
Improving the Filtering Quality of Selective Dissemination of
Information by Observing User Task Behavior

(Undergrad SCS senior thesis paper 2005)

Sue Yi Chew
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh PA 15213 USA

syc@andrew.cmu.edu

Anthony Tomasic
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh PA 15213 USA

tomasic@cs.cmu.edu

ABSTRACT
A selective dissemination of information (SDI) service alerts
users to latest documents in their field of interest. SDI helps users
cope better with streams of incoming information by filtering out
uninteresting documents. Existing SDI filtering mechanisms
typically use user feedback based on a binary 'interesting/not
interesting' decision per document. However, in some situations
the user will use information from the document in a structured
way to complete a task, for example to fill out a form. Observing
how users use information provides additional feedback to the
SDI system. In this work we describe a method of observing user
task behavior to improve the quality of SDI filtering. Our method
creates, via machine learning, information extraction models of
the information that the user is interested in. We then use these
models on incoming documents to extract parts of the document
that are likely to be of interest to the user. The results of the
extraction are added as features into the filtering algorithm. We
describe some experimental results of this method that
demonstrate improved filtering performance of the SDI system
using our method. We then describe the conditions where this
method may be applied.

1. INTRODUCTION
Nowadays we have access to much more electronic information
than we need. Selective Dissemination of Information (SDI) (also
known as Content-Based Dissemination) systems enable users to
cope with the large amounts of information by filtering only
documents which are relevant to the particular user. Selective
dissemination is similar to search in that the documents filtered
are based on a profile, but in this case the user’s need persists
over some time. This persistence allows for methods of gradually
improving the filtering mechanism specific to a certain profile.
Some applications of Selective Dissemination of Information
(SDI) systems are in newswire for financial analysts, and filtering
recent publications to researchers, and spam filtering.

Previous work on SDI has been roughly in two categories. The
first is on improving the efficiency of the filtering mechanism
from a systems perspective [TG94] [TG99] [DFFT02]. The
second is on improving the quality of the filtering, referring to the
degree of relevancy between the information sent to a user and the
user’s interest. Here, there has been two approaches, the first to
improve the filtering algorithm, and another is to improve the
profile. Improving the profile can be accomplished in batch
filtering or adaptive filtering scenario. In batch filtering, the
system begins with a large sample of evaluated training

documents. In adaptive filtering, the system begins with only with
a topic statement and a small number of positive examples. The
TREC Filtering Track Report [RS01] [RS02] summarizes the
state of the art of these approaches, which include using
Rocchio’s algorithm [A96] [ZXC03] [ABLMNK02] [OC03], k-
nearest neighbor [AY01], language modelling [OC03], support
vector machines [MPM02], clustering, neural-networks, EM.

Positive examples for training are usually obtained via user
feedback. Existing filtering mechanisms typically use a binary
‘interesting/not interesting’ feedback per training document as
training examples. The filtering mechanism, for example a
classification algorithm, typically uses the count of each word
from each incoming document as features for classification.
However, there are certain tasks in which the user uses
information from the document in a structured way. For these
tasks, the user can implicitly provide more feedback to the
filtering mechanism than simply ‘interesting/not interesting’
without doing extra labeling work, as the labeling is already
embedded in the task that the user performs. Financial analysts
extract information about mergers and acquisitions from
documents by copying the names of the companies involved into
a form or into columns in a spreadsheet. The copied information
is implicit feedback about companies of interest to the user.
Another example would be personal shopping for a major
investment – someone who is looking to purchase a used vehicle
may read documents about vehicles for sale and copy the
information that is relevant to him into a spreadsheet, for
comparison purposes. For example, the person may be reading a
newsgroup such as cmu.misc.market (which is a marketplace and
general discussion newsgroup local to Carnegie Mellon
University), or craigslist [C]. In the newsgroup, everytime the
user reads a document about a car for sale, the user copies the
relevant information into a table on for comparison. A diagram of
this activity is shown in Figure 1, with just 4 spans that is useful
to the user shown.

In this paper we describe algorithms and experimental evidence
that demonstrate the impact of this implict information on SDI
performance. We experiment with using information that is
gathered by observing user behavior in this form to improve
filtering quality. We hypothesize that if we add these additional
features representing the parts of a document that is interesting to
the user, to the classification algorithm, the filtering quality will
improve. The parts of the document that is interesting to the user

Figure 1: Example of target user model

(The user may also be probably interested in the year the car was produced, the contact phone number, the color of the car, and so on.)

are to be identified by running an information extraction
technique on the incoming documents, where the extraction
model is trained on the spans that the user labelled as interesting.

A system diagram of the information flow is shown in Figure 2.
Previous SDI systems typically use feedback in a way that is
corresponding with the dotted box in the figure. The user views
documents in a document browser and occasionally marks
documents as interesting or not interesting. The marked
documents are sent as training examples to a classification
learner. The learner improves the relevance of the documents that
the document browser displays to the user’s interest. We augment
this process with the rest of the loop shown in the system
diagram. The user copies the parts of the document that makes it
interesting to him to an excel spreadsheet. We convert these text
spans into mark-up which we feed into an extraction learner.
Conversion is accomplished with a heuristic algorithm
[TCFZKMHMH04] that labels the substring in the document with
the closest match to the copied text span. The context in which the
user is interested in a particular span is called its property. We
use extraction learners to learn models of the properties. [LMP01]
Then, for each incoming document to the SDI system, these
models are run on the document to predict which parts of the
document is interesting to the user. These predicted spans are
used as additional features to the classification learner, in addition
to the original features.

Figure 2: System diagram

2. EXPERIMENTAL METHOD

We tested empirically whether adding the extra information in
this form would improve filtering quality. Our courpus is
documents from cmu.misc.market, which is a local Carnegie
Mellon newsgroup. We hand-classified the documents from
cmu.misc.market into 22 categories.

The results listed in Table 1 are obtained from 600 consecutive
emails to the newsgroup from January, which covers roughly 3
weeks (11 January to 1 Feb 2005). These 600 documents covered
19 of the 22 categories in cmu.misc.market. There was a definite
skew in this dataset. 199/500 (almost two-fifths) of the documents
were related to buying or selling books, 21/500 documents were
related to buying or selling furniture, and 143/500 were in a
miscellaneous category (which is mostly general discussion and
flamewars). Figure 3 lists a complete breakdown of the 22
categories and the number of documents in each.

Our experimental method consists of the Control test and the
Competitor test. The classification results of each were then
compared using precision, recall, F1 and error rate metrics. The
definitions of these metrics are as follows -- Precision is the
fraction of retrieved documents that are relevant, while recall is
the fraction of relevant documents that are retrieved =
P(retrieved|relevant). F1 is a combination of the precision and
recall measures. Error rate is simply the number of errors made by
the classifier (false positives and false negatives) over the number
of testing documents.

Control test:

Given a set of documents from cmu.misc.market labeled by
category, a classification model was built using multinomial
Naïve Bayes to distinguish their categories, where the

features to Naïve Bayes are the count of each word in the
documents. The generated classification model is then run on
a set of testing documents from the corpus.

Competitor test:

Using the same set of documents, we hand-labeled the parts
of these documents with the categories listed in Figure 3. An
example of the documents we hand-labeled for books
documents is shown in Figure 4. When we use the term
properties, we mean one of the types of spans that we
labeled. The properties that we felt were useful with respect
to books were “title”, “course_number”, “course_title”,
“price”, “bookstore_new_price” (selling price of a new copy
of this book at the CMU bookstore), and
“bookstore_used_price”. (selling price of a book) These
properties were chosen for the frequency in which they
appeared in documents about selling books, in the
cmu.misc.market dataset. For documents about selling
furniture, we labelled the properties corresponding to
“fur_item” (Name of a item being sold), “fur_phonenum”
(Contact phone number of the seller), and “fur_price” (Price
of a furniture item being sold).

As depicted in the system diagram in Figure 2, we use an
CRF Learner to create models for each of the properties. The
extraction models are then run on the testing documents to
extract spans of text in these documents that are predicted to
be interesting to the user. The results of this extraction are
added as features into multinomial Naïve Bayes, in addition
to the features in the control experiment i.e. count of each
word. For each annotator, we use an indicator feature
variable to indicate if the annotator detected a span in a
particular document.

The Naïve Bayes algorithm for classification and Condition
Random Fields (CRF) learner for extraction were run from the
Minorthird package. [M]

Description Symbol
Number of
documents

Books – offer BK_O 65

Books – wanted BK_W 6

Furniture – offer FUR_O 23

Furniture – wanted FUR_W 7

Transport – offer RIDE_O 1

Transport – wanted RIDE_W 2

Tutoring – offer TUT_O 1

Job – offer JOB_O 4

Lost LOST 8

Found FOUND 3

Tickets – offer TIC_O 4

Tickets – wanted TIC_W 0

Experiment – offer EXP_O 15

Apartment – offer APT_O 12

Apartment – wanted APT_W 3

Survey SUR 0

Others OT 140

Computers – offer COM_O 67

Computers – wanted COM_W 5

Event EVENT 31

Vehicle – offer VEH_O 3

Vehicle – wanted VEH_W 0

Figure 3: Categories of documents in cmu.misc.market

Example profile:
“documents related to
selling books”

price

bookstore_used_price

bookstore_new_price

title

course_number

Figure 4: Example labels for a book document

Table 1 : Extraction quality

Training Extraction test set (100 documents) Labels fed to classification test

Property name

documents

true
labels

documents

true
labels

generated
labels

Token
P

Token
R

Token
F1

Span
P

Span
R

Span
F1

documents # generated labels

book_price 200 127 100 89 117 0.903 0.866 0.884 0.885 0.865 0.875 400 248

book_bookstore_used_price 200 28 100 18 14 1 0.76 0.864 1 0.778 0.875 400 14

book_bookstore_new_price 200 21 100 13 0 0 0 0 0 0 0 400 0

book_title 200 152 100 110 83 0.878 0.771 0.821 0.8 0.582 0.674 400 113

book_course_number 200 219 100 176 159 0.99 0.909 0.948 0.974 0.852 0.909 400 230

Fur_item 200 48 100 44 0 0 0 0 0 0 0 400 0

Fur_phonenum 200 7 100 3 0 0 0 0 0 0 0 400 0

Fur_price 200 61 100 56 0 0 0 0 0 0 0 400 0

Table 2: Comparison of binary classification between the Control and the Competitor filtering mechanism

(Highlighted rows show where classification performance increased)

examples by class CONTROL COMPETITOR

Category POS NEG Error rate Recall Precision F1 Kappa Error rate Recall Precision F1 Kappa

F1
Percentage

Increase

BOOKS 71 329 0.0525 0.704 1 0.826 0.797 0.03 0.831 1 0.908 0.89 9.927
FUR 30 370 0.075 0.1 0.5 0.167 0.145 0.075 0.1 0.5 0.167 0.145 0
OTHERS 268 132 0.1575 0.974 0.823 0.892 0.607 0.15 0.974 0.831 0.897 0.628 0.561

BK_O 65 335 0.055 0.692 0.957 0.804 0.773 0.0275 0.862 0.966 0.911 0.894 13.3
BK_W 6 394 0.015 0 NaN NaN 0 0.015 0 NaN NaN 0 NaN
FUR_O 23 377 0.06 0.087 0.4 0.143 0.125 0.06 0.087 0.4 0.143 0.125 0
FUR_W 7 393 0.015 0.143 1 0.25 0.247 0.015 0.143 1 0.25 0.247 0
RIDE_O 1 399 0.0025 0 NaN NaN 0 0.0025 0 NaN NaN 0 NaN
RIDE_W 2 398 0.005 0 NaN NaN 0 0.005 0 NaN NaN 0 NaN
TUT_O 1 399 0.0025 0 NaN NaN 0 0.0025 0 NaN NaN 0 NaN
JOB_O 4 396 0.005 0.5 1 0.667 0.664 0.005 0.5 1 0.667 0.664 0
LOST 8 392 0.02 0.125 0.5 0.2 0.194 0.02 0.125 0.5 0.2 0.194 0
FOUND 3 397 0.0075 0 NaN NaN 0 0.0075 0 NaN NaN 0 NaN
TIC_O 4 396 0.01 0 NaN NaN 0 0.01 0 NaN NaN 0 NaN
TIC_W 0 400 0 NaN NaN NaN NaN 0 NaN NaN NaN NaN NaN
EXP_O 15 385 0.015 0.667 0.909 0.769 0.762 0.015 0.667 0.909 0.769 0.762 0
APT_O 12 388 0.0125 0.583 1 0.737 0.731 0.0125 0.583 1 0.737 0.731 0
APT_W 3 397 0.0025 0.667 1 0.8 0.799 0.0025 0.667 1 0.8 0.799 0
SUR 0 400 0 NaN NaN NaN NaN 0 NaN NaN NaN NaN NaN
OT 140 260 0.14 0.821 0.788 0.804 0.695 0.135 0.821 0.799 0.81 0.705 0.746
COM_O 67 333 0.07 0.657 0.898 0.759 0.719 0.0675 0.6716418 0.9 0.769 0.731 1.32
COM_W 5 395 0.02 0 0 NaN -0.00946 0.02 0 0 NaN -0.00946 NaN
EVENT 31 369 0.05 0.419 0.867 0.565 0.542 0.05 0.419 0.867 0.565 0.542 0
VEH_O 3 397 0.0025 0.667 1 0.8 0.799 0.0025 0.667 1 0.8 0.799 0
VEH_W 0 400 0 NaN NaN NaN NaN 0 NaN NaN NaN NaN NaN

Table 3 : Comparison of multicategory classification between the

Control and Competitor filtering mechanisms

Control Competitor

Error rate Error rate

0.245 0.2425

3. RESULTS

3.1 Extraction Effectiveness
Table 1 lists the effectiveness of the extraction learning. The CRF
Learner algorithm was trained with the first 200 documents from
the January dataset, which were labeled with the properties in the
table. It was tested with the second 100 documents from this
dataset. Note that the quality of extraction is relatively poor due
to the dirtiness of the data set. However, the last column of the
table shows that the extractor provided a large amount of
evidence to the filtering classifier for some properties in the books
category, where there was a lot of training data for. (see third
column -- # true labels in training data)

3.2 Binary classification
Table 2 shows a comparison of classification quality between the
control test and the competitor. The first 200 documents were
used for training and the last 400 consecutive documents were
used for testing. In this table, the BOOKS category was created as
a union of BK_O, and BK_W (descriptions of these labels were
given in Figure 3), and the FURNITURE category was created as
a union of FUR_O and FUR_W. These categories were created
simply as tests as what would happen if similar categories were
joined together for training. In the third row, the OTHERS
category was a union of all categories except BK_O, BK_W,
FUR_O and FUR_W.

The rest of the rows were tests of binary classification of
documents as either belonging to the stated category or not. The
competitor classification model has the same features as the
control model, and in addition indicator feature variables for each
of the properties book_price, book_bookstore_used_price,
book_title, and book_course_number, which produced extracted
spans in the testing set. As indicated in the last column of Table 2,
there were no predicted spans of the properties
book_bookstore_new_price, fur_item, fur_phonenum and
fur_price and hence these were not included as features to the
classifier. We see that the competitor outperforms Naïve Bayes
with 13% increase in F1 on the ‘books for sale’ category (BK_O).
The reason for this is that the additional features added was most
helpful in the books category – upon inspection, taking the first
partition of the 3-way cross-validation as example,
book_bookstore_used_price is the feature with fourth highest
absolute weight among the 5133 features.

As shown in the table, the additional information helped the
classification rate in the case of three categories – BK_O, OT and
COM_O. Significantly, the OT and COM_O categories are not
directly related to the extracted spans that were added as features.
Also, while the additional information did not help in every

category, it did not hurt the classification rate in any of the other
categories.

3.3 Multi-category Classification
Table 3 shows a comparison of multi-category classification error
rate between the control test and the competitor, between the 19
categories of the 400 document testing set. The error rate
improved slightly. Table 4 shows the confusion matrices of the
control and the competitor test. The yellow (light colored) cells
along the diagonal show correctly classified documents, while the
red (dark colored) cells in the competitor confusion matrix
highlight the differences between the results of the competitor
classification with respect to the control. The error rate decreased
because two more BK_O documents (books offered) were
classified correctly compared to the control, and one less COM_O
document (computer offered) document was classified correctly.

4. ISSUES AND FUTURE DIRECTION
In this dataset, for each property that is related to a category (for
example “books_title”), we have labeled all parts of the document
that are related to it. A person actually using a SDI system in the
model described earlier may not. The person may simply be
filling out relevant information in a form, where mapping the
contents of the form to the words in the document which derived
it is a machine learning problem in itself.

There is the issue that some documents in this dataset actually
deserve more than one category label for example, selling both
furniture and computer equipment. They are not many. Based on
the 22 category classification, only 7 documents out of 600 should
have had more than one label. However the OT (others) category
was also very large -- this is partly because a lot of items for sale
(such as of ping-pong paddles, or metal detectors, homemade
jewelry) simply get classified into the OT category as there is no
explicit category that matches it, in addition to general discussion,
arguments, test posts and spam.

A major issue is that a user in the model described would
probably only give feedback for documents that are useful to
them, and only until they found what they wanted – these don’t
make a complete document category. As a result, it may take very
long for the system to become useful for the user and thus, we
may want to speed it up by combining user activities on similar
tasks for labeling spans. Here we would encounter the issue of
dealing with users having varying behavior over similar tasks.

5. CONCLUSION
Motivated by realizing that SDI systems have not taken advantage
of many aspects of user behavior, and that user behavior can give
a lot of information about why a particular document is
interesting, we described a system to use this information. We
created models of the user-extracted spans, and used them to
identify the word spans in incoming documents that could make
the document interesting to the user. Using the simple Naïve
Bayes algorithm for classifying documents, we compared filtering
quality when the algorithm was used with and without these
additional spans as features. Our results show empirically that
additional information in this form does help filtering quality. We

conclude that the method we described is potentially useful for
SDI systems where the user tasks involve form-filling or similar
systematic use of the documents.

Table 4: Confusion matrices of the Control and Competitor tests on multi-category classification, after 3-cross validation.

CONTROL CONFUSION MATRIX
 Predicted classes
 APT_0 APT_0W BK_O BK_W COM_O COM_W EVENT EXP_O FOUND FUR_O FUR_W JOB_O LOST OT RIDE_O RIDE_W TIC_O TUT_O VEH_O
APT_0 11 1
APT_W 2 1
BK_O 62 1 1 1
BK_W 3 3
COM_O 55 12
COM_W 4 1
EVENT 1 14 1 1 14
EXP_O 11 4
FOUND 3
FUR_O 3 2 2 11 5
FUR_W 1 1 1 1 1 2
JOB_O 1 2 1
LOST 1 2 5
OT 1 1 5 1 2 1 129
RIDE_O 1
RIDE_W 2
TIC_O 4
TUT_O 1
VEH_O 1 2

COMPETITOR CONFUSION MATRIX
 Predicted classes
 APT_0 APT_W BK_O BK_W COM_O COM_W EVENT EXP_O FOUND FUR_O FUR_W JOB_O LOST OT RIDE_O RIDE_W TIC_O TUT_O VEH_O
APT_0 11 1
APT_W 2 1
BK_O 64 1
BK_W 3 3
COM_O 54 13
COM_W 4 1
EVENT 1 14 1 1 14
EXP_O 11 4
FOUND 3
FUR_O 3 2 2 11 5
FUR_W 1 1 1 1 2
JOB_O 1 1 2 1
LOST 1 2 5
OT 1 1 5 1 2 1 129
RIDE_O 1
RIDE_W 2
TIC_O 4
TUT_O 1
VEH_O 1 2

6. REFERENCES
[A96] Allan, J. Incremental relevance feedback for information
filtering, Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in information
retrieval, 1996.

[ABLMNK02] Anghelescu, A., Boros E., Lewis D., Menkov V.,
Neu, B., Kantor, P. Rutgers Filtering Work at TREC 2002:
Adaptive and Batch. NIST Special Publication SP 500-251, The
Eleventh Text Retrieval Conference (TREC 2002)

[AY01] Ault, T. , Yang, Y. kNN, Rocchio and Metrics for
Information Filtering at TREC-10. NIST Special Publication SP
500-250, The Tenth Text Retrieval Conference (TREC 2001)

[C] http://www.craigslist.org

[DFFT02] Diao, Y., Fischer, P., Franklin, M. J., and To, R.
YFilter: Efficient and Scalable Filtering of XML Documents.
Proceedings of the 18th International Conference on Data
Engineering (ICDE 2002), page 341, 2002.

[LMP01] Lafferty, J., McCallum, A., Pereira, F. Conditional
Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data. Proceedings of 18th International Conf.
on Machine Learning, 2001

[M] http://minorthird.sourceforge.net

[MPM02] McNamee, P., Piatko, C., Mayfield, J. JHU/APL at
TREC 2002: Experiments in Filtering and Arabic Retrieval. NIST
Special Publication: SP 500-255, The Twelfth Text Retrieval
Conference (TREC 2002)

[OC] Ogilvie, P., Callan, J. Combining Structural Information
and the Use of Priors in Mixed Named-Page and Homepage
Finding. NIST Special Publication: SP 500-255, The Twelfth Text
Retrieval Conference (TREC 2003)

[RS01] Robertson, S., and Soboroff, I. The TREC 2001 Filtering
Track Report, NIST Special Publication: SP 500-250, The Tenth
Text Retrieval Conference (TREC 2001)

[RS02] Robertson, S., and Soboroff, I. The TREC 2002 Filtering
Track Report, NIST Special Publication: SP 500-251, The
Eleventh Text Retrieval Conference (TREC 2002)

[TCFZKMHMH04] Tomasic, A., Cohen, W., Fussell, S.,
Zimmerman, J., Kobayashi, M., Minkov, E., Halstead, N., Mosur,
R., and Hum, J. Learning to Navigate Web Forms. Proceedings of
IIWeb 2004

[TG94] Yan, T., and Garcia-Molina, H. Distributed selective
dissemination of information. Proceedings of the Third
International Conference on Parallel and Distributed Information
Systems, pages 89-98, 1994

[TG99] Yan, T., and Garcia-Molina, H. The SIFT Information
Dissemination System. TODS, 24(4), page 529-565, Dec. 1999

[ZXC03] Zhang, Y., Xu, W., and Callan, J. Exploration and
Exploitation in adaptive filtering based on Bayesian active
learning. Proceedings of the Twentieth International Conference
on Machine Learning (ICML-2003)

