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Abstract
We consider the problem of classification where relevant 
features are distributed among a set of agents and cannot 
be centralized, for example due to privacy restrictions. 
Accurate prediction of the output class is difficult for an 
isolated single agent because the target concept may 
involve features to which the agent does not have access. 
To increase prediction accuracy, a learning algorithm is 
required in which agents collaborate to classify new 
examples, while preserving the privacy of their local 
features. We formalize this problem as the distributed 
classification task. We introduce a novel distributed 
decision-tree inspired algorithm for such tasks named 
DDT. One of the key ideas in DDT is that agents can 
communicate the information gain of a private feature 
without revealing the semantics of the feature or its actual 
value. We present empirical results in a calendar 
management domain where software assistant agents 
classify new meetings as “likely to be difficult to schedule” 
using private features such as each attendee’s willingness 
to attend the meeting. We show empirically that our 
approach outperforms a single agent learner and performs 
as good as a centralized learner with hypothetical access to 
all the features. 

1. Introduction

In many multiagent domains where classification tasks 
arise, agents have private features they are not willing to 
reveal to other agents or humans. For example a personal 
assistant agent who assists a human user in managing his 
or her calendar may have information about the user’s 
personal preferences such as which meetings are 
important to the user or which other people are important 
to meet with. In order for such an agent to be an effective 
assistant to a human user, these preferences must be kept 
private by the agent.   

In a conventional classification task, accurate prediction of 
the class of a new unlabeled example requires access to all 
features that are relevant to its classification. In distributed 
multiagent domains with privacy concerns, this 
assumption is inappropriate. For example in the 
distributed meeting scheduling problem [7], multiple 
agents perform a potentially complex negotiation in order 
to discover a mutually agreed time for the meeting. 
Consider the task of predicting whether a given meeting 
will be successfully scheduled. The outcome of the 
distributed scheduling process is either a “success” in 
which a start time for the meeting was agreed to by all 

attendees, or “failure” in which no start time could be 
agreed to after some finite amount of effort after which the 
attendees give up. The outcome of the process depends on 
the values of private features of each attendee, such as 
each attendee’s current calendar density, their willingness 
to bump prior scheduled meetings in favor of the new 
meeting, and each attendees personal importance for 
participating in the meeting.   Indeed, the correct target 
concept for a particular set of agents involve features 
belonging to different agents so that no single agent may 
be able to learn it individually. 

In this paper, we consider the following problem: How can 
a set of agents collaborate to accurately classify a new 
example when the set of input features is distributed 
among them and must be kept private?  We formalize this 
problem as the distributed classification task. We are 
motivated by the domain of personal assistant agents 
which negotiate in order to manage calendars on the 
behalf of their human users. Although the goal of each 
agent is to serve the interests of its user, the agents of 
different users can collaborate in order to perform 
distributed classification tasks, at least to the extent that 
such collaboration benefits their respective users. 

We introduce a distributed learning algorithm for the 
distributed classification problem named DDT. DDT 
contains several key ideas. First, DDT is inspired by 
centralized decision tree algorithms, specifically the 
ID3[6], in which measuring the information gain of a 
feature over a given training set is a core operation used to 
build a decision tree. The DDT algorithm exploits the fact 
that information gain of a particular feature can be 
computed by the agent who has access to the values of that 
feature; the values of the rest of the features are not 
needed. In DDT, agents communicate the information 
gain of their local features to make predictions but without 
revealing the semantics of the features or their values.

Second, DDT is a lazy learning algorithm in which the 
agents communicate information gain about their private 
features at prediction time. There is no training period 
and no explicit model is learned. This overcomes a key 
difficulty of the distributed classification task in which a 
single agent could not interpret or apply a learned model 
such as a decision tree when the model involves features it 
does not have access to.

Finally, DDT performs a parallelized breadth-first search 
through the space of decision trees by having each agent 
maintain a list of possible paths through some decision 



tree. This list is dynamically ordered according to a given 
inductive bias such as a preference for shorter decision 
trees. This form of search allows agents to communicate 
asynchronously while obtaining prediction accuracy 
comparable to a centralized decision tree learner. 

We present empirical results in a calendar management 
domain using the CMRadar simulator [1]. In our 
experiments, the simulator is populated with a set of 
agents each of which represents an imaginary user with a 
given set of preferences and given calendar density. The 
agents engage in a scheduling process for a new meeting 
and log the outcome of the process. Each scheduling 
episode is a training example. Then, as new meetings 
arise, agents predict if the meeting is likely to be 
successfully scheduled using the prior episodes as training 
data. Accuracy of the prediction is verified by engaging in 
the scheduling process for the new meeting and logging its 
outcome. We show empirically that DDT outperforms a 
single agent learner and performs as good as a centralized 
learner with hypothetical access to all the features.

2. The Distributed Classification Task

A common method of knowledge representation for the 
classification task is to represent examples as feature 
vectors with discrete or numeric values.  The input to a 
classification task consists of a set of pre-classified 
training examples E, with each example described by (the 
value of) a vector of features A. The goal is to construct a 
mapping from feature values to classes.  We adopt and 
modify this knowledge representation scheme for our work 
because it has two distinct advantages; First, it has been 
shown that the feature-value formalism is an extremely 
general way of representing knowledge and can be applied 
to a variety of domains; Second, there are wide varieties of 
existing techniques and algorithms that apply to this type 
of representation. This allows us to take advantage of 
these existing techniques when devising new algorithms. 

We formulate the distributed classification task as 
follows: Given a collection α of n agents, we assume the 
feature vector A is divided into (not necessarily disjoint) 
subsets, Ai  A ( Ai = A), i  1...n. Each agenti  α 
knows the classification of every training example, but has 
access only to Ai from each training example.  We will use 
the notation Ei to denote the projection of training 
examples E onto Ai.

In this way, each agent has only a local, partial view of the 
training experience.  We will assume that each training 
example has a unique id known to all.  This is so agents 
can communicate about individual training examples by id 
only. This is a reasonable assumption for many domains, 
including meeting scheduling in which each meeting can 
be assigned a unique id. Finally and importantly, we 
assume that agents are not willing to share the values of 
their local features with other agents.  The goal of the 
agents is the same as in the centralized task: to accurately 
predict the class of new unseen example.

3. Algorithm

3.1 Decision Tree Learning

Decision tree learning is one of the most practical methods 
for classification from labeled training examples. We give 
a brief introduction to decision tree learning and refer the 
reader to [1] for a more detailed explanation. Decision tree 
learners perform a search through the space of decision 
trees by recursively choosing an feature on which to 
partition the training examples. The “best” feature on 
which to partition the examples is judged by the one that 
provides maximum information gain. One way to define 
information gain is the reduction in entropy of a set of
examples, E, when split on a given feature a. Entropy is 
given by    c

Entropy(E) = ∑ -pilog2pi

   i = 1

where pi is the proportion of E belonging to class i. 
Information gain, the reduction in entropy, is given by

Gain(E, a) = 

Entropy(E) - ∑ (│Ev│/ │E│) Entropy(Ev) 
v values (a) 

By recursively choosing the feature with maximum 
information gain at each stage, the learner performs a 
greedy search for the best decision tree. We desire a group 
of agents to perform this search in a distributed, 
asynchronous manner without having to share their entire 
local dataset with one another.

3.2 DDT

The key idea behind the DDT algorithm is to realize that
information gain of a particular feature can be computed
by the agent who has access to the values of that feature;
the values of the rest of the features are not needed. 
Furthermore, the information gain measure is a highly 
compact summarization of each agent's local view of the 
training set. Agents can use this measure to communicate 
about their local data in an indirect way and thus perform 
a distributed search for the best decision tree.

DDT is a lazy learning algorithm in that each agent stores 
its training data for prediction. There is no training stage 
and no explicit hypothesis is learned. At prediction time, 
the agents collectively and asynchronously determine a 
path through an implicit decision tree. The path is 
determined using the training data and the feature values 
of the test example. The leaf of this path is used to classify 
the test example. The benefits of lazy decision tree 
learning are described in [9]. The DDT algorithm is 
depicted in Figure 1 and is described next. 

Let a set of training examples E and an unclassified test 
example e, be given. Each agenti  α begins by choosing 



the local feature with maximum information gain over Ei. 
From its local point of view, this is the best choice for the
root of the tree. It then partitions Ei on this feature and 
then creates a tuple we call a TreePath. A TreePath has 
two fields, a list of real numbers and a set of example ids. 
Intuitively, it is called a TreePath because it holds the 
information corresponding to a particular path through 
some decision tree. Each real number in the first field 
corresponds to the information gain of the feature that was 
used to partition the examples at a particular node along 
the path. The second field holds the set of example ids at
leaf of this path. For example, suppose agenti chooses the
feature a1  Ai because it has maximum information gain
Given:

- Ei, training examples with feature vector Ai

- e, unclassified example to be labeled
- Q, an empty data structure for holding a sorted list of 
   TreePaths

initialize
a   ← feature with max info gain over Ei

gain  ← info gain of a over Ei

v   ← value of a in e
[ids] ← list of examples in Ei with value v for a insert in order(Q, 
TreePath:([gain], [ids])

when received(TreePath T))
insert_in_order(Q, T)

procedure make_prediction()
TreePath:([infogains], [ids]) ← pop(Q)
a ←feature with max info gain over [ids]
gain ← info gain of a over [ids]
v ← value of a in e
if gain = = 0

return the most common class in [ids]
else

[new ids] ← list of examples in [ids] with value v for a
broadcast TreePath:([infogains,gain], [new ids]) to all agents
make_prediction()

Figure 1

over Ei, equal to say, 0.24 (see Figure 2). Suppose a1 takes 
on the value v1 in e, and agenti finds that the examples 
1,2,8,9 and 11 in Ei are the ones that have value v1 for a1. 
It then creates the following TreePath: ((0.24) 
(1,2,8,9,11)). This is a path of depth one, since the 
examples were separated on only one feature. Figure 2
shows that as additional features are used to further 
partition the examples, the list of information gains 
becomes longer and the set of example ids becomes 
smaller.

Figure 2

Every agent goes through the above process and 
broadcasts their TreePath to the rest of the agents. As 
agents receive TreePaths from others, they order them 
according to a greedy “best info gain first” heuristic. This 

ordering is shown in Figure 3. The best TreePath received 
by each agent is then deepened by one level in the same 
manner as above, except instead of computing information 
gain over all the examples in Ei, it is computed over the 
list of example ids in the TreePath. This new TreePath is 
then broadcast to all agents and the process repeats. The 
process terminates whenever the best TreePath available to 
an agent cannot be extended because no feature available 
to it provides positive information gain. Since the set of 
example ids for a TreePath is always getting smaller as the 
TreePath is extended and no TreePath is ever made 
shorter, it follows each agent will eventually terminate. 

Intuitively, DDT is performing a parallelized, breadth-first 
search for the best path through some decision tree. This 
is in contrast to the depth-first greedy strategy of most 
centralized decision tree learners. However, the inductive 
bias of DDT is similar in that it prefers shorter paths with 
higher information gain features at the top. We now 
highlight two important properties of this algorithm.

 Agents never share their local feature values. In 
fact, agents never even reveal the identities of 
their local features. This satisfies our requirement 
of privacy. As an aside, note that this property 
also provides flexibility in that an agent can 
locally, autonomously decide what features are 
relevant for a given learning task.

 DDT is asynchronous. This means that the group 
prediction can continue if some agent is slow in 
communicating. This is important when agents 
are operating in environments where perfect 
synchronous communication cannot be assured. 

//This procedure compares two TreePaths.

//Returns true if T1 is better than T2.

procedure best_info_gain_first(T1,T2)

gains1 ← list of information gains in T1

gains2 ← list of information gains in T2

for i in 1 to min(length of gains1, length of gains2)

if gains1[i] > gains2[i]

return TRUE

else if gains2[i] > gains1[i]

return FALSE

if length of gains1 < length of gains2

return TRUE

else if length of gains2 < length of gains1

return FALSE

else return EQUAL

Figure 3

4. The CMRadar Simulator

4.1 The CMRadar project



We evaluate our techniques in the context of the CMRadar 
Project [1] whose goal is to develop personalized assistant 
agents that are able to make people more efficient by 
automating many routine everyday tasks such as 
scheduling of meetings. Importantly, CMRadar is 
developed as an agent that also interacts with other users 
or agents. Maintaining privacy during such interactions is
an important consideration. 

The motivation in the CMRadar project is to develop an 
end-to-end system for use by real users to obtain data to 
facilitate learning.  However due to the difficulties  
associated with such a deployment and the time required 
to overcome such difficulties, in the meantime we have 
also built a simulator testbed to enable parallel 
development of learning and scheduling techniques. In 
this section we describe this testbed in more detail and in 
the following section, we present the empirical results. 

4.2. Experimental Testbed

The CMRadar agents live in a simulated distributed 
environment and are able to pass simulated email 
messages between them. In initialization phase, we 
generate a set of CMRadar agents with calendars of a 
given density. Each agent’s calendar has 50 timeslots to 
simulate a 5 day, 10-hr/day work week. The number of 
attendees for each meeting is chosen according to a 
distribution in which meetings of more people are less 
likely than meetings with fewer people, and every meeting 
has at least two attendees. 

Each training example is generated by one run in which 
agents employ a multiagent scheduling protocol, described 
next, to schedule a new meeting Mm+1. The attendees of 
meeting Mm+1 are chosen to be a random subset of the 
agents, with the size of the meeting as an input parameter. 

4.3 Agent Strategies
The multiagent scheduling protocol employed by 
CMRadar agents proceed in a sequence of rounds. In each 
round, an initiator sends a message to the other attendees 
with a proposed start time for a new meeting.  The 
attendees may accept or reject the proposal. The protocol 
continues in rounds until an agreement is reached 
(“success”) or the initiator has no more values to propose 
or a max time elapses (“failure”).

Each attendee decides whether to accept or reject the 
proposal using a scheduling strategy. A scheduling 
strategy is a decision procedure that is given to an agent 
that it uses to determine whether to accept a given meeting 
proposal or to reject a meeting proposal. The idea is that 
this strategy reflects its user’s preferences about which 
meetings are important to schedule. We discuss the details 
of these strategies next. 

4.3.1 Features. Each agent’s scheduling strategy is based 
on the values of the following set of private features.

 Schedule density (SD): This feature represents the 
current density of an agent’s schedule. It has values 
low (less than 40%), medium (between 40% ~ 70%), 
and high (greater than 70%).

 Attendee importance (AI): For given meeting M, this 
is a set of features that represent for each of the other 
attendees of M, the user’s preference for meeting with 
that attendee in meeting M. Attendee importance has 
values low, medium, high, and notPresent. The 
notPresent value is a default value for the AI feature 
corresponding to an agent is not attendee of M.

 Subject importance (SI): This feature represents a 
user’s importance level for the subject of a particular 
meeting. It has values very high, high, medium, low, 
and very low.

4.3.2 Scheduling Strategies

As mentioned, each agent’s strategy is based on the 
values of the above set of private features. For our 
experiments, we populate the simulator with a set of 
agents that employ scheduling strategies we invented. 
While these strategies are made up, they intuitively reflect 
plausible user preferences. In any case, our goal is to 
demonstrate the viability of our learning approach to 
accurately make predictions when features are private, not 
necessarily to employ the most realistic scheduling 
strategies that users may have.  

There are strategies that are common to all agents and 
there are strategies that are specific to each agent. Two 
strategies that are common to all agents are: 

 if SI=verylow for the new meeting, always 
reject the proposal. 

 If the proposed time is unoccupied in local 
schedule, always accept the proposal. 

Strategies that vary between agents are those that are 
employed when a proposed time conflicts with an existing 
meeting. When a “new” meeting conflicts with an “old” 
meeting, some examples of scheduling strategies used by 
the agents includes:  

- If the maximum AI over all attendees in new 
meeting is higher than maximum AI in old 
meeting, bump old meeting for new meeting.

- If SI of new meeting is higher than SI of old 
meeting, then bump old meeting for new 
meeting.

- Always reject new meeting.

- Always reject old meeting. 

In our experiments described in the next section, we allow 
the agents to execute the distributed scheduling process as 
described above and they log the values of the features and 
the outcome of each scheduling episode (success or 
failure). 

5. Experimental evaluation
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5.1 Setup

We populate the CMRadar simulator with 10 agents where 
each assists a different imaginary human user. The 
CMRadar simulator tries to schedule a meeting M and 
each agent logs its own features. As described earlier, each 
agent has access to features that describe its user’s current 
calendar and preferences. In each meeting scheduling 
episode, each agent logs a feature for subject importance 
(SI), current schedule density (SD), and 9 features for 
attendee importance, one for each of the other agents in 
the system.  Thus, there are a total of 11 features that are 
logged at each agent for training and testing purpose. 

For empirical evaluation, the performance of DDT is 
compared against the following approaches.

 Single Agent Average: We apply the standard 
ID3 decision tree learner to a single agent’s 
features. The accuracy on a test set, averaged over 
all the agents, is used to measure the total 
correctness.

 Super Agent: In this case, ID3 is given the
combined features of all agents strictly for 
evaluation purposes. So if agent1, agent2, and 
agent3 are in the meeting, then all the features 
from agent1, agent2, and agent3 are combined. 
Super agent uses these combined features for its 
prediction.

5.2 Empirical Result

Result is obtained with 100 training examples and 60 test 
examples. M is classified into 2 cases which is impossible 
case and confirmed case. Impossible case represents that 
the members of M cannot reach an agreement for a time 
for meeting. Unless everyone agrees on certain time for 
meeting, M is classified as impossible meeting. Confirmed 
case is where the members of meeting found an agreement 
for the meeting time. To measure the performance,
correctness is measured. The correctness is represented as
the percent of correctly predicted test example. 

5.2.1 Heterogeneous Agents.  In this experiment, agents 
used the rules that are described in section 4.3.2. The size 
of M is the number of attendee in the meeting. Size of M
is increased from 2 to 10.  Figure 4 shows the result.

When there are only two agents, it is fairly easy to find an 
agreement. Also, there is not much variation in features 
and rules. Therefore, all DDT, single agent, average, and 
super agents show high accuracy. As more agents are 
involved in determining meeting schedule, both features, 
and bumping rules become complicated. As result, it 
shows lower accuracy overall. However, accuracy drop for 
DDT is not as significant as single agents, because DDT 
can use all the information from all agents. As size of M 
increase to have size over 7, the accuracy begins to 
increase again. The reason is that now it is hard to find 

Figure 4

agreement among agents, therefore, in a lot of cases, M is 
simply becoming impossible

5.2.2 Low density and mixed rules. In this experiment, 
same rule as 4.3.2 is used. However, the schedule density 
of initial calendar is fixed to have low values. Figure 5
shows the result.

In this case, DDT shows overall high accuracy. The 
reason is that now very low subject importance is only 
feature that makes impossible and otherwise, it is 
confirmed. Therefore, DDT can predict the outcome very 
accurately. However, single agents do not have 
information for other agents, thus lower accuracy.

Figure 5

5.2.3 High schedule density. In this experiment, the same 
rule as 4.3.2 is used except that schedule density is fixed 
to have high values. Figure 6 shows the result.

As it is explained in section 4.3 agents uses a bumping 
process more if there is conflict for two different meeting 
times. In high schedule density, the accuracy does not 
show too much difference between single agents and DDT. 
The reason is that in high schedule density case, there is a

Figure 6

lot of bumping process involved; and each agents are now 
deciding on its own. It is much easier for single agents to 
predict because, if any one of agents does not agree then 
there will be no meeting held, and there are a lot more 



cases where one or more agents that do not agree due to 
bumping process.

5.2.4 Effect of subject importance. Subject importance is 
key feature that used by every agent as first rule. To test 
the feature importance, the experiment is designed to have 
all different features for every agent, same subject 
importance for every agent, and all same features except
subject importance. The result is shown in Figure 7. The 
result shows that having same subject importance 
improves the accuracy of single agent greatly.

Figure 7

5.2.5 Messages required for collaboration. In this 
section we have examined how many bytes needs to be 
sent and receive to make prediction. The result is shown 
in Figure 8. As the size of M increase, the numbers of 
bytes sent and received for communication increase 
because there are more agents involved in prediction
process. However, the average numbers of bytes sent is 
still fairly small. It requires less than 5000 bytes for 
prediction with 10 agents.

Figure 8

6. Conclusion

Motivated by the real world domain of distributed 
calendar management, we introduced the distributed 
classification task for learning in multiagent systems 
where privacy is a key concern. We described the DDT 
algorithm in which allows a set of agents to collaborate to 
make predictions based on private training data. The 
performance of DDT was compared against a single agent 
learner and a superagent with hypothetical access to all 
the features. Our results show that DDT is able to 
accurately learn and it is able to perform as good as the 
superagent and outperform a single agent learner. We 
conclude that DDT is useful algorithm because it allows 
agents to keep their private features and learn more 
accurately as group than any one of them could learn 
individually.

7. Related Work

There is significant research in the data mining 
community that is concerned with learning from 
distributed datasets [1]. This work can be classified along 
at least two dimensions. The first dimension concerns 
assumptions on how data is distributed, i.e., either 
horizontally or vertically. We have assumed a vertical
distribution in this paper. In horizontal distribution, each 
agent has complete examples, but no agent has all the 
examples. The second dimension is related to motivation. 
In this paper, we have been concerned with privacy. 
Another motivation is efficient learning from a massive 
training set that is (given as or purposely) divided among 
a set of processors or agents [9]. While privacy and 
efficiency may be inter-dependant, they are fundamentally 
different motivations.

We highlight selected related work in data mining that 
assumes vertically distributed datasets and addresses 
privacy concerns. Vaidya and Clifton [3] discuss an 
approach that uses computation of scalar product to 
preserve privacy, but this approach is limited to two agent 
interactions. Kargupta et al [2] discuss an approach which 
leverages the Fourier representation of a decision tree, but 
this approach is limited to binary valued features. Agrawal 
and Srikant [8] look at the problem of preserving privacy 
by perturbing the feature values. All of these approaches 
are interesting avenues for addressing the distributed 
classification task for multiagent systems introduced in 
this paper. 
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