
Classification of Examples by Multiple Agents with Private Features
Peter Woo Tae Kim – advised by Pragnesh Jay Modi,

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
pmodi@cs.cmu.edu, pk@andrew.cmu.edu

Abstract
We consider the problem of classification where relevant
features are distributed among a set of agents and cannot
be centralized, for example due to privacy restrictions.
Accurate prediction of the output class is difficult for an
isolated single agent because the target concept may
involve features to which the agent does not have access.
To increase prediction accuracy, a learning algorithm is
required in which agents collaborate to classify new
examples, while preserving the privacy of their local
features. We formalize this problem as the distributed
classification task. We introduce a novel distributed
decision-tree inspired algorithm for such tasks named
DDT. One of the key ideas in DDT is that agents can
communicate the information gain of a private feature
without revealing the semantics of the feature or its actual
value. We present empirical results in a calendar
management domain where software assistant agents
classify new meetings as “likely to be difficult to schedule”
using private features such as each attendee’s willingness
to attend the meeting. We show empirically that our
approach outperforms a single agent learner and performs
as good as a centralized learner with hypothetical access to
all the features.

1. Introduction

In many multiagent domains where classification tasks
arise, agents have private features they are not willing to
reveal to other agents or humans. For example a personal
assistant agent who assists a human user in managing his
or her calendar may have information about the user’s
personal preferences such as which meetings are
important to the user or which other people are important
to meet with. In order for such an agent to be an effective
assistant to a human user, these preferences must be kept
private by the agent.

In a conventional classification task, accurate prediction of
the class of a new unlabeled example requires access to all
features that are relevant to its classification. In distributed
multiagent domains with privacy concerns, this
assumption is inappropriate. For example in the
distributed meeting scheduling problem [7], multiple
agents perform a potentially complex negotiation in order
to discover a mutually agreed time for the meeting.
Consider the task of predicting whether a given meeting
will be successfully scheduled. The outcome of the
distributed scheduling process is either a “success” in
which a start time for the meeting was agreed to by all

attendees, or “failure” in which no start time could be
agreed to after some finite amount of effort after which the
attendees give up. The outcome of the process depends on
the values of private features of each attendee, such as
each attendee’s current calendar density, their willingness
to bump prior scheduled meetings in favor of the new
meeting, and each attendees personal importance for
participating in the meeting. Indeed, the correct target
concept for a particular set of agents involve features
belonging to different agents so that no single agent may
be able to learn it individually.

In this paper, we consider the following problem: How can
a set of agents collaborate to accurately classify a new
example when the set of input features is distributed
among them and must be kept private? We formalize this
problem as the distributed classification task. We are
motivated by the domain of personal assistant agents
which negotiate in order to manage calendars on the
behalf of their human users. Although the goal of each
agent is to serve the interests of its user, the agents of
different users can collaborate in order to perform
distributed classification tasks, at least to the extent that
such collaboration benefits their respective users.

We introduce a distributed learning algorithm for the
distributed classification problem named DDT. DDT
contains several key ideas. First, DDT is inspired by
centralized decision tree algorithms, specifically the
ID3[6], in which measuring the information gain of a
feature over a given training set is a core operation used to
build a decision tree. The DDT algorithm exploits the fact
that information gain of a particular feature can be
computed by the agent who has access to the values of that
feature; the values of the rest of the features are not
needed. In DDT, agents communicate the information
gain of their local features to make predictions but without
revealing the semantics of the features or their values.

Second, DDT is a lazy learning algorithm in which the
agents communicate information gain about their private
features at prediction time. There is no training period
and no explicit model is learned. This overcomes a key
difficulty of the distributed classification task in which a
single agent could not interpret or apply a learned model
such as a decision tree when the model involves features it
does not have access to.

Finally, DDT performs a parallelized breadth-first search
through the space of decision trees by having each agent
maintain a list of possible paths through some decision

tree. This list is dynamically ordered according to a given
inductive bias such as a preference for shorter decision
trees. This form of search allows agents to communicate
asynchronously while obtaining prediction accuracy
comparable to a centralized decision tree learner.

We present empirical results in a calendar management
domain using the CMRadar simulator [1]. In our
experiments, the simulator is populated with a set of
agents each of which represents an imaginary user with a
given set of preferences and given calendar density. The
agents engage in a scheduling process for a new meeting
and log the outcome of the process. Each scheduling
episode is a training example. Then, as new meetings
arise, agents predict if the meeting is likely to be
successfully scheduled using the prior episodes as training
data. Accuracy of the prediction is verified by engaging in
the scheduling process for the new meeting and logging its
outcome. We show empirically that DDT outperforms a
single agent learner and performs as good as a centralized
learner with hypothetical access to all the features.

2. The Distributed Classification Task

A common method of knowledge representation for the
classification task is to represent examples as feature
vectors with discrete or numeric values. The input to a
classification task consists of a set of pre-classified
training examples E, with each example described by (the
value of) a vector of features A. The goal is to construct a
mapping from feature values to classes. We adopt and
modify this knowledge representation scheme for our work
because it has two distinct advantages; First, it has been
shown that the feature-value formalism is an extremely
general way of representing knowledge and can be applied
to a variety of domains; Second, there are wide varieties of
existing techniques and algorithms that apply to this type
of representation. This allows us to take advantage of
these existing techniques when devising new algorithms.

We formulate the distributed classification task as
follows: Given a collection α of n agents, we assume the
feature vector A is divided into (not necessarily disjoint)
subsets, Ai A (Ai = A), i 1...n. Each agenti α
knows the classification of every training example, but has
access only to Ai from each training example. We will use
the notation Ei to denote the projection of training
examples E onto Ai.

In this way, each agent has only a local, partial view of the
training experience. We will assume that each training
example has a unique id known to all. This is so agents
can communicate about individual training examples by id
only. This is a reasonable assumption for many domains,
including meeting scheduling in which each meeting can
be assigned a unique id. Finally and importantly, we
assume that agents are not willing to share the values of
their local features with other agents. The goal of the
agents is the same as in the centralized task: to accurately
predict the class of new unseen example.

3. Algorithm

3.1 Decision Tree Learning

Decision tree learning is one of the most practical methods
for classification from labeled training examples. We give
a brief introduction to decision tree learning and refer the
reader to [1] for a more detailed explanation. Decision tree
learners perform a search through the space of decision
trees by recursively choosing an feature on which to
partition the training examples. The “best” feature on
which to partition the examples is judged by the one that
provides maximum information gain. One way to define
information gain is the reduction in entropy of a set of
examples, E, when split on a given feature a. Entropy is
given by c

Entropy(E) = ∑ -pilog2pi

 i = 1

where pi is the proportion of E belonging to class i.
Information gain, the reduction in entropy, is given by

Gain(E, a) =

Entropy(E) - ∑ (│Ev│/ │E│) Entropy(Ev)
v values (a)

By recursively choosing the feature with maximum
information gain at each stage, the learner performs a
greedy search for the best decision tree. We desire a group
of agents to perform this search in a distributed,
asynchronous manner without having to share their entire
local dataset with one another.

3.2 DDT

The key idea behind the DDT algorithm is to realize that
information gain of a particular feature can be computed
by the agent who has access to the values of that feature;
the values of the rest of the features are not needed.
Furthermore, the information gain measure is a highly
compact summarization of each agent's local view of the
training set. Agents can use this measure to communicate
about their local data in an indirect way and thus perform
a distributed search for the best decision tree.

DDT is a lazy learning algorithm in that each agent stores
its training data for prediction. There is no training stage
and no explicit hypothesis is learned. At prediction time,
the agents collectively and asynchronously determine a
path through an implicit decision tree. The path is
determined using the training data and the feature values
of the test example. The leaf of this path is used to classify
the test example. The benefits of lazy decision tree
learning are described in [9]. The DDT algorithm is
depicted in Figure 1 and is described next.

Let a set of training examples E and an unclassified test
example e, be given. Each agenti α begins by choosing

the local feature with maximum information gain over Ei.
From its local point of view, this is the best choice for the
root of the tree. It then partitions Ei on this feature and
then creates a tuple we call a TreePath. A TreePath has
two fields, a list of real numbers and a set of example ids.
Intuitively, it is called a TreePath because it holds the
information corresponding to a particular path through
some decision tree. Each real number in the first field
corresponds to the information gain of the feature that was
used to partition the examples at a particular node along
the path. The second field holds the set of example ids at
leaf of this path. For example, suppose agenti chooses the
feature a1 Ai because it has maximum information gain
Given:

- Ei, training examples with feature vector Ai

- e, unclassified example to be labeled
- Q, an empty data structure for holding a sorted list of
 TreePaths

initialize
a ← feature with max info gain over Ei

gain ← info gain of a over Ei

v ← value of a in e
[ids] ← list of examples in Ei with value v for a insert in order(Q,
TreePath:([gain], [ids])

when received(TreePath T))
insert_in_order(Q, T)

procedure make_prediction()
TreePath:([infogains], [ids]) ← pop(Q)
a ←feature with max info gain over [ids]
gain ← info gain of a over [ids]
v ← value of a in e
if gain = = 0

return the most common class in [ids]
else

[new ids] ← list of examples in [ids] with value v for a
broadcast TreePath:([infogains,gain], [new ids]) to all agents
make_prediction()

Figure 1

over Ei, equal to say, 0.24 (see Figure 2). Suppose a1 takes
on the value v1 in e, and agenti finds that the examples
1,2,8,9 and 11 in Ei are the ones that have value v1 for a1.
It then creates the following TreePath: ((0.24)
(1,2,8,9,11)). This is a path of depth one, since the
examples were separated on only one feature. Figure 2
shows that as additional features are used to further
partition the examples, the list of information gains
becomes longer and the set of example ids becomes
smaller.

Figure 2

Every agent goes through the above process and
broadcasts their TreePath to the rest of the agents. As
agents receive TreePaths from others, they order them
according to a greedy “best info gain first” heuristic. This

ordering is shown in Figure 3. The best TreePath received
by each agent is then deepened by one level in the same
manner as above, except instead of computing information
gain over all the examples in Ei, it is computed over the
list of example ids in the TreePath. This new TreePath is
then broadcast to all agents and the process repeats. The
process terminates whenever the best TreePath available to
an agent cannot be extended because no feature available
to it provides positive information gain. Since the set of
example ids for a TreePath is always getting smaller as the
TreePath is extended and no TreePath is ever made
shorter, it follows each agent will eventually terminate.

Intuitively, DDT is performing a parallelized, breadth-first
search for the best path through some decision tree. This
is in contrast to the depth-first greedy strategy of most
centralized decision tree learners. However, the inductive
bias of DDT is similar in that it prefers shorter paths with
higher information gain features at the top. We now
highlight two important properties of this algorithm.

 Agents never share their local feature values. In
fact, agents never even reveal the identities of
their local features. This satisfies our requirement
of privacy. As an aside, note that this property
also provides flexibility in that an agent can
locally, autonomously decide what features are
relevant for a given learning task.

 DDT is asynchronous. This means that the group
prediction can continue if some agent is slow in
communicating. This is important when agents
are operating in environments where perfect
synchronous communication cannot be assured.

//This procedure compares two TreePaths.

//Returns true if T1 is better than T2.

procedure best_info_gain_first(T1,T2)

gains1 ← list of information gains in T1

gains2 ← list of information gains in T2

for i in 1 to min(length of gains1, length of gains2)

if gains1[i] > gains2[i]

return TRUE

else if gains2[i] > gains1[i]

return FALSE

if length of gains1 < length of gains2

return TRUE

else if length of gains2 < length of gains1

return FALSE

else return EQUAL

Figure 3

4. The CMRadar Simulator

4.1 The CMRadar project

We evaluate our techniques in the context of the CMRadar
Project [1] whose goal is to develop personalized assistant
agents that are able to make people more efficient by
automating many routine everyday tasks such as
scheduling of meetings. Importantly, CMRadar is
developed as an agent that also interacts with other users
or agents. Maintaining privacy during such interactions is
an important consideration.

The motivation in the CMRadar project is to develop an
end-to-end system for use by real users to obtain data to
facilitate learning. However due to the difficulties
associated with such a deployment and the time required
to overcome such difficulties, in the meantime we have
also built a simulator testbed to enable parallel
development of learning and scheduling techniques. In
this section we describe this testbed in more detail and in
the following section, we present the empirical results.

4.2. Experimental Testbed

The CMRadar agents live in a simulated distributed
environment and are able to pass simulated email
messages between them. In initialization phase, we
generate a set of CMRadar agents with calendars of a
given density. Each agent’s calendar has 50 timeslots to
simulate a 5 day, 10-hr/day work week. The number of
attendees for each meeting is chosen according to a
distribution in which meetings of more people are less
likely than meetings with fewer people, and every meeting
has at least two attendees.

Each training example is generated by one run in which
agents employ a multiagent scheduling protocol, described
next, to schedule a new meeting Mm+1. The attendees of
meeting Mm+1 are chosen to be a random subset of the
agents, with the size of the meeting as an input parameter.

4.3 Agent Strategies
The multiagent scheduling protocol employed by
CMRadar agents proceed in a sequence of rounds. In each
round, an initiator sends a message to the other attendees
with a proposed start time for a new meeting. The
attendees may accept or reject the proposal. The protocol
continues in rounds until an agreement is reached
(“success”) or the initiator has no more values to propose
or a max time elapses (“failure”).

Each attendee decides whether to accept or reject the
proposal using a scheduling strategy. A scheduling
strategy is a decision procedure that is given to an agent
that it uses to determine whether to accept a given meeting
proposal or to reject a meeting proposal. The idea is that
this strategy reflects its user’s preferences about which
meetings are important to schedule. We discuss the details
of these strategies next.

4.3.1 Features. Each agent’s scheduling strategy is based
on the values of the following set of private features.

 Schedule density (SD): This feature represents the
current density of an agent’s schedule. It has values
low (less than 40%), medium (between 40% ~ 70%),
and high (greater than 70%).

 Attendee importance (AI): For given meeting M, this
is a set of features that represent for each of the other
attendees of M, the user’s preference for meeting with
that attendee in meeting M. Attendee importance has
values low, medium, high, and notPresent. The
notPresent value is a default value for the AI feature
corresponding to an agent is not attendee of M.

 Subject importance (SI): This feature represents a
user’s importance level for the subject of a particular
meeting. It has values very high, high, medium, low,
and very low.

4.3.2 Scheduling Strategies

As mentioned, each agent’s strategy is based on the
values of the above set of private features. For our
experiments, we populate the simulator with a set of
agents that employ scheduling strategies we invented.
While these strategies are made up, they intuitively reflect
plausible user preferences. In any case, our goal is to
demonstrate the viability of our learning approach to
accurately make predictions when features are private, not
necessarily to employ the most realistic scheduling
strategies that users may have.

There are strategies that are common to all agents and
there are strategies that are specific to each agent. Two
strategies that are common to all agents are:

 if SI=verylow for the new meeting, always
reject the proposal.

 If the proposed time is unoccupied in local
schedule, always accept the proposal.

Strategies that vary between agents are those that are
employed when a proposed time conflicts with an existing
meeting. When a “new” meeting conflicts with an “old”
meeting, some examples of scheduling strategies used by
the agents includes:

- If the maximum AI over all attendees in new
meeting is higher than maximum AI in old
meeting, bump old meeting for new meeting.

- If SI of new meeting is higher than SI of old
meeting, then bump old meeting for new
meeting.

- Always reject new meeting.

- Always reject old meeting.

In our experiments described in the next section, we allow
the agents to execute the distributed scheduling process as
described above and they log the values of the features and
the outcome of each scheduling episode (success or
failure).

5. Experimental evaluation

Heterogeneous Agents - high schedule density

0%

20%

40%

60%

80%

100%

2 3 4 5 6

Size of meeting

C
o

rr
e

ct
n

es
s

DDT

Single Agent Average

Super Agent

Heterogeneous Agents - low schedule density

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 3 4 5 6

Size of meeting

DDT
SingleAgent Average
Super AgentC

o
rr

e
c

tn
e

s
s

Heterogeneous Agents

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10

size of meeting

co
rr

ec
tn

es
s

DDT

Single Agent Average

Super Agent

5.1 Setup

We populate the CMRadar simulator with 10 agents where
each assists a different imaginary human user. The
CMRadar simulator tries to schedule a meeting M and
each agent logs its own features. As described earlier, each
agent has access to features that describe its user’s current
calendar and preferences. In each meeting scheduling
episode, each agent logs a feature for subject importance
(SI), current schedule density (SD), and 9 features for
attendee importance, one for each of the other agents in
the system. Thus, there are a total of 11 features that are
logged at each agent for training and testing purpose.

For empirical evaluation, the performance of DDT is
compared against the following approaches.

 Single Agent Average: We apply the standard
ID3 decision tree learner to a single agent’s
features. The accuracy on a test set, averaged over
all the agents, is used to measure the total
correctness.

 Super Agent: In this case, ID3 is given the
combined features of all agents strictly for
evaluation purposes. So if agent1, agent2, and
agent3 are in the meeting, then all the features
from agent1, agent2, and agent3 are combined.
Super agent uses these combined features for its
prediction.

5.2 Empirical Result

Result is obtained with 100 training examples and 60 test
examples. M is classified into 2 cases which is impossible
case and confirmed case. Impossible case represents that
the members of M cannot reach an agreement for a time
for meeting. Unless everyone agrees on certain time for
meeting, M is classified as impossible meeting. Confirmed
case is where the members of meeting found an agreement
for the meeting time. To measure the performance,
correctness is measured. The correctness is represented as
the percent of correctly predicted test example.

5.2.1 Heterogeneous Agents. In this experiment, agents
used the rules that are described in section 4.3.2. The size
of M is the number of attendee in the meeting. Size of M
is increased from 2 to 10. Figure 4 shows the result.

When there are only two agents, it is fairly easy to find an
agreement. Also, there is not much variation in features
and rules. Therefore, all DDT, single agent, average, and
super agents show high accuracy. As more agents are
involved in determining meeting schedule, both features,
and bumping rules become complicated. As result, it
shows lower accuracy overall. However, accuracy drop for
DDT is not as significant as single agents, because DDT
can use all the information from all agents. As size of M
increase to have size over 7, the accuracy begins to
increase again. The reason is that now it is hard to find

Figure 4

agreement among agents, therefore, in a lot of cases, M is
simply becoming impossible

5.2.2 Low density and mixed rules. In this experiment,
same rule as 4.3.2 is used. However, the schedule density
of initial calendar is fixed to have low values. Figure 5
shows the result.

In this case, DDT shows overall high accuracy. The
reason is that now very low subject importance is only
feature that makes impossible and otherwise, it is
confirmed. Therefore, DDT can predict the outcome very
accurately. However, single agents do not have
information for other agents, thus lower accuracy.

Figure 5

5.2.3 High schedule density. In this experiment, the same
rule as 4.3.2 is used except that schedule density is fixed
to have high values. Figure 6 shows the result.

As it is explained in section 4.3 agents uses a bumping
process more if there is conflict for two different meeting
times. In high schedule density, the accuracy does not
show too much difference between single agents and DDT.
The reason is that in high schedule density case, there is a

Figure 6

lot of bumping process involved; and each agents are now
deciding on its own. It is much easier for single agents to
predict because, if any one of agents does not agree then
there will be no meeting held, and there are a lot more

cases where one or more agents that do not agree due to
bumping process.

5.2.4 Effect of subject importance. Subject importance is
key feature that used by every agent as first rule. To test
the feature importance, the experiment is designed to have
all different features for every agent, same subject
importance for every agent, and all same features except
subject importance. The result is shown in Figure 7. The
result shows that having same subject importance
improves the accuracy of single agent greatly.

Figure 7

5.2.5 Messages required for collaboration. In this
section we have examined how many bytes needs to be
sent and receive to make prediction. The result is shown
in Figure 8. As the size of M increase, the numbers of
bytes sent and received for communication increase
because there are more agents involved in prediction
process. However, the average numbers of bytes sent is
still fairly small. It requires less than 5000 bytes for
prediction with 10 agents.

Figure 8

6. Conclusion

Motivated by the real world domain of distributed
calendar management, we introduced the distributed
classification task for learning in multiagent systems
where privacy is a key concern. We described the DDT
algorithm in which allows a set of agents to collaborate to
make predictions based on private training data. The
performance of DDT was compared against a single agent
learner and a superagent with hypothetical access to all
the features. Our results show that DDT is able to
accurately learn and it is able to perform as good as the
superagent and outperform a single agent learner. We
conclude that DDT is useful algorithm because it allows
agents to keep their private features and learn more
accurately as group than any one of them could learn
individually.

7. Related Work

There is significant research in the data mining
community that is concerned with learning from
distributed datasets [1]. This work can be classified along
at least two dimensions. The first dimension concerns
assumptions on how data is distributed, i.e., either
horizontally or vertically. We have assumed a vertical
distribution in this paper. In horizontal distribution, each
agent has complete examples, but no agent has all the
examples. The second dimension is related to motivation.
In this paper, we have been concerned with privacy.
Another motivation is efficient learning from a massive
training set that is (given as or purposely) divided among
a set of processors or agents [9]. While privacy and
efficiency may be inter-dependant, they are fundamentally
different motivations.

We highlight selected related work in data mining that
assumes vertically distributed datasets and addresses
privacy concerns. Vaidya and Clifton [3] discuss an
approach that uses computation of scalar product to
preserve privacy, but this approach is limited to two agent
interactions. Kargupta et al [2] discuss an approach which
leverages the Fourier representation of a decision tree, but
this approach is limited to binary valued features. Agrawal
and Srikant [8] look at the problem of preserving privacy
by perturbing the feature values. All of these approaches
are interesting avenues for addressing the distributed
classification task for multiagent systems introduced in
this paper.

References

1.Hillol Kargupta and Philip Chan, editors. Advances in
Distributed and Parallel Knowledge Discovery. In AAAI/
MIT Press., 1999.
2. H. Kargupta, B. Park, D. Hershbereger and E, Johnson,
“Collective data mining: A new perspective toward
distributed data mining”. In Advances in Distributed and
Parallel Knowledge Discovery. AAAI/MIT Press 1999.
3. J. Vaidya and C. Clifton, Privacy Preserving
Association Rule Mining in Vertically Partitioned Data.
The Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2002.
4. P. J. Modi, M. Veloso, S. F. Smith, Jean
Oh.CMRADAR: A Personal Assistant Agent for Calendar
Management. In Agent Oriented Information Systems,
(AOIS) 2004.
5. S. Sen and E. H. Durfee. A formal study of distributed
meeting scheduling. In Group Decision and Negotiation,
volume 7, pages 265–289, 1998.
6. Quinlan J. R. Induction of decision trees. Machine
Learning, 1986
7. R. Agrawal and R. Srikant, Privacy-preserving data
mining. In Proceedings of ACM SIGMOD Conference on
Management of Data. 2000

Homogeneous Agents - Effect of subject importance

0%
20%
40%
60%
80%

100%

Heterogeneous
SI, AI, SD

Homogeneous
SI,

Heterogeneous
AI, SD

Heterogeneous
SI,

Homogeneous
AI, SD

DDT

Super Agent

Single Agent average

C
o

rr
e

c
tn

e
s

s

Number of bytes required per message

0

1000

2000

3000

4000

5000

2 3 4 5 6 7 8 9 10

Size of meeting

Nu
m

be
r o

f b
yt

es

bytes send

bytes received

8. Provost, F. J., & Hennessy, D. N. Scaling up:
Distributed machine learning with cooperation.
Proceedings of the Thirteenth National Conference on
Artificial Intelligence. 2000
9. Friedman, J. H., Kohavi, R., & Yun, Y. Lazy decision
trees. Proceeding of the Thirteenth National Conference
on Artificial Intelligence. 1996

