
Dynamic Texturing of Botanical Environments

Andrew A. Cove
acove@andrew.cmu.edu
Advisor: Doug L. James

Carnegie Mellon University

Figure 1:Irises: A large field of irises blowing in the wind.

Abstract

Animating realistic large botanical environments for real-time ap-
plications is computationally intractable given the cost of nonlinear
dynamics, collisions, and wind coupling, as well as global illumi-
nation. However, by combining data-driven animation techniques
with three dimensional packing techniques, it is possible to pro-
duce expansive and immersive interactive botanical worlds. Data-
driven animation techniques enable real-time synthesis of physi-
cally based motions without the cost of run-time simulation. The
overhead costs of precomputing motion and lighting for a variety of
objects, behaviors, and environmental conditions are large, but tol-
erable given the performance benefits at run-time. Since a primary
goal of physically based modeling is to synthesize real world en-
vironments, a natural extension of precomputing and synthesizing
complex behaviors for simulated objects is to place the objects in
scenes representative of their natural environments. However, the

cost of assembling and precomputing physical states for an envi-
ronment scales as the environment grows in size and complexity,
and the reuseability of the data diminishes. We provide techniques
for synthesizing expansive, interactive botanical environments that
maintain the low run-time costs of data-driven animation with-
out incurring the overhead costs of building and simulating large
scenes. We utilize a small library of data-driven irises and an ex-
tension of stochastic methods for tiling Wang Tiles to generate a
field of over 40,000 irises that can be animated in real-time under
varying wind and lighting conditions.

1 Introduction

In this paper, we propose a method for creating large environments
populated with realistically behaving plants. Each plant in an en-
vironment is an instance drawn from a small library of plant mo-



tions and lighting data. By populating the environment with plant
instances, we produce realistic, dynamic botanical scenes without
incurring the costs associated with physical simulation and global
illumination of complex environments. We animate the plant in-
stances with a data-driven animation technique that draws on both
video textures [Scḧodl et al. 2000] and motion graphs [Kovar et al.
2002], and determine the position for each plant by extending the
usage of Wang Tiles described in [Cohen et al. 2003]. We also de-
scribe the implementation of our techniques in the form of an iris
field, and explain some of the optimizations that we make to enable
the field to be explored interactively and to respond to dynamic
wind and lighting. Finally, we recommend future areas of study to
improve the physical accuracy and visual quality of our methods.

1.1 Our Contribution

We present a method to build expansive, dynamic botanical envi-
ronments. We construct an environment using instances from a li-
brary of motion and lighting data, allowing the plants in the envi-
ronment to respond physically to changes in wind and lighting, with
low run-time cost facilitating interactive exploration of the scene.
In addition, we propose an extension to Wang Tiles [Cohen et al.
2003] that accommodates the use of deformable models without
decreasing packing density.

1.2 Related Work

Our work incorporates aspects of three different areas of computer
graphics to produce large scale, complex botanical environments.
Data-driven animation techniques enable the irises in our field to
respond physically to dynamic wind conditions. We light our scene
with a real-time approximation to global illumination, so that the
iris field exhibits the appropriate response to changing lighting con-
ditions. To populate the field, we distribute the iris clumps accord-
ing to a technique for three dimensional space packing as well as
non-periodic texture generation.

We animate the plant instances in our environment by applying
the principles of video textures [Schödl et al. 2000] to animations
generated from motion graphs, originally described in [Kovar et al.
2002]. Motion graphs represent motion synthesis as graph walks
on a directed graph, in which edges represent either original mo-
tion data or automatically generated transitions. Walking the graph
generates a continuous series of motion by playing back original
motion and smoothly transitioning to another data set. [James and
Fatahalian 2003] extend motion graphs by using impulse response
databases for deformable objects to transition between impulsive
motion clips. Our plants are animated by impulsive motion clips,
similar to those in [James and Fatahalian 2003]; however, since we
do not have direct physical interaction with our plants, continuous
plant motions are essentially played back as a series of animation
clips, connected by transition points with similar characteristics, as
in video textures. However, the motion stored in the motion graphs
for our plants is indexed according to varying wind levels. As such,
our motion texturing responds dynamically to input by preferring
transitions in the graph that best match the given input conditions.

Our plants are lit using appearance models based on a low
rank approximation to the diffuse radiance transfer global illumi-
nation model for low-frequency lighting [James and Fatahalian
2003], [Sloan et al. 2002]. In addition, we use the same precom-
puted radiance transfer technique to approximate shadowing effects
on the ground plane.

[Cohen et al. 2003] use Wang Tiles to generate non-periodic
tilings for non-repeating textures and to position geometry in large
scenes. They provide a botanical scene composed of a large col-
lection of sunflowers, presented as static geometry and rendered as
layered depth images. We present extensions to their methods for

the purpose of generating environments that contain dynamic mod-
els, to be rendered in real-time as three dimensional geometry.

Our work is very similar to that of [Perbet and Cani 2001].
They produce a large scale, interactive prairie through the use of
procedurally animated grass primitives and texture-based level of
detail. However, their work is better suited to situations where inter-
primitive collisions are less visible. Additionally, creating the grass
primitives does not carry the modeling or simulation costs associ-
ated with our plant models.

2 Details of Approach

The limitations of building an expansive, densely packed botanical
environment present themselves immediately. The modeling cost
alone of a field of thousands of complex plants is an unmanage-
able burden. However, given such an environment, the insurmount-
able hurdle is animating and displaying the world interactively. The
complexity of global-illumination, simulation, and collision resolu-
tion of a large scale, hand crafted environment is too great to be
computed at run-time. To facilitate the generation and presentation
of a botanical environment comprised of tens of thousands of dy-
namically responsive plants, we solve the computational challenges
for a small set of plant primitives, and use these primitives as build-
ing blocks with which to construct an environment with the desired
realism and complexity, with manageable run-time costs that allow
us to interact with the world in real-time.

2.1 Instancing

We use a set of four iris “clumps,” shown in Figure 2, as the build-
ing blocks for our iris field. Each clump contains six to seven irises
in close contact. For each clump, we generate a motion library by
simulating the clumps in a black-box Navier-Stokes wind simula-
tor, with collisions resolved using penalty forces. The data is stored
in a reduced coordinate representation as a motion graph, indexed
by wind level, to be used to generate motion at run-time. For each
clump, we also precompute radiance transfer data, which we use at
run-time to compute the appearance of the clumps under dynamic
lighting conditions. To reduce the visual redundancy inherent in
reusing the clumps thousands of times throughout the scene, we
give each instance of a clump a different initial index into the mo-
tion graph. Thus, even though the animation is generated from the
same set of motions, the clumps will follow different paths accord-
ing to the seed and the randomly chosen transitions.

Figure 2: Iris Clumps: The four iris clump primitives instanced
throughout the iris field.

Building the iris field out of clump instances reduces the over-
head of creating the environment. If the full field were treated
as a single object when simulating motion and computing global-
illumination data, computation times would be intractable. Man-
aging the complex interactions of the numerous plants in the field



requires the resolution of numerous collisions and adds significant
complexity to the effects each plant has on the appearance of its
neighbors. In comparison, instancing has two primary disadvan-
tages. First of all, since collisions are handled during simulation,
each clump’s motion graph only contains behavior for collisions
between the irises within the clump. A full collision detection and
resolution system would have to execute at run time to prevent inter-
clump collisions. We alleviate this disadvantage by carefully posi-
tioning the iris clumps so that they can not possibly interact with
each other, as described in the next section. Second, the individ-
ual clumps will have inaccurate illumination data at their bound-
aries, because the appearance model is generated without knowl-
edge of the positions of neighboring clumps. Although the clumps’
lighting data can be computed with additional geometry present to
provide occlusion and diffuse inter-reflection effects, the lighting
for each instance will not be correct for its actual neighbors. This
disadvantage could be eliminated by recomputing the appearance
models for each clump at each instance of the clump on each base
Wang Tile. While this method provides the correct lighting for each
clump within the base tiles, it does not solve the problem entirely,
because of the effects that plants in neighboring tiles have on the
clumps at each of the base tiles’ borders. We could endeavor to
produce appearance models for each clump for each base tile for
each possible neighbor, but the problem grows exponentially while
reducing the positive benefits of instancing to save preprocessing
time. Although the use of instances reduces the entropy in the envi-
ronment and provides only an approximation to global illumination,
the improvement in initialization and run-time costs makes the de-
ficiencies tolerable.

2.2 3D Packing Problem

Having determined the building blocks with which to construct the
environment, we are left with the challenge of arranging the world
out of clump instances. In order to appear natural, the instance
positions must maintain the invariant of physicality - plant clumps
can not overlap and penetrate each other - and must not contain
unnatural visible patterns - for example, a grid of irises would not
be particularly natural.

Wang Tiles can be used to reduce the visual repetition in a
large scene while preventing visual discontinuity across edges and
maintaining low costs to populate the environment [Cohen et al.
2003]. Each Wang Tile is a square in which each edge is assigned a
color. In a tiling pattern, all shared edges between neighboring tiles
must have matching colors. Cohen et al. present a process involving
two stochastic methods to create an environment out of Wang Tiles.
They build a pattern by sequentially placing tiles. At each step, a
tile is randomly selected from the set of tiles whose edges match
the open edges of the current configuration. Since multiple tiles
share the same colors for individual edges, the stochastic process
should not repeat the same patterns. An example Wang Tile pattern
is shown in Figure 3.

The other stochastic method in [Cohen et al. 2003] is used to
populate each Wang Tile. The authors place objects on to the tiles
by throwing darts according to a Poisson disc distribution, depicted
in Figure 4. At every iteration, a random position is selected on
a tile. The radius of the object to be placed defines a disc around
the dart’s position. If the dart’s disc overlaps the boundaries of
any objects already on the tile, the dart is rejected. Additionally,
if the dart’s boundary circle overlaps any of the tile’s edges, the
boundary circle is tested against all of the possible neighbors across
the overlapped edges, to prevent discontinuities in the final tiling.
If the dart does not intersect any of its own tile’s other darts, or
any possible neighbors’ darts, the object is added to the tile at the
dart’s position. Since the position is selected at random, there is no
repetition within the tile. However, if a full tiling is viewed from

Figure 3: Wang Tiles: A tile pattern composed of randomly se-
lected tiles with matching edge colors [Cohen et al. 2003].

Figure 4: Wang Tile Population: Dart throwing using poisson-
disk distribution [Cohen et al. 2003].

a distance, it may be possible to recognize the features within an
individual tile at the tile’s various positions within the pattern.

The method to generate patterns of Wang Tiles presented
in [Cohen et al. 2003] does not lend itself to certain features of
the iris field. We want the iris field to be densely populated and
to be animated. However, the use of the Poisson disc distribution
of dart positions can not satisfy both goals. Animating the clumps,
particularly at high wind levels, greatly increases the radius of the
boundary circle around each clump’s two dimensional swept area.
Testing dart positions with the larger boundary circle is necessary
to prevent visual artifacts due to interpenetration; however, as the
darts’ radii grow, the amount of empty space between objects in the
individual tiles also grows, and the overall plant density drops. We
alleviate this problem by replacing the disc with a 3D volume. We
sample each clump into a uniform spatial grid. In addition, we add
samples of the clumps at various displacements across wind levels
(with an emphasis on the highest wind level). Rather than main-
taining the Poisson disc distribution, we test the cell overlaps of
the voxelizations associated with each dart. By testing against the
swept volumes, we are able to produce much denser plant packings
within each Wang Tile without worrying about collisions between
clumps. Combining the collision free, random positioning of plants
within each Wang Tile and the non-repeating tile pattern produced
by edge color matching, we generate an iris field that appears natu-
ral without the cost of positioning every clump instance throughout
the field. Figures 5 and 6 show a Wang Tile populated by voxel-
based dart throwing and the same tile drawn with the actual iris
clumps.

2.3 Implementation and Optimization

The primary goal of our work is to produce expansive, interactive
environments. In order to demonstrate the effectiveness of instanc-
ing from the motion library to populate scenes, the scene must be
densely populated and be responsive at interactive rates, without
compromising size or complexity. To achieve the performance lev-



Figure 5:Voxelized Tile Population: A densely packed Wang Tile,
generated by testing the voxel overlap of neighboring plant clumps
for each dart throw.

Figure 6:Tile Population: The same Wang Tile, displayed as ac-
tual plant clumps.

Figure 7:Levels of Detail: Geometry for an increasingly reduced
plant clump mesh.

els necessary to allow dynamic camera changes and varying wind
levels, we incorporate level of detail versions of the clumps and
take advantage of programmable graphics hardware and careful op-
timization of our OpenGL implementation.

To reduce the cost of animating and rendering a full field of
iris clumps, we create five levels of detail for each clump. Clumps
close to the camera are shown at their full, first level of detail; the
plants are animated using their full motion libraries and lighting
data. Because of the high dimensionality of the motion data, the
deformation for the full detail plant models must be computed in
software. As the distance between a clump and the camera grows,
we substitute increasingly less expensive level of detail models for
the clump. The subsequent levels of detail use a low-rank matrix
approximation to the full reduced-coordinate motion data. The ge-
ometry for each clump is reduced using a quadric-based reduction
method, enhanced to appropriately weight the lighting and motion
data of the mesh as the number of vertices is reduced. Figure 7 de-
picts levels of reduced geometry for an individual clump. Each level
of detail for each clump is stored in a display list, with the lighting
and motion data stored as vertex properties. We animate the lower
level of detail plants by passing an index vector for the motion data
as a parameter to a vertex program, which computes the per-vertex
displacements to deform the vertices. Because the per-vertex de-
formations are done in parallel on the graphics card, animating the
numerous lower detail models is computationally inexpensive. The
low-rank motion approximation does not significantly decrease the
visual quality of the overall scene because the reduced-rank motion
is only used far from the camera.

To achieve our performance goals, we heavily optimized our
OpenGL code to reduce the amount of calls to the OpenGL library
and the amount of data sent to the video card every frame. Passing
the geometry to OpenGL as triangle-stripped vertex arrays, rather
than as an arbitrary ordering of triangles of individual vertices,
incurred a three times performance improvement. We reduced the
penalty for switching textures by building a texture atlas of all the
textures for the irises. By packing all of the textures into a single
texture and appropriately offsetting vertex coordinates, we can
render all of the irises in the field without having to change textures.

The order in which we render the iris field geometry has a sig-
nificant impact on performance. The organizational structure that
we use to generate the environment, as a Wang Tile pattern, is not
conducive to efficient rendering of full three dimensional geome-
try. The performance of the rendering pipeline was not an issue
in [Cohen et al. 2003], because the environment was rendered as a
layered depth image. However, displaying our iris field by iterat-
ing through each tile in the pattern, and then iterating through each
plant in the tile, hurts performance by repeatedly changing the ge-
ometry for the card to render. Thus, our run-time implementation
contains no notion of the Wang Tiles, and instead maintains a list
of every instance for each clump, and each frame renders all visible



Figure 8:Iris Field at Sunrise: The iris field changes appearance as the sun rises and sets over the course of a day.

instances of a particular clump before moving on to the next. This,
together with the use of texture atlases, allows us to change as little
data on the video card as possible when drawing each frame.

3 Iris Field

3.1 Construction Details

The iris field in our video is comprised of a fifteen by fifteen grid of
tiles built from a base set of eight Wang Tiles. The plant positions
on each tile are generated by dart throws, with voxel-based over-
lap testing. The tiling pattern was created as outlined in [Cohen
et al. 2003]. The hills in the distance and the associated displace-
ment for each clump were calculated using bilinear interpolation
of a very low-frequency heightmap. The vertical displacement of
each clump creates a risk of interpenetration between neighbors be-
cause there is no knowledge of the vertical position of a clump when
the base Wang Tiles are being populated. However, since the hills
serve primarily as distant background, the camera is too far away
for artifacts to be noticeable. We recommend a solution for this
problem in our discussion of future work. There are approximately
7,700 clumps in the field (about 46,000 irises). In addition, there
are thousands of rock instances that were placed on the base Wang
Tiles in the same fashion as the clumps.

To demonstrate that the iris field is responsive to dynamic
changes in lighting, we display the field over the course of a full
day. The skies in the full day and individual time sequences are
from a sequence of 1,000 sky images. We use alpha blending to

smooth the transition between sky textures, since we use multiple
frames of motion per sky image. In addition, we calculate a spher-
ical harmonic light vector for the lighting in each sky frame, and
apply the precomputed radiance data to the light vector to compute
the diffuse radiance of the clumps. As we change sky frames, we
update the lighting for the clumps, the rocks, and the ground plane.
Figures 1 and 8 highlight the effects of varying lighting conditions.

3.2 Run-Time

The iris field is implemented in Java, using the GL4Java OpenGL
implementation. The full implementation with 46,000 irises,
changing sky textures and lighting, and a few thousand rocks, runs
at more than 1 frame per second. Without the rocks and with the sky
texture held constant, the scene runs at about 5 frames per second.
The memory usage is almost 1.5 GB, comprised mostly of motion
and lighting data. The iris field can be navigated with an interactive
camera, and any part of the field can be reached. As is shown in
the video, the camera is not limited to specific types of views or
positions. The level of detail of each instance changes dynamically
based on the instance’s distance from the camera. Since the level of
detail motion and the full motion data use the same index from the
motion graphs, the lower detail clumps and full clumps are similar
enough that the changes in levels of detail do not create visual arti-
facts.

A simple wind generator sends waves of wind across the field.
Each plant has motion data for four wind levels (with the wind
blowing in a consistent direction). The clumps respond dynami-



cally to the changing wind speeds, moving to the appropriate paths
in the motion graphs for the higher wind levels, and returning to
low-wind motion when the waves have passed.

4 Conclusions

In this paper, we presented a framework for constructing expan-
sive, complex interactive botanical environments using instances of
a small set of plant clumps with libraries of precomputed motion
and lighting data. We use instancing to reduce the modeling and
simulation overhead inherent in creating and animating a full field
of unique irises with physically-based motion, and apply concepts
of video texturing to a motion graph of impulsive motion clips to
animate each instance. Additionally, we extend the use of Wang
Tiles to utilize voxel-based boundary testing to accomodate model
deformations. We present our work in the form of an iris field,
containing 46,000 irises that respond to dynamic wind and lighting
conditions, which can be explored interactively.

4.1 Future Work

The challenge of lighting each iris clump in a method that considers
the influence of neighboring clumps is daunting. Although the
aforementioned method of computing radiance transfer data by
tile instead of by clump, and additionally considering all possible
neighboring tiles, would be a correct solution for the problem, the
costs do not scale well with the number of base Wang Tiles and the
number of plants in each tile. A better solution would represent
the influence of neighboring geometry in the light vector used as
an index into the precomputed radiance transfer data, so that the
output radiance would take the effects of neighbors into account.

For our framework to scale to environments with no restric-
tions on camera motion, the risk of inconsistency as a result of
vertically shifting the clumps in a tile must be eliminated. The most
direct solution to this problem is to remove the use of Wang Tiles
to generate our environment. Although building the tiling pattern
from the set of base tiles reduces the cost of distributing plants, the
ignorance of the base tiles to vertical changes in the actual tiling
prohibits a guarantee against interpenetration in anything but flat
environments. Instead, the positions of clump instances can be
generated by throwing darts over the full environment. Although
this method will be slower (in the case of our iris field, darts will
be thrown at 225 tiles instead of 8 tiles), the consistency of the
physicality of the field should not be compromised.

References

COHEN, M. F., SHADE, J., HILLER , S.,AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation.ACM Transactions
on Graphics 22, 3 (July), 287–294.

JAMES, D. L., AND FATAHALIAN , K. 2003. Precomputing in-
teractive dynamic deformable scenes.ACM Transactions on
Graphics 22, 3 (July), 879–887.

KOVAR, L., GLEICHER, M., AND PIGHIN , F. 2002. Motion
graphs.ACM Transactions on Graphics 21, 3 (July), 473–482.

PERBET, F., AND CANI , M.-P. 2001. Animating prairies in real-
time. In 2001 ACM Symposium on Interactive 3D Graphics,
103–110.

SCHÖDL, A., SZELISKI , R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. InProceedings of ACM SIGGRAPH
2000, Computer Graphics Proceedings, Annual Conference Se-
ries, 489–498.

SLOAN , P.-P., KAUTZ , J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments.ACM Transactions on Graph-
ics 21, 3 (July), 527–536.



Figure 9:Iris Field: Another view of the iris field.


