
Abstract
There are many common errors in spreadsheets that traditional spreadsheet systems do not help users 

find. This paper presents a statically-typed spreadsheet language that adds additional information about 

the objects that spreadsheet values represent. By annotating values with both units and labels, users 

denote both the system of measurement in which the values are expressed as well as the properties of the 

objects to which the values refer. This information is used during computation to detect some invalid 

computations and allow users to identify properties of resulting values.
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1. Introduction

Spreadsheets are used both by home users for small calculations as well as by business users for 

mission-critical applications involving millions of dollars. Unfortunately, errors in spreadsheets are as 

ubiquitous as spreadsheets themselves, with 20% to 40% of spreadsheets containing errors [1].

Recent work has focused on software engineering techniques that may be applied to the spreadsheet 

development  process. For example, Rajalingham et al. described improvements in the process itself [8], 

and Rothermel et al. described tools to help test and debug spreadsheets [9]. These are useful additions to 

an already successful language paradigm, but  they do not attempt to improve the language itself. Work on 

improving spreadsheet languages has focused primarily on augmenting them with units. XeLda [2] allows 

users to define their own, and propagates units through computations. Apples and Oranges [4] defines a 

somewhat  different form of unit, based on inferences from headers in tables of spreadsheets. 

While these approaches can help users detect  errors in values and units, errors based on the object 

being measured can go unnoticed. In this paper, we introduce a new spreadsheet system called SLATE 

(“A Spreadsheet Language for Accentuating Type Errors”), which separates the unit from the object  of 

measurement, and defines new semantics for spreadsheets so that  both the unit and the object of 

measurement  are taken into consideration. Unlike the standard semantics for units, the semantics of 

operations on objects of measurement  are not obvious; it  is necessary to choose an intuitive approach for 

propagating information through calculations. By redefining the semantics of traditional spreadsheet 

operations, such as addition and multiplication, the system can generate additional information about 

results that  reveals formula errors. 

For example, a user might  mistakenly multiply pounds of apples by the price per pound of oranges. A 

traditional spreadsheet showing only values would hide this error by displaying only the result, in dollars. 

Even considering units would not  reveal this error. SLATE reveals the problem by showing that the result 

has properties of both apples and oranges: 

10 lb. (apples) * $0.50 / lb. (oranges) = $5 (apples, oranges).

In the next  section, we briefly discuss related work. We then give an example of an error that  SLATE 

would help the user detect, but  other spreadsheets, such as that  described in [4], would not. Next, we 

introduce core concepts of the language, and in the fifth section, give a detailed description of the 

3       DRAFT



operators of the language and justifications for their design. We follow this with a discussion of user 

interface issues for this language, and conclude with future steps for SLATE.

2. Related Work

Like SLATE, other systems have had the goal of improving on the spreadsheet  paradigm. Forms/3 [5] 

takes a functional programming perspective, and extends the full functional programming paradigm to a 

spreadsheet context. Forms/3 avoids the requirement  of rows and columns, instead allowing any 

configuration of cells. We adopted this philosophy in SLATE: although our examples are in a standard 

table layout, the language itself would be suitable for another visual arrangement of cells. 

Apples and Oranges [4] is the most closely related work. In it, Erwig and Burnett developed a unit 

system whereby the system inferred units for cells using a header cell inference algorithm [6]. The system 

defines the spreadsheet  operations in terms of its unit system, and flags cells if its inference algorithm 

suggests an error. However, the inference algorithm is opaque, and if users do not format  the spreadsheet 

as the authors intended, units may be inferred incorrectly (although Burnett  and Erwig suggested in [7] 

ways in which users may customize the inference process). Furthermore, because the units can become 

very complicated, they are not suitable for display to users. Units are also limited to header data; no other 

data can be used. 

Kennedy describes an ML-style functional programming language that includes dimensions [3]. 

Although it  is not  presented in a spreadsheet  context, it is groundwork for statically-typed languages that 

include dimensions. Like other systems that include only units or dimensions, it  cannot detect errors in 

objects of measurement.

3. An Example: Orchard Records

To illustrate how SLATE reveals errors, consider Figure 1, where a user attempted to calculate 

revenues for two types of fruit: apples and oranges. Instead of multiplying each weight of fruit by the 

corresponding cost, the user accidentally multiplied each weight  by the cost per pound of apples. 

Conventional spreadsheets only display the result  of the calculation, so the source of the error is not 

visible. Spreadsheets that consider only units would not  reveal this error either, since both values under 
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consideration have the same units: $ / lb. Because of the particular values in the cells, the user is unlikely 

to find this error by estimating the correct result  and comparing to the computed values. In fact, the 

mistake has been completely hidden, only to be found by a careful inspection of the formulas.

SLATE reveals these errors by displaying additional information in the cells: in addition to displaying 

a unit, it  displays a label, which is a list  of attributes pertaining to the value in the cell. To visually 

separate them from the unit, labels are enclosed in parentheses when displayed. 

In Figure 2, the same calculation from Figure 1 is performed in SLATE. In the “Revenue” column, 

the amounts are treated as measurements of fruit. The first row measures the cost of apples. The second 

row, however, appears to measure the cost of fruit  that  is simultaneously apples and oranges. This is 

obviously wrong; the user expected the cell to have only the attributes of oranges, since the calculation 

has nothing to do with apples. By computing and displaying these labels based on the labels the user 

entered for the original information, the system can help users detect otherwise hidden errors.

The work described in [4] would not  find this error. Since both factors of the product in the incorrect 

cell have headers other than  1, the resulting unit  would be 1 & (Revenue & Fruit 

[Oranges]), which is a legal unit according to the system described.

4. Language Introduction

In this section, we discuss the additional data that  SLATE must maintain to reason about  units and 

labels.

4.1. Values, Units, and Labels

In SLATE, every expression has three attributes: a 

value, a unit, and a label. The value is the same as 

spreadsheets would normally contain. Units, such as 

meters, kilograms, and seconds, indicate the way in 

which a measurement  was made. They capture 

information about  the scale at  which the measurement 

was taken and the dimensions of the measurement 
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Fruit Fruit Sold (lbs.) Revenue

Apples 312 $140.40

Oranges 399 $179.55

Apples (per lb.) Oranges (per lb.)

$0.45 $0.50

Figure 1. An incorrect calculation in 
a spreadsheet.



(although this system does not  treat  dimensions, 

such as weight, separately from the units, such as 

pounds, as discussed in Kennedy [3]). SLATE adds 

labels, which define characteristics of the objects of 

measurement. For example, a cell referring to 25 

pounds of apples might  read “25 lbs. (apples)”. In 

this example, the label is (apples). A cell referring 

to apples picked in September might have the label 

“(apples, September)” because the value in the cell has 

characteristics of both apples and September. 

4.2. Contexts

Since SLATE must understand arbitrary objects being measured, it  must  be customizable to work for 

many different  kinds of objects. For example, a construction company expects a spreadsheet  to 

understand plywood and concrete; a farm expects it  to understand fruit, vegetables, and fertilizer. An 

interior decorator would like “orange” to refer to a color, whereas an orchard manager would like 

“orange” to refer to a kind of fruit. These are different, since they have different subtypes: the color might 

have subtypes of “dark orange” and “red-orange,” but the fruit might  have subtypes of “Navel” and 

“Valencia.”

To accomplish this, each spreadsheet  refers to two contexts: a unit  context and a label context. The 

unit context defines the base units that are available to the user. Base units are the primitive units that, 

when multiplied, form other units; thus, units in spreadsheets are formed from these base units. The 

“quantity” unit is a special case of a base unit, and is used for referring to quantities when counting 

discrete objects, such as “4 quantity (apples)”. It  may be abbreviated “qty.” 

The label context forms the core of this project. The structure of the label context reflects the 

observation that many real-world concepts and objects are hierarchical. Operations are defined on the 

labels so that generalizations up the hierarchy take place where appropriate. Therefore, the label context  is 

a directed acyclic graph, where each node is a particular concept. There is an edge from node n1 to node 

n2 if objects of type n2 have all of the properties of objects of type n1. For example, in Figure 3, there is an 
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Figure 2. The spreadsheet from 
Figure 1, using SLATE. The revenue 

for oranges is incorrect. SLATE 
computed the contents of the 

Revenue cells, including the labels.



edge from “Apples” to “Red Delicious” because red delicious are a kind of apple. Red Delicious apples 

have the properties of apples, and also some additional properties that  not  all apples share.

The example label context in Figure 3 might be suitable for a small orchard. The Something node 

represents the most general type of object; it  is named as such to warn the user of a potentially dangerous 

generalization.

Although trees might suffice as a representation for label contexts, they would impose some artificial 

constraints. For example, in a label context for automobiles, SUVs might be considered to be both cars 

and trucks; this is represented more concisely in a directed acyclic graph, which SLATE supports.

5. Language Specification

5.1. Units

A unit context, denoted by Γ, is a set of base units. A base unit  is used as in Kennedy’s work [3]; it  can 

be thought  of as a unit which cannot  be expressed in simplest  form as a product  of other units.

A unit  is a product of integer powers of base units. Let B range over elements of Γ. Then units µ are 

defined as follows, with n ∈ ℤ (i.e. n is an integer):

µ ::= 1 | µ ⋅ Bn 

1 is the identity unit; it  is never displayed to users.

Each unit  has a canonical representation. In particular, the base units are sorted lexicographically 

(there may be at most  one base unit  with a given name). There may be no more than one appearance of a 

particular base unit  in the canonical representation; multiple appearances are 

combined by summing the exponents. Units are considered to be equivalent  if 

they have identical canonical representations. The symbol = will be used to 

represent equivalences.

5.2. Labels

A label context Λ is a directed acyclic graph, comprised of 

concepts (C) and edges (E), where there is a path from a 
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Something node to each other node. Thus, Λ = (C, E). Each node in the graph represents a concept. c ∈ 

Λ will serve as an abbreviation for c ∈ C.

A label λ is a disconnected set of nodes from the set  C. It represents objects that  have the properties 

of all of its nodes. For example, the set {apple, ripe} is a label that  represents the set  of objects that are 

apples and are also ripe. Of course, this label is only defined in an appropriate context; (apple, ripe) is not 

a valid label otherwise. The empty label, {}, represents the Something node. The relation descendent 

(λ1, λ2) holds if and only if there is a path in Λ from λ2 to λ1.

The relation ≤l between pairs of labels is defined as follows:

λ1 ≤l λ2 ⇔ ∀ c2 ∈ λ2 . ∃ c1 ∈ λ1. descendent (c1, c2)

Claim: ≤l is a partial ordering on labels.

Proof: # Reflexivity: descendent (λ, λ), since ∀c ∈ λ, there is a trivial path from c to c.

� Antisymmetry: Suppose λ1 ≤l λ2 and λ2 ≤l λ1. The fact that λ1 = λ2 follows directly from 

antisymmetry of the descendent relation on directed acyclic graphs: let c1 ∈ λ1 and c2 ∈ λ2. We have 

descendent (c1, c2) and descendent (c2, c1), so c1 = c2. 

� Transitivity: Suppose λ1 ≤l λ2 and λ2 ≤l λ3. Let c3 ∈ λ3 be given. By the definition of ≤l,

∃ c2 ∈ λ2 such that descendent (c2, c3). Likewise, ∃ c1 ∈ λ1 such that descendent (c1, c2). But elementary 

properties of graphs show that the descendent relation is transitive, so we have descendent (c1, c3), as 

required. 

5.3. Types

Together, the unit  and label form a type: τ = (μ, λ). The labels impose a subtyping relation ≤, defined 

as follows:

(μ1, λ1) ≤ (μ2, λ2) ⇔ μ1 = μ2 and λ1 ≤l λ2
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5.4. Abstract Syntax for Expressions

Let  f represent  a floating-point value, and ε the empty expression. ref represents a reference to 

another cell; range-ref represents a reference to a set of cells. An expression e is:

e ::= ε | f µ λ | e + e | e - e | e / e | e * e | ref

       | MAX (range-ref) | MIN (range-ref) 

       | AVG (range-ref)

       | string

A future version of this work will include boolean values and additional functions; they are not 

included here for simplicity.

5.5. Addition and Subtraction

Expressions (other than those that have errors in evaluation) may be added or subtracted if and only if 

they have equivalent units. Errors are propagated, so that if an operand has an error in evaluation, so does 

the result. Values are simply added or subtracted; no conversions are performed.

The restriction to permit adding or subtracting only expressions with equivalent units maintains the 

standard interpretation of units. Because units express the measurement system, permitting these 

operations for values of different units would result  in nonsense. For now, there is no support  for 

automatic unit conversion.

To determine the label of the result of an addition or subtraction operation, SLATE derives the least 

general label that  includes all of the properties in both of the operands. 

Let  intersection-with-paths be a function from label pairs to labels, which when given a pair of labels 

(λ1, λ2) returns the set of nodes:

{n | (n ∈ λ1 and ∃n′ ∈ λ2: descendent (n′, n)) or

(n ∈ λ2 and ∃n′ ∈ λ1: descendent (n′, n))}
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Let  parents be a function from labels to labels, which when given a label λ, returns the union of the 

sets of parents of the nodes in λ for the given context.

The label derived for addition and subtraction is as follows:

fun add-sub-labels (λ1, λ2) = 
! if λ1 = {} then {}
! else if λ2 = {} then {}
  else
    let intersection = 
! !  intersection-with-paths (λ1, λ2)
    in
! !  intersection ∪ !
   add-sub-labels (parents 

! ! ! ! ! (λ1\intersection),! ! !

! ! ! ! parents (λ2\intersection))
  end

This function defines a unique label, given λ1, λ2, and the context Λ, since it is deterministic, and 

terminates (the DAG is finite).

For example, using the context  in Figure 3:

5 lbs. (apples) + 2 lbs. (oranges) = 7 lbs. (fruit)

because apples and oranges are both fruit. Similarly, in a context  where September has been defined:

5 lbs. (apples, September) + 2 lbs. (oranges, September) = 7 lbs (fruit, September). 

Notice how apples and oranges are combined into fruit, but because September is in both labels, it is 

copied into the final label. Likewise:

5 lbs. (apples) + 2 lbs. (oranges, September) =  7 lbs. (fruit)

 in a context where the parent of September is Something.

The goal of this choice of definition of addition and subtraction is for the labels to succinctly express 

the properties of the resulting object. Addition can be thought  of as a union of sets of objects. The label of 

the result expresses the properties that are guaranteed of an arbitrary element  of the result. The only 

properties that can be guaranteed are those that  are shared among all the objects in the set. 

It  might  seem, on the surface, that subtraction could be defined in a manner opposite to addition, 

since the two operations are inverses: when evaluating e1 - e2, subtraction would keep the label of e1, but 

would be illegal if e2 were not a subtype of e1. This is attractive because it  would seem to preserve the 

semantics of labels referring to sets. However, this approach would be inconsistent because it would cause 

the label of the result  of an addition operation to depend on the signs of the values. This instability would 
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be especially confusing for a user, who could find that small changes in values in one part of a 

spreadsheet caused errors in a dependent part of the spreadsheet due to sign changes in dependent  values.

Another possible choice of definition for addition and subtraction would be to require equality in the 

labels, in addition to equivalence in the units. This would be overly restrictive, however, since users 

frequently need to compute sums of different  kinds of objects. For example, for the purpose of finding the 

total weight of a shipment  consisting of many different items, the fact  that  the items are different is 

irrelevant; the user only wants the total weight. SLATE expresses this by choosing the most general label 

(perhaps Something). The user is therefore alerted to the fact that  the items are different. If this is an 

error, the fact that the label unexpectedly became more general would serve as a warning to the user.

5.6. Multiplication and Division

Multiplication and division of two non-error values is always legal; the resulting unit is the product of 

the units of the operands. Errors are defined to propagate, so that  if an operand has an error in evaluation, 

so does the result. For labels, multiplication and division are defined so that  the result label includes all of 

the properties of the operands’ labels. Note that because labels are attached to the value rather than the 

unit, they are never in the denominator of any expression.

It  would be redundant for a label to contain both a node and one of its ancestors; in these cases, the 

ancestor is discarded. Assume that  the function eliminate-ancestors, when given a label λ, returns a new 

label λ′ that is the same as λ, but  the ancestors of ancestor-descendent pairs in λ have been removed. 

Multiplication and division of labels is implemented as follows:

fun mult-div-labels (λ1, λ2) =
! eliminate-ancestors (λ1 ∪ λ2)

For example:

2 qty. (apples) * $0.50 / qty. (apples) = $1.00 (apples)

 But:

2 qty. (apples) * $0.50 / qty. (oranges) = $1.00 (apples, oranges)
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The label (apples, oranges) is different both syntactically and semantically from the label (fruit). The 

label (apples, oranges) denotes objects that have all the properties of apples and also all the properties of 

oranges; the user will observe that  not only was one of apples or oranges not  expected in the result, but 

that there are no objects like this. The label (fruit) would denote objects that have the properties of fruit, 

without  specifying what other properties of apples or oranges they might have. 

The choice of definitions for multiplication and division represents a tradeoff between recording the 

history of the computation—resulting in large, unreadable labels—or erasing it, and hiding potential 

errors. One concern with the definition chosen here is that it  may maintain too much of the computation 

history. For example, the product of a list of different items would result in a very large label, since 

SLATE would take the union of the elements of the operands’ labels. However, spreadsheets are not 

commonly used to compute products of large sets of items; although this is a potential use (for example, 

in calculating geometric means), we chose to optimize for the common case: users sum large lists, but 

tend to multiply only small lists. Furthermore, in most  spreadsheets, the chain of computation may be 

relatively short. If this is the case, the label will probably not become too large.

An alternative to the union definition we chose, arising from the concern above, is to use intersections 

of the sets, rather than unions. The intersection operator would be defined similarly to the algorithm used 

for labels in addition and subtraction. However, although this approach would result in smaller labels, 

multiplication does not correspond to the item-property semantics described for addition and subtraction, 

so its interpretation would be unclear: multiplication in this context is not  simply repeated addition, as 

shown by the behavior of units with multiplication. Furthermore, this alternative definition would hide 

errors: rather than indicating errors by displaying unexpected attributes, it  would require users to notice 

the absence of expected attributes. 

A natural question is whether this definition should also be used for addition and subtraction. 

However, the observation that  addition is commonly used for lists of dissimilar items precludes this 

choice, since it  would result in commonly having very long, unreadable labels. Further, it  would break the 

semantics of labels as expected for addition: items in the result set would have only some of the properties 

of the label attached to the result, rather than all of them. This property is less important  for multiplication 

and division, however; users familiar with operations with units know that units behave differently for 

multiplication and division than for addition and subtraction.
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Another possible choice would be to define labels so that multiplication and division could be 

performed in a manner similar to those operations on units. In particular, there would be no simplification 

between labels with multiplication; the system would generate exponents if labels were identical, and 

cancel identical labels on multiplication if their exponents summed to zero. Division would be defined as 

the inverse of multiplication. This definition, despite its intuition and appeal, is not an appropriate choice 

for this system. Because of the large variety of possible labels, cancellation occurs much less frequently 

than it would occur with units. The result is that labels become very complicated, and therefore 

unreadable. For example, under this interpretation:

10 lbs. (red delicious) * $.50 (apples) / lb. = $5 lbs. (red delicious) lb. (apples)/ lb. 

No cancellation occurs in this example, resulting in a complicated, unreadable label. Users would 

likely choose to ignore the label rather than examining it.

One refinement attempt  would be to consider labels to be contravariant  in the denominator, meaning 

the system would cancel labels if the label in the denominator is a subtype of the label in the numerator. 

This would improve the previous example, resulting in $5. However, even in cases where cancellation 

occurs, the system would lose important  information as computation proceeded. The value $5 does not 

reflect the fact  that it is a measurement of red delicious apples (or even, more generally, apples). This loss 

of information can hide errors caused by improper uses of this computed value. For example, it might be 

incorrectly added to $10 (oranges), under the mistaken assumption that the $5 was a measurement of 

oranges. This would result in $15, hiding the fact that  this is in fact fruit. Users would begin to ignore the 

frequent  disappearance of labels, causing them to also ignore potential errors.

5.7. Aggregate Operators

The aggregate operators defined in SLATE are MAX, MIN, and AVG. For all of these operators, the 

units of the operands must be equivalent  (otherwise, comparisons or additions of the values would be 

meaningless). 

The label of the result  is as defined for addition and subtraction, extended to n labels instead of only 

two. For MAX and MIN, it would be tempting to instead copy the label from the maximum or minimum 

value into the result’s label. However, the label of the result should depend only on the labels of the 

operands, rather than on their values. For example, suppose a user calculated the MAX of 3 qty. 
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(apples) and 5 qty. (oranges). This is legal, since both values have units of qty. However, 

the label of the result  must be (fruit) rather than (oranges). Otherwise, the label of the result 

would change if the number of apples changed to be larger than the number of oranges, resulting in 

changes propagating throughout  the spreadsheet. This could be confusing to the user.

5.8. Properties of Labels

Let  ≤l be the partial ordering on labels as given above. Let ∧ be the operation defined for 

multiplication and division of labels, and ∨ be the operation defined for addition and subtraction of labels. 

Assume Λ is a label context. Define Δ = {λ | (c ∈ λ) ⇒ (c ∈ Λ)}; thus, Δ is the set of all labels for the 

given label context  Λ.

Claim: λ1 ∧ λ2 = inf {λ1, λ2} with respect  to ≤l.

Proof: inf {λ1, λ2}=def  λ1 ∪ λ2 . Since λ1 ⊆ λ1 ∪ λ2, we have λ1 ∧ λ2 ≤l λ1. Likewise, since λ2 ⊆ λ1 ∪ 

λ2, we have λ1 ∧ λ2 ≤l λ2. Suppose there existed λ such that  λ1 ∪ λ2 ≤l λ but λ ≤l λ1 and λ ≤l λ2. (to be 

completed)

Claim: λ1 ∨ λ2 = sup {λ1, λ2} with respect  to ≤l.

Proof: to be completed.

Therefore, (Δ, ∧, ∨) is a lattice.

5.9. Asymptotic Efficiency of Label Operations
To be completed.
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6. User Interface Issues

6.1. Displaying Units and Labels

The system does not  use labels to discover errors automatically; rather, they serve as additional 

information for users. This additional information can help users find errors by showing potentially 

unexpected properties of the results of the computations, as in the example in Figure 2. Therefore, the 

visual representation of labels is central in determining SLATE’s effectiveness.

Despite the additional space required for units and labels, in many cases the additional information 

they provide can remove the need for extraneous annotations. For example, Figures 1 and 2 express the 

same data, but in the second table, Figure 2 uses one fewer column because the information can be 

expressed with labels. Of course, the benefit  is less when there are many columns.

6.2. Editing Units and Labels

Another central factor that determines SLATE’s effectiveness is the ease with which users may enter 

labels. If users choose not  to enter labels, the system does not provide benefits.

One guiding principle that suggests some potential design ideas is surprise-explain-reward [10]. 

People are willing to go to some effort if they will be rewarded. For example, users may be willing to 

repair unit errors, since the system rewards them by evaluating their formulas. One possibility would be to 

give nonsense labels to values without labels. A tooltip would explain the system, and upon entering a 

valid label, the strange labels would disappear, potentially revealing downstream errors in the 

spreadsheet.

In our current implementation, users must  type units and labels as text. This has the advantage of 

permitting users to enter data without  any additional interface elements; only the keyboard is required, not 

both keyboard and mouse. A disadvantage, however, is that users must remember to type them correctly, 

and learn the syntax of units and labels.

It  would be advantageous, therefore, to have a GUI tool for entering units and labels. For units, 

several possibilities are conceivable. Pop-up menus, either in a separate inspector window, or in cells 

when activated by editing the cells, could be used to select a unit. A sequence of these (one additional 
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menu would be displayed when previous ones were filled in), with text boxes to display exponents, could 

allow users to enter products of base units.

Entering labels is somewhat harder, because the context is potentially much richer. The labels context 

is a hierarchy, so it  would be logical to display it  similarly to other hierarchies that users are accustomed 

to managing. For example, file systems are hierarchical, so it  would make sense to use a browser 

paradigm in which users could choose nodes to add to a label. The system would need to report  an error if 

the user attempted to add both a node and one of its ancestors.

6.3. Editing the Unit and Label Contexts

A separate issue from the interaction with the spreadsheet cells is the specification of the unit  and 

label contexts.

Our current  implementation has a static unit  context. A more complete implementation should allow 

users to edit  unit  contexts, as in [2]. Although a default context containing SI, English, etc. units would 

suffice for most users, many users in specialized settings need unique units. One important observation, 

however, is that in these settings, there are frequently groups of users with the same requirements. One 

user should be able to create a specialized unit context, and distribute it  to other users by transferring a 

file corresponding to the unit  context. 

Because the unit  context  is very simple, editing it  is not  a difficult  requirement. The context  consists 

only of a list  of strings; users would simply edit the list. This requirement would be complicated by the 

future addition of automatic conversions or unit abbreviations. Unit  conversions are complex; for 

example, converting US dollars to Euros requires the system to know the current exchange rate.

Interaction techniques for editing the label context are more challenging than those for the unit 

context, since label contexts have more complicated 

structure. Only a small minority of users will understand 

directed acyclic graphs (DAGs). One possible 

representation would be a list of statements, as shown in 

Figure 5.

For some users, a hierarchical editor, similar to some 

file browsers, may be appropriate. One approach would 
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Figure 5. Users could enter the text in 
bold to define a label context.

Apple is a kind of Fruit.

Red Delicious is a kind of Apple.

Granny Smith is a kind of Apple.

…



have one column per level of the hierarchy; selecting an item in one column would cause the next column 

to display the children of the selection. The only difference between trees and DAGs in this context is the 

fact that items may be duplicated. Since nodes are uniquely identified by their names, it suffices to have 

users enter elements in multiple places in the hierarchy. Of course, such an editor would need to display 

errors if users ever tried to create cycles in the graph.

Just as with units, large groups of users may share a single label context, so one expert could create a 

context, and share it  with users who do not need to understand the details of editing contexts. 

7. Future Work

We are currently enriching SLATE with a more complete computational model and developing an 

appropriate treatment  for labels in this setting, including conditional statements, Boolean operators, and a 

library of standard statistical functions. We are also adding a more complete unit system, as have been 

designed in other work (such as Antoniu [2] or Kennedy [3]).

In addition to enriching the language, we are designing unit and label context editors, and prototyping 

a method to allow users to specify units or labels for single or multiple cells simultaneously. 

Displaying units and labels requires space—sometimes more than the values they correspond to. But 

if labels are not  visible, users must  explicitly make them visible to check for errors. One approach to 

reducing space requirements would be to use an inspector window which would display the label of the 

currently selected cell. Another choice would be a heuristic that would highlight  cells considered most 

likely to contain errors; of course, this would only be an approximation of the user’s manual verification. 

Alternatively, labels could be displayed in tooltips when desired.

Header inference techniques from Apples and Oranges could be adopted in SLATE. Instead of 

requiring users to enter information about objects of measurement  manually, the system could infer some 

information from the headers, using a similar inference algorithm.

We are designing user studies to evaluate SLATE; this is vital both for demonstrating SLATE’s ability 

to help users detect  errors and for choosing among the many design ideas we have discussed. The system 

must also be tested with large contexts and data sets to show its effectiveness with large amounts of data.
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8. Conclusions

SLATE represents a new approach to spreadsheet  formula error detection. By considering objects of 

measurement  in addition to units of measurement, it is possible to detect  errors that would be hidden in 

other systems without presenting an onerous burden to end users. SLATE has the potential to uncover a 

new class of errors, and should be suitable for both small and large spreadsheets. This novel approach to 

error detection represents an improvement over existing techniques, which do not take objects of 

measurement  into consideration.
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