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ABSTRACT 
A selective dissemination of information (SDI) service alerts 
users to latest documents in their field of interest. SDI helps users 
cope better with streams of incoming information by filtering out 
uninteresting documents. Existing SDI filtering mechanisms 
typically use user feedback based on a binary 'interesting/not 
interesting' decision per document. However, in some situations 
the user will use information from the document in a structured 
way to complete a task, for example to fill out a form. Observing 
how users use information provides additional feedback to the 
SDI system. In this work we describe a method of observing user 
task behavior to improve the quality of SDI filtering. Our method 
creates, via machine learning, information extraction models of 
the information that the user is interested in. We then use these 
models on incoming documents to extract parts of the document 
that are likely to be of interest to the user. The results of the 
extraction are added as features into the filtering algorithm. We 
describe some experimental results of this method that 
demonstrate improved filtering performance of the SDI system 
using our method. We then describe the conditions where this 
method may be applied. 

1. INTRODUCTION 
Nowadays we have access to much more electronic information 
than we need. Selective Dissemination of Information (SDI) (also 
known as Content-Based Dissemination) systems enable users to 
cope with the large amounts of information by filtering only 
documents which are relevant to the particular user. Selective 
dissemination is similar to search in that the documents filtered 
are based on a profile, but in this case the user’s need persists 
over some time. This persistence allows for methods of gradually 
improving the filtering mechanism specific to a certain profile. 
Some applications of Selective Dissemination of Information 
(SDI) systems are in newswire for financial analysts, and filtering 
recent publications to researchers, and spam filtering. 
 
Previous work on SDI has been roughly in two categories. The 
first is on improving the efficiency of the filtering mechanism 
from a systems perspective [TG94] [TG99] [DFFT02]. The 
second is on improving the quality of the filtering, referring to the 
degree of relevancy between the information sent to a user and the 
user’s interest. Here, there has been two approaches, the first to 
improve the filtering algorithm, and another is to improve the 
profile. Improving the profile can be accomplished in batch 
filtering or adaptive filtering scenario. In batch filtering, the 
system begins with a large sample of evaluated training 

documents. In adaptive filtering, the system begins with only with 
a topic statement and a small number of positive examples. The 
TREC Filtering Track Report [RS01] [RS02] summarizes the 
state of the art of these approaches, which include using 
Rocchio’s algorithm [A96] [ZXC03] [ABLMNK02] [OC03], k-
nearest neighbor [AY01], language modelling [OC03], support 
vector machines [MPM02], clustering, neural-networks, EM. 
 
Positive examples for training are usually obtained via user 
feedback. Existing filtering mechanisms typically use a binary 
‘interesting/not interesting’ feedback per training document as 
training examples. The filtering mechanism, for example a 
classification algorithm, typically uses the count of each word 
from each incoming document as features for classification. 
However, there are certain tasks in which the user uses 
information from the document in a structured way. For these 
tasks, the user can implicitly provide more feedback to the 
filtering mechanism than simply ‘interesting/not interesting’ 
without doing extra labeling work, as the labeling is already 
embedded in the task that the user performs. Financial analysts 
extract information about mergers and acquisitions from 
documents by copying the names of the companies involved into 
a form or into columns in a spreadsheet. The copied information 
is implicit feedback about companies of interest to the user. 
Another example would be personal shopping for a major 
investment – someone who is looking to purchase a used vehicle 
may read documents about vehicles for sale and copy the 
information that is relevant to him into a spreadsheet, for 
comparison purposes. For example, the person may be reading a 
newsgroup such as cmu.misc.market (which is a marketplace and 
general discussion newsgroup local to Carnegie Mellon 
University), or craigslist [C]. In the newsgroup, everytime the 
user reads a document about a car for sale, the user copies the 
relevant information into a table on for comparison. A diagram of 
this activity is shown in Figure 1, with just 4 spans that is useful 
to the user shown.  
 
In this paper we describe algorithms and experimental evidence 
that demonstrate the impact of this implict information on SDI 
performance. We experiment with using information that is 
gathered by observing user behavior in this form to improve 
filtering quality. We hypothesize that if we add these additional 
features representing the parts of a document that is interesting to 
the user, to the classification algorithm, the filtering quality will 
improve. The parts of the document that is interesting to the user  



 
Figure 1: Example of target user model  

(The user may also be probably interested in the year the car was produced, the contact phone number, the color of the car, and so on.) 
 

are to be identified by running an information extraction 
technique on the incoming documents, where the extraction 
model is trained on the spans that the user labelled as interesting. 
 
A system diagram of the information flow is shown in Figure 2. 
Previous SDI systems typically use feedback in a way that is 
corresponding with the dotted box in the figure. The user views 
documents in a document browser and occasionally marks 
documents as interesting or not interesting. The marked 
documents are sent as training examples to a classification 
learner. The learner improves the relevance of the documents that 
the document browser displays to the user’s interest. We augment 
this process with the rest of the loop shown in the system 
diagram. The user copies the parts of the document that makes it 
interesting to him to an excel spreadsheet. We convert these text 
spans into mark-up which we feed into an extraction learner. 
Conversion is accomplished with a heuristic algorithm 
[TCFZKMHMH04] that labels the substring in the document with 
the closest match to the copied text span. The context in which the 
user is interested in a particular span is called its property.  We 
use extraction learners to learn models of the properties. [LMP01] 
Then, for each incoming document to the SDI system, these 
models are run on the document to predict which parts of the 
document is interesting to the user. These predicted spans are 
used as additional features to the classification learner, in addition 
to the original features. 



 
Figure 2: System diagram 

 

2. EXPERIMENTAL METHOD 

We tested empirically whether adding the extra information in 
this form would improve filtering quality. Our courpus is 
documents from cmu.misc.market, which is a local Carnegie 
Mellon newsgroup. We hand-classified the documents from 
cmu.misc.market into 22 categories.   
 
The results listed in Table 1 are obtained from 600 consecutive 
emails to the newsgroup from January, which covers roughly 3 
weeks (11 January to 1 Feb 2005). These 600 documents covered 
19 of the 22 categories in cmu.misc.market. There was a definite 
skew in this dataset. 199/500 (almost two-fifths) of the documents 
were related to buying or selling books, 21/500 documents were 
related to buying or selling furniture, and 143/500 were in a 
miscellaneous category (which is mostly general discussion and 
flamewars). Figure 3 lists a complete breakdown of the 22 
categories and the number of documents in each.  
 
Our experimental method consists of the Control test and the 
Competitor test. The classification results of each were then 
compared using precision, recall, F1 and error rate metrics. The 
definitions of these metrics are as follows -- Precision is the 
fraction of retrieved documents that are relevant, while recall is 
the fraction of relevant documents that are retrieved = 
P(retrieved|relevant). F1 is a combination of the precision and 
recall measures. Error rate is simply the number of errors made by 
the classifier (false positives and false negatives) over the number 
of testing documents.  
 
Control test: 

Given a set of documents from cmu.misc.market labeled by 
category, a classification model was built using multinomial 
Naïve Bayes to distinguish their categories, where the 

features to Naïve Bayes are the count of each word in the 
documents. The generated classification model is then run on 
a set of testing documents from the corpus. 

 
Competitor test: 

Using the same set of documents, we hand-labeled the parts 
of these documents with the categories listed in Figure 3. An 
example of the documents we hand-labeled for books 
documents is shown in Figure 4. When we use the term 
properties, we mean one of the types of spans that we 
labeled. The properties that we felt were useful with respect 
to books were “title”, “course_number”, “course_title”, 
“price”, “bookstore_new_price” (selling price of a new copy 
of this book at the CMU bookstore), and 
“bookstore_used_price”. (selling price of a book) These 
properties were chosen for the frequency in which they 
appeared in documents about selling books, in the 
cmu.misc.market dataset. For documents about selling 
furniture, we labelled the properties corresponding to 
“fur_item” (Name of a item being sold), “fur_phonenum” 
(Contact phone number of the seller), and “fur_price” (Price 
of a furniture item being sold).  

 
As depicted in the system diagram in Figure 2, we use an 
CRF Learner to create models for each of the properties. The 
extraction models are then run on the testing documents to 
extract spans of text in these documents that are predicted to 
be interesting to the user. The results of this extraction are 
added as features into multinomial Naïve Bayes, in addition 
to the features in the control experiment i.e. count of each 
word. For each annotator, we use an indicator feature 
variable to indicate if the annotator detected a span in a 
particular document. 

 



The Naïve Bayes algorithm for classification and Condition 
Random Fields (CRF) learner for extraction were run from the 
Minorthird package. [M] 
 

 

Description Symbol 
Number of 
documents 

Books – offer BK_O 65 

Books – wanted BK_W 6 

Furniture – offer FUR_O 23 

Furniture – wanted FUR_W 7 

Transport – offer RIDE_O 1 

Transport – wanted RIDE_W 2 

Tutoring – offer TUT_O 1 

Job – offer JOB_O 4 

Lost LOST 8 

Found FOUND 3 

Tickets – offer TIC_O 4 

Tickets – wanted TIC_W 0 

Experiment – offer EXP_O 15 

Apartment – offer APT_O 12 

Apartment – wanted APT_W 3 

Survey SUR 0 

Others OT 140 

Computers – offer COM_O 67 

Computers – wanted COM_W 5 

Event EVENT 31 

Vehicle – offer VEH_O 3 

Vehicle – wanted VEH_W 0 

 
Figure 3: Categories of documents in cmu.misc.market 

 
 

Example profile: 
“documents related to 
selling books”

price 

bookstore_used_price

bookstore_new_price

title 

course_number

 
Figure 4: Example labels for a book document 

 
 



Table 1 : Extraction quality 
 

Training Extraction test set (100 documents) Labels fed to classification test 

Property name 
# 
documents 

# true 
labels 

# 
documents 

# true 
labels 

# 
generated 
labels 

Token 
P 

Token 
R 

Token 
F1  

Span 
P 

Span 
R 

Span 
F1 

# 
documents # generated labels 

book_price 200 127 100 89 117 0.903 0.866 0.884 0.885 0.865 0.875 400 248 

book_bookstore_used_price 200 28 100 18 14 1 0.76 0.864 1 0.778 0.875 400 14 

book_bookstore_new_price 200 21 100 13 0 0 0 0 0 0 0 400 0 

book_title 200 152 100 110 83 0.878 0.771 0.821 0.8 0.582 0.674 400 113 

book_course_number 200 219 100 176 159 0.99 0.909 0.948 0.974 0.852 0.909 400 230 

Fur_item 200 48 100 44 0 0 0 0 0 0 0 400 0 

Fur_phonenum 200 7 100 3 0 0 0 0 0 0 0 400 0 

Fur_price 200 61 100 56 0 0 0 0 0 0 0 400 0 
 



 
Table 2: Comparison of binary classification between the Control and the Competitor filtering mechanism 

(Highlighted rows show where classification performance increased) 

# examples by class CONTROL COMPETITOR 

Category POS NEG Error rate Recall Precision F1 Kappa Error rate Recall Precision F1  Kappa 

F1 
Percentage 

Increase 

BOOKS 71 329 0.0525 0.704 1 0.826 0.797 0.03 0.831 1 0.908 0.89 9.927 
FUR 30 370 0.075 0.1 0.5 0.167 0.145 0.075 0.1 0.5 0.167 0.145 0 
OTHERS 268 132 0.1575 0.974 0.823 0.892 0.607 0.15 0.974 0.831 0.897 0.628 0.561 
                    
BK_O 65 335 0.055 0.692 0.957 0.804 0.773 0.0275 0.862 0.966 0.911 0.894 13.3 
BK_W 6 394 0.015 0 NaN NaN 0 0.015 0 NaN NaN 0 NaN 
FUR_O 23 377 0.06 0.087 0.4 0.143 0.125 0.06 0.087 0.4 0.143 0.125 0 
FUR_W 7 393 0.015 0.143 1 0.25 0.247 0.015 0.143 1 0.25 0.247 0 
RIDE_O 1 399 0.0025 0 NaN NaN 0 0.0025 0 NaN NaN 0 NaN 
RIDE_W 2 398 0.005 0 NaN NaN 0 0.005 0 NaN NaN 0 NaN 
TUT_O 1 399 0.0025 0 NaN NaN 0 0.0025 0 NaN NaN 0 NaN 
JOB_O 4 396 0.005 0.5 1 0.667 0.664 0.005 0.5 1 0.667 0.664 0 
LOST 8 392 0.02 0.125 0.5 0.2 0.194 0.02 0.125 0.5 0.2 0.194 0 
FOUND 3 397 0.0075 0 NaN NaN 0 0.0075 0 NaN NaN 0 NaN 
TIC_O 4 396 0.01 0 NaN NaN 0 0.01 0 NaN NaN 0 NaN 
TIC_W 0 400 0 NaN NaN NaN NaN 0 NaN NaN NaN NaN NaN 
EXP_O 15 385 0.015 0.667 0.909 0.769 0.762 0.015 0.667 0.909 0.769 0.762 0 
APT_O 12 388 0.0125 0.583 1 0.737 0.731 0.0125 0.583 1 0.737 0.731 0 
APT_W 3 397 0.0025 0.667 1 0.8 0.799 0.0025 0.667 1 0.8 0.799 0 
SUR 0 400 0 NaN NaN NaN NaN 0 NaN NaN NaN NaN NaN 
OT 140 260 0.14 0.821 0.788 0.804 0.695 0.135 0.821 0.799 0.81 0.705 0.746 
COM_O 67 333 0.07 0.657 0.898 0.759 0.719 0.0675 0.6716418 0.9 0.769 0.731 1.32 
COM_W 5 395 0.02 0 0 NaN -0.00946 0.02 0 0 NaN -0.00946 NaN 
EVENT 31 369 0.05 0.419 0.867 0.565 0.542 0.05 0.419 0.867 0.565 0.542 0 
VEH_O 3 397 0.0025 0.667 1 0.8 0.799 0.0025 0.667 1 0.8 0.799 0 
VEH_W 0 400 0 NaN NaN NaN NaN 0 NaN NaN NaN NaN NaN 

 



 
Table 3 : Comparison of multicategory classification between the 

Control and Competitor filtering mechanisms 

Control Competitor 

Error rate Error rate 

0.245 0.2425 

 

3. RESULTS 

3.1 Extraction Effectiveness 
Table 1 lists the effectiveness of the extraction learning. The CRF 
Learner algorithm was trained with the first 200 documents from 
the January dataset, which were labeled with the properties in the 
table. It was tested with the second 100 documents from this 
dataset.  Note that the quality of extraction is relatively poor due 
to the dirtiness of the data set. However, the last column of the 
table shows that the extractor provided a large amount of 
evidence to the filtering classifier for some properties in the books 
category, where there was a lot of training data for. (see third 
column -- # true labels in training data) 

3.2 Binary classification 
Table 2 shows a comparison of classification quality between the 
control test and the competitor. The first 200 documents were 
used for training and the last 400 consecutive documents were 
used for testing. In this table, the BOOKS category was created as 
a union of BK_O, and BK_W (descriptions of these labels were 
given in Figure 3), and the FURNITURE category was created as 
a union of FUR_O and FUR_W. These categories were created 
simply as tests as what would happen if similar categories were 
joined together for training. In the third row, the OTHERS 
category was a union of all categories except BK_O, BK_W, 
FUR_O and FUR_W.  
 
The rest of the rows were tests of binary classification of 
documents as either belonging to the stated category or not. The 
competitor classification model has the same features as the 
control model, and in addition indicator feature variables for each 
of the properties book_price, book_bookstore_used_price, 
book_title, and book_course_number, which produced extracted 
spans in the testing set. As indicated in the last column of Table 2, 
there were no predicted spans of the properties 
book_bookstore_new_price, fur_item, fur_phonenum and 
fur_price and hence these were not included as features to the 
classifier. We see that the competitor outperforms Naïve Bayes 
with 13% increase in F1 on the ‘books for sale’ category (BK_O). 
The reason for this is that the additional features added was most 
helpful in the books category – upon inspection, taking the first 
partition of the 3-way cross-validation as example, 
book_bookstore_used_price is the feature with fourth highest 
absolute weight among the 5133 features.  
 
As shown in the table, the additional information helped the 
classification rate in the case of three categories – BK_O, OT and 
COM_O. Significantly, the OT and COM_O categories are not 
directly related to the extracted spans that were added as features. 
Also, while the additional information did not help in every 

category, it did not hurt the classification rate in any of the other 
categories. 

3.3 Multi-category Classification 
Table 3 shows a comparison of multi-category classification error 
rate between the control test and the competitor, between the 19 
categories of the 400 document testing set. The error rate 
improved slightly. Table 4 shows the confusion matrices of the 
control and the competitor test. The yellow (light colored) cells 
along the diagonal show correctly classified documents, while the 
red (dark colored) cells in the competitor confusion matrix 
highlight the differences between the results of the competitor 
classification with respect to the control. The error rate decreased 
because two more BK_O documents (books offered) were 
classified correctly compared to the control, and one less COM_O 
document (computer offered) document was classified correctly.  
 

4. ISSUES AND FUTURE DIRECTION 
In this dataset, for each property that is related to a category (for 
example “books_title”), we have labeled all parts of the document 
that are related to it. A person actually using a SDI system in the 
model described earlier may not. The person may simply be 
filling out relevant information in a form, where mapping the 
contents of the form to the words in the document which derived 
it is a machine learning problem in itself. 

 
There is the issue that some documents in this dataset actually 
deserve more than one category label for example, selling both 
furniture and computer equipment. They are not many. Based on 
the 22 category classification, only 7 documents out of 600 should 
have had more than one label. However the OT (others) category 
was also very large -- this is partly because a lot of items for sale 
(such as of ping-pong paddles, or metal detectors, homemade 
jewelry) simply get classified into the OT category as there is no 
explicit category that matches it, in addition to general discussion, 
arguments, test posts and spam. 

 
A major issue is that a user in the model described would 
probably only give feedback for documents that are useful to 
them, and only until they found what they wanted – these don’t 
make a complete document category. As a result, it may take very 
long for the system to become useful for the user and thus, we 
may want to speed it up by combining user activities on similar 
tasks for labeling spans. Here we would encounter the issue of 
dealing with users having varying behavior over similar tasks.  
  

5. CONCLUSION 
Motivated by realizing that SDI systems have not taken advantage 
of many aspects of user behavior, and that user behavior can give 
a lot of information about why a particular document is 
interesting, we described a system to use this information. We 
created models of the user-extracted spans, and used them to 
identify the word spans in incoming documents that could make 
the document interesting to the user. Using the simple Naïve 
Bayes algorithm for classifying documents, we compared filtering 
quality when the algorithm was used with and without these 
additional spans as features. Our results show empirically that 
additional information in this form does help filtering quality. We 



conclude that the method we described is potentially useful for 
SDI systems where the user tasks involve form-filling or similar 
systematic use of the documents. 



Table 4: Confusion matrices of the Control and Competitor tests on multi-category classification, after 3-cross validation.  

CONTROL CONFUSION MATRIX                  
                 Predicted classes                 
  APT_0 APT_0W BK_O BK_W COM_O COM_W EVENT EXP_O FOUND FUR_O FUR_W JOB_O LOST OT RIDE_O RIDE_W TIC_O TUT_O VEH_O 
APT_0 11                1                  
APT_W   2                      1          
BK_O     62      1 1          1          
BK_W     3                    3          
COM_O         55                12          
COM_W         4        1                  
EVENT         1  14 1  1      14          
EXP_O               11          4          
FOUND                           3          
FUR_O         3 2  2  11      5          
FUR_W 1      1 1  1    1    2          
JOB_O             1        2  1          
LOST             1          2 5          
OT 1  1  5  1    2    1 129          
RIDE_O                           1          
RIDE_W                           2          
TIC_O                           4          
TUT_O                           1          
VEH_O         1                          2 
                    
COMPETITOR CONFUSION MATRIX                
                 Predicted classes                 
  APT_0 APT_W BK_O BK_W COM_O COM_W EVENT EXP_O FOUND FUR_O FUR_W JOB_O LOST OT RIDE_O RIDE_W TIC_O TUT_O VEH_O 
APT_0 11                1                  
APT_W   2                      1          
BK_O     64        1                      
BK_W     3                    3          
COM_O         54                13          
COM_W         4        1                  
EVENT         1  14 1  1      14          
EXP_O               11          4          
FOUND                           3          
FUR_O         3 2  2  11      5          
FUR_W         1 1  1    1    2          
JOB_O 1          1        2  1          
LOST             1          2 5          
OT 1  1  5  1    2    1 129          
RIDE_O                           1          
RIDE_W                           2          
TIC_O                           4          
TUT_O                           1          
VEH_O         1                          2 
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