con}
ok/var/con ¢ K’ -> ok/con ST (C c) K.

Once we change the rule for saying that a variable is well-formed, it is necessary to create a
way to construct ok/con ST c K’ for the premise to be useful. Originally we solved this problem
by adding the rule ok/con ST C K <- ok/var/con C K which says that C is well-formed at kind
K in store ST provided C is a variable with kind K. This however created problems with regularity
as we need some way to show that K is a well-formed kind. While this is proveable since we require
that K be well-formed before making the assumption in the first place, the proof requires adding
the derivation to the context and assuming that the context contains a derivation for every such
assumption. This makes things messy, so we adopted the simpler approach of modifying the vari-
able role to be ok/con ST C K <- ok/var/con C K <- ok/kind K. This allows regularity to just
pluck the proof that K is well-formed out of the derivation. Once the left side no longer mentions
the store, the proof that store extension doesn’t break anything goes through straight forwardly.

4.3 Substitution

Proving the substitution lemma, is fairly straight forward except for an issue with dependent types.
Because Twelf only provides access to the last element in the context, it is necessary to swap the
order of the variables in the context when entering under a lambda as we need the variable we
are substituting for to remain at the end of the context. This, however, is not necessarily possible
when one variable might depend on the other. Fortunately this problem can be solved with a
hack. Since there is only one variable that is being substituted for at a time, there is only one
variable that could appear later in the context than it needs to. Consequently we are able to make
the dependency in the backwards order by allowing the dependent variable to depend on anything
provided it happens to be the right thing. Then, as the variable being substituted for is the only
right thing, the proof is able to proceed.

As this method of allowing variables in the context to depend on other variables that occur later
in the context is a sort of hack, the variable being substituted for is aptly marked as hack/arg/con,
hack/arg/exp, or hack/arg/mod. Once the substitution is complete, the resulting proof may still
depend on the extra assumption that the substituted term is the right thing. A number of cleanup
lemmas are, therefore, necessary to remove these assumptions. As there are no constructs that are
capable of relying on these assumptions, it is a simple matter of walking through the terms and
demonstrating that they do not appear.

4.4 Canonical Forms

Canonical forms is a lemma which tells you what a value at a given type is. This is necessary for
progress so that one can show that the expression is the right kind of expression to apply a given



evaluation rule and demonstrate progress. For example if we reach a situation where we have one
value applied to another, then we know that the first value must have an arrow type for this to be
well-formed. Then, by canonical forms, we infer that since the first value is a value and it has an
arrow type that it must be a lambda. This then allows us to say that we can apply the rule that
substitutes the second value for the variable into the body of the lambda.

As a result of constructor equivalence along with constructors that are applications of one con-
structor to another or projections from other constructors, there are an infinite number of ways
to form “different” constructors which are populated by types. For example, one could apply the
identity function an arbitrary number of times to the type int and the result would be equivalent
to type int. Since there are integers, the type would be populated by values (any integer constant).
As we wish to say that any value is canonical at its type we have an infinite number of cases to
deal with. There are many ways to approach this problem. One method might be to give canonical
forms for canonical types and a reduction for other types and then prove that every type reduces
to a unique canonical type using confluence. One could then define the canonical forms of a type
to be the same as those of the canonical type that it reduces to.

We did not, however, follow this approach. Because of an issue that arose in preservation and
progress (see section 4.5), we ended up defining an algorithmic version of constructor equivalence.
This presented us with another option that avoided the need to define a reduction and prove
confluence. Our canonical forms lemma, asserted that if a value v is well-formed at type t, then
v is canonical at some type t’ and, furthermore, t’ is equivalent to t. Without the algorithmic
version of constructor equivalence, it is not clear that this is a useful lemma to prove. With the
normal version of contructor equivalence transitivity makes it extremely difficulty to show any sort
of structural relation between t and t’. The algorithmic version makes it much clearer that there
is a structural relationship between equivalent types if they are both canonical types. As we only
ever care about canonical forms at canonical types, this effectively gives us that v is canonical at
t itself for all the cases that interest us.

4.5 Preservation and Progress

The proofs of preservation and progress have presented more difficulty than the others. As a re-
sult of type equivalence it is not possible to do simple inversion. One might expect that a sort of
inversion lemma could be proved that marched through the type equivalence, found the desired
results, and then modified them to fit the equivalent types, but it is not clear that such a lemma is
proveable. An alternative is to provide an algorithmic equivalence relation for which the inversion
lemmas are proveable and then prove that the algorithmic relation is equivalent to the version
used by the IL by showing that it is sound and complete [3]. The problem with this approach
is that the completeness proof for the algorithm is usually done with logical relations which are
not supported by Twelf. While a syntactic proof by Mark Lillibridge does exist, the proof is sig-
nificantly less elegant than the logical relations proofs. For the moment it is necessary to make
the extra assumption that the algorithmic constructor equivalence relation is complete. With this
assumption, the progress lemma goes through without additional difficulty, but another problem
arises in preservation.

The second issue in preservation arises in the case when modules are being evaluated. When a
piece of the module is fully evaluated down to a value, it is substituted into the rest of the module.
The problem with this is that it is also substituted into the rest of the signature for the module.
This results in a change in the signature while preservation states that the signature never changes.



While this problem has not yet been resolved, we believe we have a solution for it - the signature
resulting from the substitution should be a sub-signature of the one before the substitution as it just
stipulates what the variable needs to be. Showing this would be fairly simple with singleton-kinds,
but is somewhat more complicated in the translucent sums version of the definition. This is yet
another reason why we regret the choice to follow Harper-Stone[1] closely rather than switching to
singleton kinds. We believe that this is still doable and will resolve the issue.

5 Harper-Stone Bugs

One of the results of this work that demonstrates the improvement over prior methods is the num-
ber of bugs found in the Harper-Stone definition[1] and the ways in which they were found. The
sorts of bugs that appear in Harper-Stone are inherent when language definition is done by hand.
At present there are 34 bugs in it that are explicitly marked in the Twelf version. This is not a
perfect count as some of the bugs refer to multiple issues and some refer to larger problems than
others. Also, some of the bugs are really duplicates of the same bug in similar cases. Due to our
departure from Harper-Stone in the dynamic symantics it is entirely possible that some bugs were
missed as we simply did things differently.

A number of the bugs were found during the initial process of formalizing the definition. In
trying to rewrite the rules in LF some typos immediately become apparent as some of the rules
just don’t make sense as written. One of the more interesting bugs found while formalizing the
definition was the use of an undefined judgement. One of the sub-signature rules requires that
dec = dec’. While it is clear what this means, the judgement is not actually defined, as Twelf is
more than happy to point out. Most of the bugs found in this way could easily be found by a
careful proof reading by enough people, but there are plenty of subtler bugs that would likely go
unnoticed through many proof readings.

The majority of the interesting bugs were discovered while proving regularity. This is probably
in part because regularity was done first and in part because regularity covers all of the static
semantics. During the course of proving a theorem one thinks about different things and thinks
about them in different ways than when one is formulating the rules. While writing the rules for
sub-signatures, for example, one thinks to ensure that the first term in the first signature is the
same as the first term in the second signature or that it is a sub-signature of it and that the rest
of the first signature is a sub-signature of the rest of the second signature. It is less likely to occur
to someone that the label for the first term in the signature had better not occur again, however it
turns out that this condition is necessary for regularity to hold. As we would like only well-formed
signatures to be sub-signatures of one another, we need to ensure that there are no duplicate labels
when showing that one signature is a sub-signature of another.

Another issue that arises when proving the same regularity condition appears in the case where
the first term is a module. Harper-Stone[l] tells us that sub/sdecs ST (sdecs/mod L S SD)
(sdecs/mod L S’ SD’) <- sub/sig ST S S’ <- ({m:mod} ok/var/mod m S -> sub/sdecs ST
(SD m) (SD’ m)) which means that sdecs/mod L S SD is a sub-sdecs of sdecs/mod L S’ SD’
provided S is a sub-signature of S’ and (SD m) is a sub-sdecs of (SD’ m) when we assume m is well-
formed at S. (Note: a collection of sdecs is basically a signature) The problem that occurs is that
when we apply the inductive hypothesis, we find that ({m:mod} ok/var/mod m S -> ok/sdecs
ST (SD m)) meaning that (SD m) is well-formed provided m is well-formed at S and also ({m:mod}
ok/var/mod m S -> ok/sdecs ST (SD’ m)) meaning that (SD’ m) is well-formed provided m is
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well-formed at S. The first of these conditions is exactly what we need to prove that (sdecs/mod
L S SD) is well-formed. The problem is that the second will allow us to prove that (sdecs/mod
L S SD’) is well-formed but not (sdecs/mod L S’ SD’) as we have no way of changing the as-
sumption. In general there is no reason to believe (sdecs/mod L S’ SD’) is well-formed given
that (sdecs/mod L S SD’) since we don’t know that S’ is a sub-signature of S and in general it
isn’t. Thus, we must additionally assume that SD’ is well-formed in the presence of m when m is
well-formed at S°.

While proving regularity caught most of the bugs in the static semantics, it did not catch any
in the dynamic semantics. The bugs here that were not caught while formalizing the evaluation
rules had to wait until preservation and progress. Progress primarily turned up bugs where eval-
uation rules had been omitted. These included various cases such as trying to evaluate a case
statement and having no way of pushing it on the stack and trying to pop a projection frame and
actually project from a module, but not having a rule to pop the frame off. There was, however,
one interesting bug that turned up in progress. While trying to demonstrate that evaluation can
continue when the top frame was a case statement, it was necessary to show that the expression we
have evaluated was an injection into a sum type. Generally one would simply appeal to canonical
forms, however case takes an unknown sum type while an injection has a known sum type. Thus
it is not possible for case to be applied directly to an injection. As it turns out, there were no
canonical forms at the unknown sum type because an expression had accidentally been left out of
Harper-Stone. The missing expression coerces an injection to drop the knowledge of what portion
of the sum it is so that it just has the general unknown sum type. After adding this expression,
typing rules, evaluation rules, and filling in all the new cases in the various theorems, the proof was
able to proceed.

Another problem with the same case arose in preservation. The evaluation rule states that the
relavent expression for the current case is pulled from the list and applied to the value inside the
injection, however the typing rules for a case statement require that all the expressions for handling
various cases take the injection of V rather than V itself. Thus the result of the evaluation could
not possibly be well-typed at the correct type as it is not well-typed at all.

In addition to all of the bugs in Harper-Stone that were caught by Twelf and by doing these
proofs, many of our own bugs were caught. Every time we found a bug, we looked up the cor-
responding rule in Harper-Stone. About half the time the bug was present in Harper-Stone and
about half the time the rule had been miscopied.

6 Poplmark Challenge

In addition to proving type-safety for Standard ML in Twelf, we have completed the Poplmark Chal-
lenge. The Poplmark Challenge was put out by the University of Pennsylvania and the University
of Cambridge to gauge whether tools like Twelf are mature enough for proving meta theorems
about programming languages. The challange asked for proofs of transitivity and reflexivity of
algorithmic sub-typing and of type-safety for a small language called F-sub. The completion of this
challenge along with the definition of and proof of type-safety for Standard ML demonstrates that
the time is indeed right for computer checked proofs of meta theorems.

While F-sub is a much smaller language than Standard ML, the proof of transitivity provided
new challenges that did not arise with Standard ML. This proof had an issue with dependent types
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and being able to reorder assumptions in the context much like the issue that arose in substitution
(see section 4.3). This time, however, the hack/arg trick was not applicable as there could be
multiple variables that were simultaneously the argument. In this case we were holding onto type
variables and the assumptions that they were sub-types of another type. As the dependencies only
held between the variable for one pair of assumptions and the sub-typing assumption for the other,
we realized that by holding onto only the sub-typing assumption we could reorder the context in
a suitable way. The resulting issue is that variables in the context are separated from their sub-
typing assumptions. This would allow the appearance of arbitrary sub-typing assumptions in the
context which is problematic as arrow might be a sub-type of records, etc. We resolved this issue
by making a new judgement called var which stated that the associated type was a variable. By
requiring that var t always be placed in the context with t and requiring that var t be proveable
before making assumptions about t, we were able to show that assumptions are only made about
variables and to complete the proof.

7 Conclusion

While the proof of type-safety for Standard ML is not quite complete, we believe that it will be
done within the next week. At present the proof of progress is complete and preservation is only
missing a few cases. As mentioned in section 4.5, we believe we know how to extend the proof
to cover these cases and thus have a complete type-safety theorem for Standard ML. It is our
intention to persue this to the end. After completing this, the entire proof will be computer check-
able except for the completeness of algorithmic equivalence and the elaborator which exist on paper.

Although Twelf is sufficiently rich as to be able to prove meta theorems like type-safety for
real languages such as Standard ML, there is still plenty of room for improvement. Many of the
problems that were encountered in doing these proofs could be eliminated by adding additional
features to Twelf. The difficulty with dependent types in proving substitution could be eliminated
by adding a feature that allows one to grab the rest of the context after the dependent variable
or otherwise deal with variables that occur in the middle of the context rather than at the end.
Another nice feature would be an ability to write theorem cases to cover variables and pull the
pieces needed for the proof from the context rather than needing to prove the theorem separately
for every variable declared. These features and others would greatly enrich the power of Twelf and
the ease with which it can be used.

Despite these short comings, it is clear that machine checked proofs are not a dream in the fu-
ture but rather a reality in the present. While this proof of type-safety for Standard ML is not yet
quite complete, it provides a standard to which the field should rise to meet. When it is complete,
it will also provide a great tool for defining other languages as they can be elaborated to the same
IL with little or no additions. This will greatly reduce the amount of labor required to design new
languages with useful properties like type-safety.

8 Future Work

Once the proof of type-safety for Standard ML is complete, it will not be completely machine
checkable. At present the elaborator and proof of correctness for the algorithmic constructor
equivalence only exist on paper. We do not believe that it would be difficult to write the elaborator
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in Twelf and we intend to so. The algorithmic constructor equivalence, however, is best done
with logical relations. We have been lead to believe that Delphin will provide support for logical
relation proofs, and thus we intend to redo everything in Delphin when it becomes available. We
also intend to depart from Harper-Stone and modernize the definition at the same time by using
singleton kinds instead of translucent sums.
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Appendix A: The IL
%hhhh Syntactic Classes %h%hhhk

kind : type. ‘name kind K.

con : type. Jname con C.

exp : type. Jname exp E.

loc : type. ‘name loc L.

tag : type. ‘iname tag T.

sig ¢ type. Jname sig S.

mod : type. ‘iname mod M.

krow : type. ‘iname krow KR.

crow : type. Jname crow CR. %} rdecs
erow : type. Jname erow ER. %} rbnds
fbnds : type. Jmname fbnds FB.

sdecs : type. Jname sdecs SD.

sbnds : type. Jname sbnds SB.

stp : type. Yname stp ST. %/ store type

WhAA%  Kinds AU

kind/t : kind.

kind/crecord : krow —-> kind.

kind/arrow : kind -> kind -> kind.

krow/nil : krow.

krow/cons : label -> kind -> krow -> krow.

%hhhh Constructors %hhhh

con/int : con.

con/char : comn.

con/record : crow —> con.

con/ref : con —> con.

con/arrow : con —-> con -> con.
con/tagged : con.

con/tag : con -> conm.

con/sum : crow —> con.

con/ksum : label -> crow -> con.
con/fst : mod -> label -> con.

con/lam : kind -> (con -> comn) -> con.
con/mu : con —> con.

con/app : con —-> con -> con.
con/crecord : crow —> con.

con/proj : label -> con -> con.
crow/nil : crow.

crow/cons : label -> con -> crow -> crow.

%hhhh Expressions hhhh%

exp/loc : loc —> exp.

exp/tg : tag —> exp.

exp/fix : crow —> (exp -> fbnds) -> exp.
exp/app . exp —> exp —> exp.

exp/record . erow —> exp.

exp/proj : exp —> label -> exp.
exp/handle i exp —> exp -> exp.

exp/raise : con —-> exp -> exp.
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-> (exp -> exp) -> fbnds -> fbnds.

-> sdecs.

exp/ref : con —-> exp -> exp.

exp/get : exp —> exp.

exp/set : exp -> exp —> exp.

exp/roll 1 con —> exp -> exp.

exp/unroll : exp —> exp.

exp/injs : crow —> label -> exp -> exp.
exp/projs : con —> label -> exp -> exp.
exp/case : con -> exp -> erow -> exp.
exp/newtag : con -> exp.

exp/tag . exp —> exp -> exp.

exp/iftag : exp -> exp -> exp -> exp -> exp.
exp/inteq . exp —> exp —> exp.

exp/chareq : exp —> exp -> exp.

exp/snd : mod -> label -> exp.

exp/int : int -> exp.

exp/char : nat -> exp.

erow/nil ! erow.

erow/cons : label -> exp -> erow -> erow.
fbnds/nil : fbnds.

fbnds/cons : con —-> con

WhhA%  Locations

loc/n : nat -> loc.

Whikhh  Tags  Whhikh

tag/n : nat -> tag.

Whhhh  Stores  hhhhh

stp/nil : stp.

stp/loc : con -> stp -> stp.

stp/tag : con -> stp -> stp.

%hhihh Signatures Ahhhh

sig/sig : sdecs -> sig.

sig/arrow : sig -> (mod -> sig) -> sig.
WhhAh  SDecs WU

sdecs/nil : sdecs.

sdecs/con : label -> kind -> (con -> sdecs) -> sdecs.
sdecs/coneq : label -> kind -> con -> (con -> sdecs)
sdecs/exp : label -> con -> (exp -> sdecs) -> sdecs.
sdecs/mod : label -> sig -> (mod -> sdecs) -> sdecs.
Whhh%  Modules  %AAh%

mod/struct : sbnds -> mod.

mod/lam : sig -> (mod -> mod) -> mod.
mod/app : mod -> mod -> mod.

mod/proj : mod -> label -> mod.
mod/ascribe : mod -> sig -> mod.
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WhAh%  SBinds  hh%%%

sbnds/nil : sbnds.

sbnds/con : label -> con -> (con -> sbnds) -> sbnds.
sbnds/exp : label -> exp -> (exp -> sbnds) -> sbnds.
sbnds/mod : label -> mod -> (mod -> sbnds) -> sbnds.

%h%hh Derived Forms %Ak

%% We define the unit type to be the empty record.
con/unit : con = con/record(crow/nil).
exp/unit : exp = exp/record(erow/nil).

This is not the complete IL as it mentions neither stores nor stacks. The complete proof is available through CVS.
Everything shown here is either a type or a constructor. The types are at the top and are denote as foo:type. The
constructors indicate the type the produce on the right and the arguments that they take to create that type, separate
by arrows to the left. Thus con/lam : kind -> (con -> con ) -> con. means that con/lam takes a kind and
function from constructors to constructors and produces a new constructor.
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Appendix B: Regularity

il/reg/exp_con : ok/exp ST E C -> ok/con C kind/t -> type.
mode il/reg/exp_con +Eok -Cok.

-: il/reg/exp_con
(ok/exp/var
Cok
)
Cok.

-: il/reg/exp_con
ok/exp/int
ok/con/int.

-: il/reg/exp_con
(ok/exp/app
(E’ok : ok/exp ST E’ C’)
(Eok : ok/exp ST E (con/arrow C’ C)))
Cok
<- il/reg/exp_con
Eok
(ok/con/arrow
(Cok : ok/con ST C kind/t)
(C’0k : ok/con ST C’ kind/t)).

This is the theorem statement for one of the regularity conditions and a few of the cases from the proof. There
theorem statement at the top says that it is a relation between proofs that E is well-formed at type C and that C is a
well-formed type. The next line indicates that the proof that E is well-formed is an input and the other proof is an
output. The cases below show various ways of generating the output from the input. The first case just looks up the
input inside, the second case knows what the right output is and makes it up on the spot, and the third case makes
an inductive call and analyses the results.
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