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Abstract

This research focuses on algorithmic analysis and implementations of state-of-the-art algorithms

for generalized N -body problems.

Informally, in aN -body problem, we need to consider each pair (or n-tuple) of points formed from

N points in a metric space. These problems arise in areas (computational statistics/physics, machine

learning, database systems, computer graphics and computer vision) where the dataset has many

points of high dimensionality. As a result, the brute-force algorithm with O(Nn) scales poorly with

the number of data points and the dimensionality. Fortunately, we can use the following techniques

to reduce the computational time. First, adaptive partitioning via hierarchial data structures lets

us process data points in “chunks.” Secondly, we sometimes only require the computed answer to

be within the user specified precision ε in many cases, so decomposition of the kernel function (as

done in fast multipole methods) lets us speed up the computation.

Instead of surveying the entire class of generalized N -body problem, we will limit ourselves to

“pair-wise” kernel functions (n = 2). The newly developed techniques in this thesis will focus on

“pair-wise” N -body problems only.

The purpose of this thesis research is to develop a unified approach to these problems. A good

solution would provide performance scalability with respect to the number of data points and the

dimensionality of each point, and high adaptation to arbitrary data distribution.

As an example of newly developed techniques, I propose a new fast kernel density estimation

algorithm combining two successful approaches in reducing the computational cost involved in

nonparametric density estimation: a fully-recursive approach utilizing adaptive hierarchical data

structures in computational geometry (dual-tree recursion) and an analytical approach in approx-

imation theory (fast multipole methods). The technique developed here is general enough to be

applied to other problems in which fast evaluations of ”pair-wise” kernel functions are required.

In demonstrating the effectiveness of the newly developed techniques, I will provide experimental

results against current state-of-the-art algorithms.
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Chapter 1

Kernel Density Estimation (KDE)

Kernel Density Estimation is a popular technique used for nonparametric density estimation in

which users make no assumption about the underlying distribution of the dataset. We are given

a D-dimensional query dataset XQ = {x1, x2, ..., xNQ
} of size NQ and a D-dimensional reference

dataset XR = {x1, x2, ..., xNR
} of size NR. KDE computes the density estimate p̂(xq) at each

xq ∈ XQ:

p̂(xq) =
1

NRVDh

NR
∑

r=1

K (xq, xr) (1.1)

where the bandwidth h controls the degree of smoothing, normalizing constant VDh depends on the

dimension and the bandwidth. The kernel functinon K() is a function centered at each reference

data point, and decreases mononically away from its center.

Theoretically, if p(x) is the true density estimate function, increasing the size of the reference

dataset will increase accuracy of the density estimate computed by KDE (and hence comes the

demand for a fast KDE algorithm):

lim
NR→∞

∞
∫

−∞

|p̂(x) − p(x)|dx = 0 (1.2)

For our purposes, we will consider the “monochromatic” case in which the query dataset and

the reference dataset are the same (X = XQ = XR, N = NQ = NR), although the algorithms

analyzed in this thesis can handle the “bichromatic” case (XQ 6= XR). We will also choose the
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Gaussian kernel Kh(xq, xr) = e
−||xq−xr ||

2

2h2 , as it is one of the most popular kernels. One variant of

kernel density estimation allows placeing different weights at each refrence point.

p̂(xq) =
1

NRVDh

NR
∑

r=1

wrK (xq, xr) (1.3)

The algorithms we discuss also handle these cases, but for simplicity we will only worry about

wr = 1 for 1 ≤ r ≤ NR. Nevertheless, it is the case that the techniques developed for kernel density

estimation problem can be easy extended to allow different weights.

We also define the density estimate error ε for a query point xq as the percentage deviation from

the density estimate computed by the trivial naive algorithm. That is,

ε =
|p̂alg(xq) − p̂naive(xq)|

p̂naive(xq)
(1.4)

Current state-of-the-art KDE algorithms use the following three main techniques for achieving

fast speed.

1. Exact algebraic computataion

2. Decomposition of kernel function into a Taylor/multipole series

3. Fast adaptive node-to-node comparison via computational geometry

But more importantly, we are interested in designing fast algorithms that allow users to bound

ε freely, thus bounding the error level for the density estimates for all query points. Note that this

is a stronger defintion of error tolerance than one used in [4, 9, 12, 14, 5] in which users bound the

actual deviation from the density estimate computed by the trivial naive algorithm is measured.

1.1 Trivial Naive Algorithm

For clarity, we present the naive algorithm for computing density estimate using KDE technique.

Though effective on a small dataset and requiring no additional storage space, its time complexity

is O(DN2). Note that this algorithm is simple to code for any arbitrary kernel function.

2



NaiveKDE(X)
for each point xq ∈ X
p̂(xq) = 0
for each point xr ∈ X, xr 6= xq

p̂(xq) + = Kh(xq, xr)
end

p̂(xq) / = (N · VDH)
end

Figure 1.1: A method using two nested loops.

1.2 Multidimensional Fast Fourier Transform

Fast Fourier Transform is often quoted as the solution for the computational cost in KDE. Kernel

density estimation using FFT is described in [22] and [27]. [22] discusses the implementation of

KDE only in a univariate case, while [27] extends Silverman’s algorithm to handle more than one

dimension.

1.2.1 Data Structure

We first compute theM1×···×MD matrix by binning the data assigning the raw data to neighboring

grid points using one of the binning rules. This involves computing the minimum and maximum

coordinate values (gi,Mi
, gi,1), and the grid width δi =

gi,Mi
−gi,1

Mi−1
for each i-th dimension. This

essentially divides each dimension into M − 1 intervals of equal length.

In particular, [27] discusses two different types of binning rules - linear binning, which is rec-

ommended by Silverman, and nearest-neighbor binning. [27] states that nearest-neighbor binning

rule performs poorly, so this thesis will test the implementation using the linear binning rule, as

recommended by both authors.

In addition, we compute the L1 × · · · × Ld kernel weight matrix, where Li = min(

⌊

τh
δi

⌋

,Mi −

1), withτ ≈ 4 and Kl =
d
∏

k=1

e
−0.5lkδk

h2 , −Lk ≤ lk ≤ Lk, for l = (l1, ..., lD) ∈ Z
D.

To reduce the wrap-around effects of fast Fourier transform near the dataset boundary, it is

essential to appropriately zero-pad the grid count and the kernel weight matrices to two matrices

of the dimensionality P1 × · · ·Pd, where Pi = 2log2dMi+Lie.

3
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Figure 1.2: Two dimensional gridding of data points. Here M1 = M2 = 5.

1.2.2 Algorithm

The key ingredient in this method is the use of Convolution Theorem for Fourier transforms. The

structure of the computed grid count matrix and the kernel weight matrix is cleverly crafted to

take advantage of the fast Fourier transform. Basically we want s̃k(gj) =
L1
∑

l1=−L1

· · ·
Ld
∑

ld=−Ld

cj−lKk,l,

for every grid point g = (g1j1, ..., gdjd
).

Let two functions h(t) and g(t), and their corresponding Fourier transforms H(f) and G(f) be

given. Then, the convolution of the two functions is defined by:

g ∗ h ≡
∞
∫

−∞

g(τ)h(t− τ)dτ (1.5)

Then, the Convolution Theorem [20] states that the Fourier transform of the convolution of

two functions is the product of the individual Fourier transforms. That is,

g ∗ h ≡ G(f)H(f) (1.6)

After the necessary convolution of two matrices, the M1 × · · · × Md submatrix in the upper

left corner of the resultant matrix contains the kernel density estimate of the grid points. Then,

4



A(0,0)

B(0,150) C(150,150)

D(150,0)

d

(50,50)

(a) Nearest Neighbor Binning
Rule (A = 1, B = C = D = 0)

A(0,0)

B(0,150) C(150,150)

D(150,0)

(50,50)
d

(b) Linear Binning Rule (A =
4

9
, B = 2

9
, C = 1

9
, D = 2

9
)

Figure 1.3: Two possible binning rules for KDE using multidimensional fast Fourier transform.
Consider a data point falling in a two-dimensional rectangle. In 1.3(a), the entire weight is assigned
to the nearest grid point. In 1.3(b), the weight is distributed to all neighboring grid points by linear
interpolation.

the density estimate of the actual data point is linearly interpolated using the density estimates of

neighboring grid points.

The multidimensional FFT and inverse FFT has been adapted from [20, 10]. A detailed

pseudocode is presented in Appendix A.1.

1.2.3 Free Parameters

• Mi (indirect): The number of grid points along the i-th dimension. Since it is cumbersome

to specify Mi’s for every dimension, we instead choose M = M1 = M2 = · · · = MD.

1.2.4 Algorithm Cost

Because of the explicit dependence on the dimensionality D and the number of grid points along

each dimension M , this method has never been tested above three dimensions. M also has been

limited to values less than 50 [27].

5



The grid count matrix: cZ =











c1,1 · · · c1,M2

...
. . .

... 0
cM1,1 · · · cM1,M2

0 0











The kernel weight matrix: KZ =























K00 · · · K0L2 K0L2 · · · K01
...

. . .
... 0

...
. . .

...
KL10 · · · KL1L2 KL1L2 · · · KL11

0 0 0
KL10 · · · KL1L2 KL1L2 · · · KL11

...
. . .

... 0
...

. . .
...

K10 · · · K1L2 K1L2 · · · K11























where Kl1,l2 = e
−0.5((l1δ1)2+(l2δ2)2)

h2 .

Figure 1.4: The grid count and the kernel weight matrix formed for a two-dimensional dataset. They
are formed by appropriately zero-padding for taking the boundary-effects of fast Fourier transform
based algorithms into account.

1.2.4.1 Runtime

The first part of the algorithm takes O(2DN) for gridding each data point. Computing the necessary

convolution of the grid count matrix and the kernel weight matrix takes two invocations of fast

Fourier transforms of two matrices and the intverse fast Fourier transform of the element-wise

products of two transformed matrices. This takes O((M logM)D). Finally, retrieving the final

density estimate of each data point requires a linear interpolation of the density estimates at the

neighboring grid points, hence taking O(2DN). Thus, the algorithm is of order O((M logM)D +

2DN), suffering from the curse of dimensionality.

1.2.4.2 Space Cost

The uniform grids used to bind the data points uses exponential space in terms of the dimension

D, O(MD). Because the grid-based data structure is not adaptive, there will be many empty grid

boxes for high-dimensional/non-uniform dataset.

1.2.5 Error Control

Performing a calculation on equally-spaced grid points introduces artificats at the bounaries of the

data [11]. In addition, the linear interpolation of the data points by assigning to neighboring grid

6



points introduce further errors. In general, Mi’s act as an indirect parameter as increasing it will

provide more accuracy. However, due to the limitations on floating point representation, there

exists ML such that any M > ML will not provide any additional accuracty. It is also impossible

to provide a tight bound on ε in a mathematical relationship involving Mi’s.

1.2.6 Summary

Using the multidimensional fast Fourier transform in kernel density estimation setting, as analyzed

in this section, does not seem to be a good idea. Although the exact algebraic nature of the

transform may be attractive in achieving high accuracy, the algorithm relies on periodicity of the

dataset with each data point on a grid scheme. Most importantly, we do not have full error control,

as this method does not provide the parameter to do so.

1.3 Improved Fast Gauss Transform

This algorithm is a derivative of the one described in [12], but does not follow the exact methodology

developed in the original method. The key difference involves use of adaptive space partitioning of

reference data points, and the different mathematical tools to approximate the contribution of a

chunk of reference data points as a truncated Taylor series of order p. Readers are advised to note

that this method has nothing in similarity as the original method developed in [12], and advised

to skip to Section 1.5, for the description of the real fast multipole method-based Gauss transform

and the explanations for terminologies used in this section.

1.3.1 Data Structure

Figure 1.5 shows the spherical partitioning of the reference dataset XR used in the algorithm. These

groupings are an improvement over the grid scheme/oct-tree/quad-tree used in multidimensional

fast Fourier transform and fast multipole methods.

The reference points beloning to a cluster are combined to form a representative “Taylor” ex-

pansion centered at a representative center xR, summarizing the positions of these points.

The authors of [29] state that the space subdivision task is modeled by a k-center problem:

given a set of NR reference point and a number of the clusters k, find a partition of the points into

clusters XR1 , ..., XRk
and their centers xR1 , ..., xRk

such that we minimize max
1≤i≤k

max
xr∈XRi

||xr − xRi
||.
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Figure 1.5: A simple k-center algorithm is used to produce spherical groupings of reference points
in improved fast Gauss transform algorithm [29]. Here, a query point xqj

is evaluated at the Taylor
series whose radius is r′ since it is within hρy from its center. However, it is not evaluated for the
other spherical grouping whose radius is r since it is too far away from the center.

That is, to minimize the maximum radius of clusters. The authors of [29] believe the clustering

algorithm used in improved fast Gauss transform eliminates the need of having to maintain the

interaction list for each group entity (a cluster in this case, a box in a grid-based algorithm, a node

in a tree-based algorithm).

1.3.2 Different Factorization of the Gaussian Kernel

The authors of [29] believe that expanding the Gaussian kernel along each direction is the bottleneck

in the applicability of fast multipole methods in higher dimensional setting. They claim that because

the Gaussian kernel decays rapidly as the distance from its source increases, the contributions

outside of a certain radius can be safely ignored. They also claim there is no need to perform

the multipole expansions which account for the far-field contributions. They advocate viewing

the multivariate Gaussian kernel not as a product of univariate Gaussian kernel, but as a vector

function. Then, we have the following useful factorization.

e−
||xqj

−xri
||2

2h2 = e−
||∆xqj

||2

2h2 e−
||∆xri

||2

2h2 e
∆xqj

∆xri

h2 (1.7)

where ∆xqj
= xqj

− xR, ∆xri
= xri

− xR.
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Then, we can express the unnormalized Gaussian sum as:

G(xqj
) =

∑

α≥0

Cαe
−||xqj

−xR||2/h2













xqj
− xR

h













α

(1.8)

where Cα = 2|α|

α!

NR
∑

i=1

e−||xri
−xR||2/h2













xri
−xR

h













α

.

In this representation, the trucation of the Taylor expansion after tht order p−1 requires
(

p+D−1
D

)

.

For D → ∞ and moderate value of p, the number of terms becomes O(Dp).

1.3.3 Algorithm

Here is an informal description of the algorithm.

1. Input tweak parameters: p, K, ρy.

2. Assign the reference data points into K clusters using the farthest-point clustering algorithm.

• Pick an arbitrary point v0 as the center of the first cluster and add it to the center set

C.

• For i = 1 to k, in i-th iteration, for every point, compute its distance to the set C:

di(v, C) = min
c∈C

||v − c||.

• Add the point farthest away from C, vi, to the set C, and let the new center vi ”steal”

the points closer to it from the other centers.

• Note the maximum radius of a cluster RMAX = hρx.

3. Choose p sufficiently large such that the error estimate is less than the desired precision ε:

|E(y)| ≤ (
∑

|qj|)












2p

p!
ρp

xρ
p
y + e−(ρy−ρx)2













≤ ε

4. For each cluster Sk with center ck, compute the coefficients given by the expression:

Ck
α = 2|α|

α!

∑

xri
∈Sk

qie
−||xri

−ck||2/h2













xri
−ck

h













α

.

5. For each xqj
∈ XQ, compute:

G(xqj
) =

∑

||xqj
−ck||≤hρy

[

∑

|α|<p

Ck
αe

−||xqj
−ck||2/h2













xqj
−ck

h













α]

.
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1.3.4 Free Parameters

• K: The number of clusters to group n data points using the “k center algorithm”

• ρy: For a given query data point, xqj
, a contribution from a cluster will be ”pruned” if it is

not within hρy from its centroid.

• p: The order of truncation for the Taylor expansion stored at each cluster.

1.3.5 Algorithm Cost

1.3.5.1 Runtime

The time complexity is O(Dp), when each Taylor expansion is evaluated at each query point.

1.3.5.2 Space Cost

The required space complexity is dominated by storing the Taylor coefficients for all K clusters,

O(
(

p+D−1
D

)

K). So it is O
(

(K
(

p+d−1
d

))

.

1.3.6 Error Control

This algorithm gives no control on specifying the error tolerance directly. The authors claim that

the number of clusters can be less than
√
NR, and the number of Taylor terms needed is less than

10. On page 8 of [29], the authors show how the 3-tuple (p, ρx.ρy) (where ρx is the largest bounding

radius of the clusters created by the k-center algorithm and ρy is the cut-off ratio of the radius to

the included cluster in the gaussian summation calculation, to the bandwidth h) can satisfy the

following error bound for a given target point, y. Because we are using a slightly different Gaussian

kernel from one used in the authors’ implementation and each source point has an equal weight of

1, the authors claim we can solve for τ explicitly in the following expression:

|E(y)| ≤ Q[
ρp

xρ
p
y

p!
+ e−0.5(ρy−ρx)2 ]

= NR[
ρp

xρ
p
y

p!
+ e−0.5(ρy−ρx)2 ]

< τ

10



Figure 1.6: In Barnes-Hut algorithm, we only build the tree on the reference data points. For every
query point xq, we do a depth-first traversal of the tree. We specify θ as an indirect parameter
controlling the pruning rule. If s > r

θ
, then the contribution of the reference points in the node is

approximated by NRKh(xq, µR).

However, the empirical results seem to indicate that this error bound analysis is incorrect. Our

current guess is that the authors of [29] have made errors in analyzing the Gaussian kernel using

the vector version of the Taylor series. This observation was echoed independently by another group

attempting to use the method.

1.3.7 Summary

Improved fast Gauss transform attempted to eliminate the grid structure used in multidimensional

fast Fourier transform and the original fast Gauss transform [12] and replaced it with adaptive

clustering structures. However, the authors unfortunately introduced three tweak parameters that

made error bound analysis and usage of the algorithm very difficult. We suspect that the algorithm

itself does not take into account the property of Taylor series and the properties of the Gaussian

kernel, as described in Section 1.5.2.2.

1.4 Dual-tree KDE

The conventional tree-based KDE algorithms are what we call “single-tree” algorithms; we process

each query point xq ∈ XQ at a time and do a sequence of depth-first traversal of the tree containing

the reference dataset XR. Such algorithms (such as Barnes-Hut algorithm) have complexity of at

least O(N logN).
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On the other hand, fast multpole methods [12] introduced the concept of putting the query

dataset in an organized datastructure (grid or an octtree/quadtree). This allowed processing a

chunk of query points and a chunk of reference points at a time to allow for fast approximation. For

each node/grid box containing any reference points, an interaction list of query nodes/grid boxes

is created. Maintaining these lists in high dimensional setting is quite daunting and impossible.

[11] describes a fast, easy-to-use implementation that eliminates the need for maintaining such lists

by introducing the concept of higher-order divide-and-conquer. This is the first tree-based KDE

algorithm we will analyze, and will form the basis of the new algorithm.

The original algorithm handles any arbitrary kernel function easily, but again we shall be focusing

our attention on the Gaussian kernel:

Kh(xq, xr) = e
−||xq−xr||

2

2h2 (1.9)

1.4.1 Data Structure

In this algorithm, adaptive data structures such as kd-trees and metric trees [18, 19, 6] divide the

data points into hierarhical groups. Instead of maintaining interaction list for each node/box as

done in [12], a simultaneous depth-first traversal of two different pointers (query tree and reference

tree) to a single tree representing the data points. In addition, a hard lower/upper bound on the

density estimate on any pair of query/reference point is obtained via simple geometric information

of the query/reference node. The density estimate computed by this method is guaranteed to be

at most ε away from the density estimates computed by the naive method.

In the implementation we tested, a high-dimensional sphere-rectangle tree [18] was constructed

for the reference dataset and the query dataset, using a simplified version of anchors hierarchy.

1.4.1.1 Advantages of Tree Data Structure

A tree is an inductively defined data structure. For example, a binary tree using the following

inductive definition:

1. An empty node is a binary tree.

2. If tleft and tright are binary trees, then the node whose left and right pointers point to tleft

and tright is a binary tree.
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Figure 1.7: Traversal order using two trees.

This inductive definition allows usage of cached sufficient statistics [17], which allows a form of

dynamic programming. We shall see how information gain on a given node can be propagated to

its children or its parent, as in the case of up-down propagation in dual-tree KDE or the set of

translation operators in fast multipole methods.

1.4.2 Algorithm

The high-level description of the algorithm is given in Figure 1.10. Basically, the four-way recursion

is done with each pair of reference node and query node is considered for “pruning.” Note that if

a pair of reference node and query node can be “pruned,” then the recursion terminates.

1.4.2.1 Maintaining Hard Bounds

For each node, we maintain the bounds φmin
q and φmax

q on the unnormalized Gaussian sum. These

bounds start in a pessimistic way: φmin
q = 0 and φmax

q = NR, since we know that the Gaussian

kernel is bounded by 0 and 1 for any pairs of query point and reference point. The lower bound

increases monotonically and the upper bound decreases monotonically.

When a reference node R is considered and pruning is performed, we update the bounds in the

following way:

∀q ∈ Q,Φmin
q + = dl, dl = NRKh(δ

max
QR )

∀q ∈ Q,Φmax
q + = du, du = NR[Kh(δ

min
QR ) − 1]

(1.10)

For every query point in a given node XQ, its density estimate is always between Φmin
q and Φmax

q .
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Figure 1.8: A hard lower/upper bound on the density estimate is obtained from simple geometric
information about the query node and the reference node. Here, the maximum contribution of
the reference node on any query point is NRKh(δ

min
QR ). Similarly the minimum contribution of the

reference node on any query point is NRKh(δ
max
QR ).

Figure 1.9: Information gain due to pruning for a give query node should be transmitted to its
parent and its children. These operations are analogous to multipole-to-multipole translation and
local-to-local translation operators respectively.

1.4.2.2 Maintaining Error Control

Suppose we consider a pair of a query node XQ and a reference node XR, and let δmin
QR and δmax

QR

be the minimum and maximum distance between two nodes. Intuitively, we can approximate the

reference node contribution by NRK̄h where K̄h =
Kh(δmax

QR )+Kh(δmin
QR )

2
if Kh(δ

max
QR ) and Kh(δ

min
QR ) are

close.

Therefore, the error of the approximation using NRK̄h with respect to any query point xq ∈ XQ:

eQR =
NR(Kh(δ

min
QR ) −Kh(δ

max
QR ))

2
(1.11)

If we want to make sure the density estimate of every query point φ(xq) meets the user-specified ε,

we obtain the following local pruning criterion which ensures the global error tolerance ε:

|Kh(δ
min
QR ) −Kh(δ

max
QR )| ≤ 2ε

NR
φmin

Q (1.12)
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1.4.2.3 Delayed Summation Technique

Rather than updating each Φmin
q and Φmax

q for each query data point, we maintain Φmin
Q and Φmax

Q

for all of the query points Q. In this way, each update is O(1) rather than O(NQ). This is very

similar to the multipole-to-local translation operator works in fast multipole methods.

Of course, using delayed summation requires a single pre-order traversal of the query tree, which

simply adds any contributions stored in these variables to the query points in the relevant nodes.

In fast multipole methods, this is exactly what the local-to-local translation operator does.

1.4.2.4 Up-down mass propagation

Delayed summation technique causes a problem since each local lower/upper bound update is known

only to the query node that is pruned. For example, when a reference node XR’s contribution is

stored, in the bounds for XQ, this same information is not transmitted to its subtree. [11] states

two ways to solve this problem:

• Downward propagation: pass dl and du to the entire subtree below XQ whenever the new

mass is obtained.

• Upward propagation: takes min/max of the children’s bounds to tighten the lower/bounds of

the query node.

In order to avoid full downward propagation on every pruning, the algorithm in [11] uses the

deferred propagation technique in which pruning information on a given query node is passed to its

immediate children and its parent only.

1.4.3 Free Parameters

• τ : used as a local pruning rule for error control for ensuring the global error tolerance ε. Using

τ ≤ ε suffices.

1.4.4 Algorithm Cost

1.4.4.1 Runtime

It takes roughly O(N) for a dual-tree KDE computation empirically but we have not yet proved

this.
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KDE(Q, R)

Do up/down mass propagation.

Try inclusion/exclusion pruning rule.

if leaf(Q) and leaf(R)

Run a naive quadratic algorithm on every pair of points in Q and R

else

KDE(Q.left, R.left)

KDE(Q.left, R.right)

KDE(Q.right, R.left)

KDE(Q.right, R.right)

Figure 1.10: A pseudocode doing a depth-first traversal of two trees is presented here.

1.4.4.2 Space Cost

It requires O(N) for space complexity to store the required trees.

1.4.5 Error Control

Using the simple pruning criterion developed in 1.4.2.2, we can guarantee that every density

estimate satisfies the user-specified ε criterion.

1.4.5.1 Summary

In this section, we have seen how trees can be used in KDE setting. Using two trees (each for the

reference dataset and and for the query dataset) according to [11] gives huge improvement over

conventional single-tree-based algorithms. In the next section, we will discuss a powerful technique

from approximation theory and later show how it could be combined with dual-tree KDE to create

a new fast algorithm.

1.5 Fast Multipole Methods

1.5.1 Brief Overview of Fast Multipole Methods

Fast multipole methods (FMM) are a class of powerful techniques developed in computational

physics. Unlike most N -body methods, they come with rigorous error bound on the estimate and
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were one of the first methods to achieve O(N) time complexity. In these class of methods, the

kernel function in consideration is expanded into a truncated Taylor/multipole expansion of order

p.

In contast with fast Fourier transform-based methods (which perform computations by taking

advantage of the periodicity of the dataset), fast multipole methods are approximate, based on an-

alytic considerations, and insensitive to the distribution of the reference data set XR [5]. Interested

readers are invited to consult a good, concise introduction to this general class of algorithms [5].

Despite their success in reducing the computational cost in many physical settings, the FMMs

have not been utilized outside specialized communities because it is hard to visualize the mapping

between the theory and the real working implementation.

Our goal in this section is to clarify any confusion and to discuss their potentials in tackling

pair-wise N -body problems. We will be focusing on analysis and derivation of kernel-specific fast

multipole methods. Readers interested in FMM variants that are kernel-independent are encouraged

to refer to [2] and other literatures.

1.5.1.1 Notations

As we are working in a Euclidean space of any arbitrary dimension, it is convenient to use a multi-

index notation defined in [12].

We define a multi-index α = (α1, α2, ..., αD) as a D-tuple of nonnegative integers. For any

multi-index α and any x ∈ R
D, define:

|α| = α1 + α2 + · · ·+ αD

α! = α1!α2! · · ·αD!

xα = xα1xα2 · · ·xαD

Dα = ∂α1
1 ∂α2

2 · · ·∂αD

D

where ∂i is a partial derivative with respect to the D-th coordinate direction. If α ≥ p for an integer

p, then αi ≥ p for 1 ≤ i ≤ D.

We in addition also define the following multi-index arithmetic operations. For two multi-

indices α = (α1, ..., αD) and β = (β1, ..., βD), we define the sum of two multi-indices as α + β =

(α1 + β1, α2 + β2, .., αD + βD). We define for two multi-indices and α and β such that αi ≥ βi for

1 ≤ i ≤ D, the difference as α− β = (α1 − β1, α2 − β2, ..., αD − βD).
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1.5.1.2 Multipole Expansion

Recall that our goal is to evaluate the density estimate p̂(xq) at each xq ∈ XQ:

p̂(xq) =
1

NRVDh

NR
∑

r=1

K (xq, xr) (1.13)

Suppose the kernel function K(xq, xr) is infinitely differentiable in most of R
D. Then, it can be

expressed as a truncated series of order p about a carefully chosen center xR:

K(xq, xr) =
∑

α≥0

φα(xq, xR)ψα(xr, xR) (1.14)

where φk’s are functions dependent only on xq, xR and ψk’s are functions dependent only on xr, xR.

If we truncate the infinite series after p terms along each direction, we will have pD terms for the

approximation.

p̂(xq) =
1

NRVDh

NR
∑

r=1

K (xq, xr)

=
1

NRVDh

NR
∑

r=1

∑

α≥0

φα(xq, xR)ψα(xr, xR)

=
1

NRVDh

(

NR
∑

r=1

∑

α<p

φα(xq, xR)ψα(xr, xR) + εM(p)

)

=
1

NRVDh

(

∑

α<p

(

NR
∑

r=1

ψα(xr, xR)

)

φα(xq, xR) + εM(p)

)

(1.15)

Note that by switching the summation between the one iterating through all the reference data

points and the one controlling the order of the series, we can pre-compute Aα =
NR
∑

r=1

ψα(xr, xR) for

all 0 ≤ α < p. Because Aα’s depend only on the reference data points and a representative point xR

(a centroid in a node case), no other knowledge is needed to pre-compute these “moments.” This

expansion, as shown in Figure 1.11 is called a multipole expansion or a reference-side expansion

[11].
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xq

xq
xR

xr1

xr2

xr3xr4

xr5

xr6

xR

Figure 1.11: Here we are given a query point xq and a reference node containing six reference data
points. A multipole expansion summarizes the six individual interactions between the query point
xq and each of the six xri’s by expanding the six reference data points about the centroid XR. Then
a single function of order p can capture the entire contribution of the reference node for xq.
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max(radiusQ, radiusR)

radiusR

radiusQ

Figure 1.12: A reference node is well-separated from a query node if the minimum distance between
the two is at least max(radiusQ, radiusR).

There are two types of error bound functions εM(p). For example, εM(p) for a Coloumbic kernel

[9] depends both on the desired precision and the well-separated-ness of xq and xr’s as defined in

[7]. In contrast, εM (p) for a Gaussian kernel, by bounding the size of the reference node (via use of

a grid structure), may only depend on the desired precision and be independent of the location of

xq [4, 12].

1.5.1.3 Local Expansion

A local expansion or a query-side expansion as introduced in [9, 12] is basically a Taylor expansion

of a multipole expansion. This is essential for achieving O(N), whereas the asymptotic complexity

of tree-based codes that do not use local expansion [3] is at least O(N logN).

Intuitively, a local expansion lets us approximate the potential at each xq in a query node in

terms of the centroid xQ.

p̂(xq) =
1

NRVDh

NR
∑

r=1

K (xq, xr)

=
1

NRVDh

(

∑

β<p

Bβφβ(xq, xQ) + εL(p)

) (1.16)

where Bβ =
∑

α<p

Aαωα+β(xQ, xR). Basically, the coefficients of the local expansion is formed by

taking a convolution sum between each multipole coefficient and functions dependent on xQ and

xR. Because the multipole expansion is truncated at pD terms before being converted to a local

expansion, the error approximation εL(p) is larger than εM(p).
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xQ

xr3

xr1

xr2

xr5

xr6

xR

xr4

xq1

xq2

xq3

xq4

xq5

xq6

Figure 1.13: Instead of evaluating the multipole expansion formed from xri’s at each xqi’s, we can
form a Taylor expansion of a multipole expansion (local expansion) about xQ, a representative point
in the query node. This lets us collect the contribution of reference nodes to each query point in
the query node in a form of Taylor coefficients.

1.5.1.4 Translation Operators

Greengard and Rokhlin introduced the set of translation operators for converting between multipole

and local expansion; these operators are crucial components in achieving O(N) in FMMs. The

concrete example using these abstract operators in the Cartesian setting will be presented in 1.6.

1. Multipole to multipole translation operator (M2M operator): This is a useful operator in a tree-

based FMM. In forming the multipole expansion of a parent node, the multipole expansions

of its children nodes are shifted to the centroid of the parent node and summed up. This can

be interpreted as a form of cached sufficient statistics calculated in a bottomup fashion during

construction of the tree.

Suppose a parent node has c children nodes: X1, ..., Xc, each with N1, ..., Nc reference data

points. Without the help of M2M operator, the cost of computing a multipole expansion of

the parent node is O

(

pD

(

c
∑

i=1

Ni

))

. However, the M2M operator lets us compute the same

expansion in O(c · pD).

2. Multipole to local translation operator (M2L operator): This operator is used to convert a

multipole expansion of a reference node to form a local expansion centered at the centroid of

the query node, as explained in 1.5.1.3.

3. Local to local translation operator (L2L operator): This operator, in contrast with M2M

operator, acts as a “clean-up” crew in a tree-based FMM. In a tree structure comprising the

query dataset XQ, we are left with a local expansion in each node of the tree at various depth
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xR

xR1

xR2

(a) M2M Translation Operator

xR

xR1

xR2

(b) L2L Translation Operator

Figure 1.14: In 1.14(a), the multipole expansions of the two children nodes centered at xR1 and xR2

are shifted to the centroid of the parent node xR. In 1.14(b), the local expansion of the parent node
is transmitted to each of the two children nodes.

levels. By performing a breadth-first traversal of the query tree, the L2L operator shifts a

local expansion of a parent node to the children node’s centroid and adds to the children’s

local expansions.

It is worthwhile to note that each query point is evaluated only once at a local expansion of

the leaf node it belongs to, for computing the far-field contributions outside.

1.5.1.5 Algorithm

Here we present the recursive generalization of O(N) tree-based fast multipole methods (for arbi-

trary kernel function). Details of the approach using the Coluombic kernel are outlined in [9].

1. Create a oct-tree/quad-tree of XQ ∪ XR, the combined dataset containing both the query

points and the reference points.

• When forming a leaf node, compute the truncated multipole expansion of order p of the

reference data points belonging to it.

• When forming an internal node, compute the truncated multipole expansion due to

all reference points in it by applying the M2M translation operator to the multipole

expansions of the children nodes.
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2. Traverse down the tree in the breadth-first manner and form the interaction list of each

node b containing any reference points. The interaction list of b is formed by considering the

well-separated nodes of the same refinement level. For each node c in the interaction list,

we convert the multipole expansion of b to the Taylor expansion about the center of c. For

immediate near-neighboring query nodes, the contribution of b is computed directly using the

naive method.

3. Do a pre-order traversal of the tree again and apply the L2L translation operator to any

Taylor coefficients on a given node, transmitting the information down to its children nodes.

Once on a leaf level, we evaluate the accumulated Taylor expansion at every single query

point.

1.5.1.6 Limitation of Fast Multipole Methods

• Restriction on Kernel Function. The kernel function needs to be analytic and have infinite

number of non-zero derivatives. The Columobic, multiquadric, and Gaussian functions satisfy

the necessary condition (and have fast multipole methods using those kernels). However, it is

impossible to apply the techniques of fast multipole methods using other useful kernel func-

tions such as spherical kernel (Kh(||xq−xr||) = 1 if ||xq−xr|| < h, otherwise 0), Epanechnikov

kernel (Kh(||xq − xr||) = 1 − ||xq − xr||2 if ||xq − xr|| < h, otherwise 0).

• New Derivation for Each Kernel Function. Each kernel function has unique multipole and

Taylor expansions, and a new error bound has to be derived by algorithm designers as a result

[1, 21].

• Curse of Dimensionality. Expanding the kernel function into a truncated seried of order p

in each direction requires O(pD) space and runtime complexity. In addition, each hierarchial

entity (a node or a grid box) needs to generate a list of neighboring partners, which is an

expensive process in higher dimenisions. As a result, fast multipole methods have never been

used beyond a three-dimensional setting.

1.5.1.7 Potential Improvements

• Efficiency of Translation Operators. One of the most expensive part of computations in fast

multipole methods involves the translation operators: M2M (multipole to multipole), M2L

(multipole to Taylor), L2L (Taylor to Taylor). Some work has been pursued to reduce the
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cost, as done in [13] for improving the original fast Gauss transform [12], by replacing original

Hermite and Taylor expansions with an expansion in terms of plane waves.

• Use of Adaptive Hierarchial Data Structures. The utilization of hierarchial division in fast

multipole methods is limited to quad-trees/oct-trees (semi-adaptive) [9, 14] and grid-scheme

(non-adpative) [12]. Adaptive hierarchial data structures, such as k-d trees [6] and metric

trees [18, 19], can be used to cluster data points more in tigher groupings than grids, quad-

trees/oct-trees. [15] states that these adaptive data structures have not been fully utilized

in fast multipole methods. Perhaps, the asymptotic building cost of O(NlogN) discouraged

designers of fast multipole methods for ever pursuing this avenue. Nevertheless, we will show

how adaptive data structures can be usedful in developing fast algorithms.

1.5.2 Fast Gauss Transform

This algorithm was first introduced in [12]. This is just a fast multipole method using the Gaussian

kernel

Kh(xq, xr) = e
−||xq−xr||

2

2h2 .

Unlike the original algorithm, we will assume that the weights placed at each reference points

are equally weighted. That is, qj = 1 for 1 ≤ j ≤ NR.

1.5.2.1 Data Structure

Strangely enough, no tree-based fast multipole method has been developed for this kernel, unlike

other kernel functions. The data points are first scaled to fit in the unit hypercube [0, 1]D which

is divided into a uniform grid of hypercubes. In contrast with the grid scheme used in fast Fourier

transform method, which sets the number of grid boxes in advance, the fast Gauss transform limits

the size of each grid box instead. Each side of a hypercube in the fast Gauss transform mesh has a

maximum length of h, the smoothing parameter (bandwidth).

1.5.2.2 Properties of the Gaussian Kernel

Fast Gauss transform algortihm takes advantage of the analytical and numerical properties of the

Gaussian kernel. I will summarize the mechanism developed in [12].

Our development begins with one-dimensional setting and generalizes to multi-dimensional set-

ting we are interested in.
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Figure 1.15: Uniform grid scheme is used for the fast multipole method using the Gaussian kernel.

We define the Hermite polynomials by the Rodrigues formula:

Hn(t) = (−1)net2Dne−t2 , t ∈ R
1 (1.17)

The first few polynomials include [28]: H0(t) = 1, H1(t) = 2t, H2(t) = 4t2 − 2.

The generating function for Hermite polynomials is defined by:

e2ts−s2

=
∞
∑

n=0

sn

n!
Hn(t) (1.18)

Let us define the Hermite functions hn(t) by

hn(t) = e−t2Hn(t) (1.19)

Multiplying both sides by e−t2 yields:

e−(t−s)2 =

∞
∑

n=0

sn

n!
hn(t) (1.20)
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We would like to use a “scaled and shifted” version of this derivation for taking the bandwidth

h into account.

e
−(t−s)2

2h2 = e
−((t−s′)−(s−s′))2

2h2

=
∞
∑

n=0

1

n!

(

s− s′√
2h2

)n

hn

(

t− s′√
2h2

) (1.21)

Note that our D-dimensional multivariate Gaussian kernel can be expressed as a product of D

one-dimensional Gaussian kernel. Similarly, the multidimensional Hermite functions can be written

as a product of one-dimensional Hermite functions using the following identity for any t ∈ R
D.

Hα(t) = Hα1(t1) · · ·HαD
(tD)

hα(t) = e−||t2||Hα(t) = hα1(t1) · · ·hαD
(tD)

(1.22)

where ||t2|| = t21 + · · · + t2D.

e
−||t−s||2

2h2 = e
−(t1−s1)2−(t2−s2)2−···−(tD−sD)2

2h2

= e
−(t1−s1)2

2h2 e
−(t2−s2)2

2h2 · · · e
−(tD−sD)2

2h2

(1.23)

Therefore, we can express the multivariate Gaussian kernel as

e
−||t−s||2

2h2 =

( ∞
∑

n1=0

1

n1!

(

s1 − s′1√
2h2

)n1

hn1

(

t1 − s′1√
2h2

)

)

· · ·
( ∞
∑

nD=0

1

nD!

(

sD − s′D√
2h2

)nD

hnD

(

tD − s′D√
2h2

)

)

=
∑

α≥0

1

α!

(

s− s′√
2h2

)α

hα

(

t− s′√
2h2

)

(1.24)

By replacing t and s with our familiar query/reference point pair xq, xr, xQ, xR, we have

e
−||xq−xr||

2

2h2 =
∑

α≥0

1

α!

(

xr − xR√
2h2

)α

hα

(

xq − xR√
2h2

)

(1.25)
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1.25 lets us evaluate the kernel value for a query/reference point pair xq and xr, e
−||xq−xr||

2

2h2 as

an Hermite (multipole or reference-side) expansion centered at a representative point xR in the

reference node.

Consider the following unnormalized Gaussian sum for a given query point xq. By switching

the summation signs, we obtain the multipole moements in a bracket. These momenets are only

dependent on the reference data points and the representative centroid xR in the reference node, so

they can be computed when the tree/grid structure is constructed for the reference dataset.

G(xq) =

NR
∑

r=1

e
−||xq−xr ||

2

2h2

=

NR
∑

r=1

∑

α≥0

1

α!

(

xr − xR√
2h2

)α

hα

(

xq − xR√
2h2

)

=
∑

α≥0

[

NR
∑

r=1

1

α!

(

xr − xR√
2h2

)α
]

hα

(

xq − xR√
2h2

)

(1.26)

We note that 1.25 can be re-written as

e
−||xq−xr ||

2

2h2 =
∑

α≥0

1

α!
hα

(

xr − xQ√
2h2

)(

xq − xQ√
2h2

)α

(1.27)

and hence, we get the unnormalized Gaussian kernel sum as

G(xq) =

NR
∑

r=1

e
−||xq−xr||

2

2h2

=

NR
∑

r=1

∑

α≥0

1

α!
hα

(

xr − xQ√
2h2

)(

xq − xQ√
2h2

)α

=
∑

α≥0

[

NR
∑

r=1

1

α!
hα

(

xr − xQ√
2h2

)

]

(

xq − xQ√
2h2

)α

(1.28)

This expresses a Gaussian kernel sum as a Taylor (local) expansion about a nearby representative

centroid xQ in the query node.
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The final property is the recurrence relation of the one-dimensional Hermite function

hn+1(t) = 2t · hn(t) − 2n · hn−1(t), t ∈ R
1 (1.29)

and the Taylor expansion of the Hermite function hα(t) about an arbitrary point t0 ∈ R
D.

hα(t) =
∑

β≥0

(t− t0)
β

β!
(−1)|β|hα+β(t0) (1.30)

1.5.2.3 Translation Operators

Now we have all the machinery required to build a fast method. I will state (as derived in [12, 13])

the multipole-to-local translation operator for the Gaussian kernel. In addition, I will present the

derivations of the two newly invented translation operators necessary for moving the grid-based fast

Gauss transform to a tree-based one. From now on, we will only consider the unnormalized part

of the kernel summation for each query point, as it is trivial to multiply the unnormalized density

estimate by the required factor 1
NRVDh

.

Lemma 1.5.1. Multipole-to-multipole Translation Operator for Gaussian: Suppose we are given

the Hermite expansion centered at a centroid xR′ in a reference node XR′:

G(xq) =
∑

α≥0

A′
αhα

(

xq − xR′√
2h2

)

Then, this same multipole expansion shifted to a new location xR of the parent node of XR is

given by the following:

G(xq) =
∑

γ≥0

Aγhγ

(

xq − xR√
2h2

)

where Aγ =
∑

0≤α≤γ

1
(γ−α)!

A′
α

(

xR′−xR√
2h2

)γ−α

.

Proof. We simply replace the Hermite function part of the multipole expansion by a new Taylor

series.
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G(xq) =
∑

α≥0

A′
αhα

(

xq − xR′√
2h2

)

=
∑

α≥0

A′
α

∑

β≥0

1

β!

(

xR − xR′√
2h2

)β

(−1)|β|hα+β

(

xq − xR√
2h2

)

=
∑

α≥0

∑

β≥0

A′
α

1

β!

(

xR − xR′√
2h2

)β

(−1)|β|hα+β

(

xq − xR√
2h2

)

=
∑

α≥0

∑

β≥0

A′
α

1

β!

(

xR′ − xR√
2h2

)β

hα+β

(

xq − xR√
2h2

)

=
∑

γ≥0

[

∑

0≤α≤γ

1

(γ − α)!
A′

α

(

xR′ − xR√
2h2

)γ−α
]

hγ

(

xq − xR√
2h2

)

where γ = α + β.

Lemma 1.5.2. Multipole-to-local Translation Operator for Gaussian (as presented in Lemma 2.2

in [12, 13]): Suppose we are given a reference node XR and a query node XQ, and given the Hermite

(multipole) expansion centered at a centroid xR of XR:

G(xq) =
∑

α≥0

Aαhα

(

xq − xR√
2h2

)

Then, the Taylor expansion of the Hermite expansion at the centroid xQ of the query node XQ

is given by:

G(xq) =
∑

β≥0

Bβ

(

xq − xQ√
2h2

)β

(1.31)

where Bβ = (−1)|β|

β!

∑

α≥0

Aαhα+β

(

xQ−xR√
2h2

)

Proof. We simply replace the Hermite function part of the multipole expansion by its Taylor series.
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G(xq) =
∑

α≥0

Aαhα

(

xq − xR√
2h2

)

=
∑

α≥0

Aα

∑

β≥0

(−1)|β|

β!
hα+β

(

xQ − xR√
2h2

)(

xq − xQ√
2h2

)β

=
∑

β≥0

[

(−1)|β|

β!

∑

α≥0

Aαhα+β

(

xQ − xR√
2h2

)

]

(

xq − xQ√
2h2

)β

Lemma 1.5.3. Local-to-local Translation Operator for Gaussian: Suppose you are given a Taylor

expansion centered at a centroid xQ′ of a query node XQ′:

G(xq) =
∑

β≥0

Bβ

(

xq − xQ′√
2h2

)β

Then, the Taylor expansion obtained by shifting this expansion to the new centroid xQ of the

child node XQ is:

G(xq) =
∑

α≥0

[

∑

β≥α

β!

α!(β − α)!
Bβ

(

xQ − xQ′√
2h2

)β−α
]

(

xq − xQ√
2h2

)α

Proof. We expand the part involving xq and xQ′ in a new Taylor series centered at a new center

xQ. Then, we obtain:
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G(xq) =
∑

β≥0

Bβ

(

xq − xQ′√
2h2

)β

=
∑

β≥0

Bβ

∑

α≥0

1

α!

(

Dα

[

(

xq − xQ′√
2h2

)β
]

(xQ)

)

(xq − xQ)α

=
∑

β≥0

Bβ

∑

α≤β

1

α!

(

1√
2h2

)α
(

D
∏

d=1

βD(βD − 1) · · · (βD − αD + 1)

)

(

xQ − xQ′√
2h2

)β

(xq − xQ)α

=
∑

β≥0

∑

α≤β

Bβ
β!

α!(β − α)!

(

xQ − xQ′√
2h2

)β−α(
xq − xQ√

2h2

)α

=
∑

α≥0

[

∑

β≥α

Bβ
β!

α!(β − α)!

(

xQ − xQ′√
2h2

)β−α
]

(

xq − xQ√
2h2

)α

1.5.2.4 Error Bound on Translation Operators

Because the multipole and the Taylor expansion are truncated after taking pD terms, we incur

an error in approximation. The original error bounds for the Gaussian kernel in [12, 13] were

wrong and corrections have been made in [4]. The authors in [4] presented corrections to one of

the error bounds presented in [12]. Here, I will present all necessary three error bounds incurred

in performing translation operators, incorporating an improved upper bound of one-dimensional

Hermite functions [26].

1

n!
|hn(x)| ≤ 2

n
2

√
n!
e

−x2

2 , n ≥ 0, x ∈ R
1 (1.32)

Lemma 1.5.4. Error Bound for Truncating a Hermite (Multipole) Expansion (as presented in [4]):

Suppose we are given a multipole expansion of a reference node about its centroid xR.

G(xq) =
∑

α≥0

Aαhα

(

xq − xR√
2h2

)

where Aα =
NR
∑

r=1

1
α!

(

xr−xR√
2h2

)α

.
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For a fixed query point xq, the error due to truncating the series after the first pD term is

|εM(p)| ≤ NR

(1 − r)D

D−1
∑

k=0

(

D

k

)

(1 − rp)k

(

rp

√
p!

)D−k

where each reference data point xr in the reference node satisfies ||xr − xR||∞ < rh for r < 1.

Proof. We expand the Hermite expansion as a product of one-dimensional Hermite functions by

using the following notations for 1 ≤ i ≤ D.

up(xqi
, xri

, xRi
) =

p−1
∑

ni=0

1

ni!

(

xri
− xRi√
2h2

)ni

hni

(

xqi
− xRi√
2h2

)

vp(xqi
, xri

, xRi
) =

∞
∑

ni=p

1

ni!

(

xri
− xRi√
2h2

)ni

hni

(

xqi
− xRi√
2h2

)

e
−||xq−xr||

2

2h2 =
D
∏

i=1

(up(xqi
, xri

, xRi
) + vp(xqi

, xri
, xRi

))

Using 1.32, we obtain for 1 ≤ i ≤ D

up(xqi
, xri

, xRi
) ≤

p−1
∑

ni=0

1

ni!

∣

∣

∣

∣

xri
− xRi√
2h2

∣

∣

∣

∣

ni
∣

∣

∣

∣

hni

(

xqi
− xRi√
2h2

)∣

∣

∣

∣

≤
p−1
∑

ni=0

∣

∣

∣

∣

rh√
2h2

∣

∣

∣

∣

ni 2
ni
2

√
ni!

(

e−
(xqi

−xRi
)2

4h2

)

≤
p−1
∑

ni=0

rni ≤ 1 − rp

1 − r

vp(xqi
, xri

, xRi
) ≤

∞
∑

ni=p

1

ni!

∣

∣

∣

∣

xri
− xRi√
2h2

∣

∣

∣

∣

ni
∣

∣

∣

∣

hni

(

xqi
− xRi√
2h2

)∣

∣

∣

∣

≤
∞
∑

ni=p

∣

∣

∣

∣

rh√
2h2

∣

∣

∣

∣

ni 2
ni
2

√
ni!

(

e−
(xqi

−xRi
)2

4h2

)

≤ 1√
p!

∞
∑

ni=p

rni ≤ 1√
p!

rp

1 − r

Therefore,

∣

∣

∣

∣

∣

e
−||xq−xr||

2

2h2 −
D
∏

i=1

up(xqi
, xri

, xRi
)

∣

∣

∣

∣

∣

≤ (1 − r)−D

D−1
∑

k=0

(

D

k

)

(1 − rp)k

(

rp

√
p!

)D−k

∣

∣

∣

∣

∣

NR
∑

r=1

e
−||xq−xr||

2

2h2 −
∑

α<p

Aαhα

(

xq − xR√
2h2

)

∣

∣

∣

∣

∣

≤ NR

(1 − r)D

D−1
∑

k=0

(

D

k

)

(1 − rp)k

(

rp

√
p!

)D−k
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Lemma 1.5.5. Error Bound for Truncating a Taylor Expansion Converted from a Hermite Expan-

sion of Infinite Order: Suppose we are given the following Taylor expansion about the centroid xQ

of a query node

G(xq) =
∑

β≥0

Bβ

(

xq − xQ√
2h2

)β

where Bβ = (−1)|β|

β!

∑

α≥0

Aαhα+β

(

xQ−xR√
2h2

)

and Aα’s are the coefficients of the Hermite expansion

centered at the reference node centroid xR.

Truncating the series after pD terms satisfies the error bound

|εL(p)| ≤ NR

(1 − r)D

D−1
∑

k=0

(

D

k

)

(1 − rp)k

(

rp

√
p!

)D−k

where ||xq − xQ||∞ < rh for r < 1.

Proof. Note from the definition of Taylor expansion of Hermite function that

e
−||xq−xr||

2

2h2 =
∑

β≥0

(−1)|β|

β!

∑

α≥0

1

α!

(

xr − xR√
2h2

)α

hα+β

(

xQ − xR√
2h2

)(

xq − xQ√
2h2

)β

=
∑

β≥0

(−1)|β|

β!

∑

α≥0

1

α!

(

xR − xr√
2h2

)α

(−1)|α|hα+β

(

xQ − xR√
2h2

)(

xq − xQ√
2h2

)β

=
∑

β≥0

(−1)|β|

β!
hβ

(

xQ − xr√
2h2

)(

xq − xQ√
2h2

)β

As done in the proof of the truncation error for multipole expansion, we define the following univari-

ate functional notations such that e
−||xq−xr||

2

2h2 =
D
∏

i=1

(up(xqi
, xri

, xQi
) + vp(xqi

, xri
, xQi

)) for 1 ≤ i ≤ D.

up(xqi
, xri

, xQi
) =

p−1
∑

ni=0

(−1)ni

ni!
hni

(

xQi
− xri√
2h2

)(

xqi
− xQi√
2h2

)ni

vp(xqi
, xri

, xQi
) =

∞
∑

ni=p

(−1)ni

ni!
hni

(

xQi
− xri√
2h2

)(

xqi
− xQi√
2h2

)ni
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These two functions satisfy the following bounds for 1 ≤ i ≤ D:

up(xqi
, xri

, xQi
) ≤ 1 − rp

1 − r

vp(xqi
, xri

, xQi
) ≤ 1√

p!

rp

1 − r

So the error bound is the same as the one obtained in 1.5.4.

Lemma 1.5.6. Error Bound for Truncating a Taylor Expansion Converted from an Already Trun-

cated Hermite Expansion: A truncated Hermite expansion centered about the centroid xR of a

reference node

G(xq) =
∑

α<p

Aαhα

(

xq − xR√
2h2

)

has the following Taylor expansion about the centroid xQ of a query node:

G(xq) =
∑

β≥0

Cβ

(

xq − xQ√
2h2

)β

where the coefficients Cβ are given by

Cβ =
(−1)|β|

β!

∑

α<p

Aαhα+β

(

xQ − xR√
2h2

)

Truncating the series after pD terms satisfies the error bound

|εL(p)| ≤ NR

(1 − 2r)2D

D−1
∑

k=0

(

D

k

)

((1 − (2r)p)2)k

(

((2r)p)(2 − (2r)p)√
p!

)D−k

for a query node XQ for which ||xq − xQ||∞ < rh, and a reference node XR for which ∀xr ∈
xR, ||xr − xR||∞ < rh for r < 1

2
.
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Proof. We define the following for 1 ≤ i ≤ D:

up(xqi
, xri

, xQi
, xRi

) =

p−1
∑

ni=0

(−1)ni

ni!

p−1
∑

nj=0

1

nj!

(

xRi
− xri√
2h2

)nj

(−1)njhni+nj

(

xQi
− xRi√
2h2

)(

xqi
− xQi√
2h2

)ni

vp(xqi
, xri

, xQi
, xRi

) =

p−1
∑

ni=0

(−1)ni

ni!

∞
∑

nj=p

1

nj !

(

xRi
− xri√
2h2

)nj

(−1)njhni+nj

(

xQi
− xRi√
2h2

)(

xqi
− xQi√
2h2

)ni

wp(xqi
, xri

, xQi
, xRi

) =
∞
∑

ni=p

(−1)ni

ni!

∞
∑

nj=0

1

nj !

(

xRi
− xri√
2h2

)nj

(−1)njhni+nj

(

xQi
− xRi√
2h2

)(

xqi
− xQi√
2h2

)ni

Note that e
−||xq−xr ||

2

2h2 =
D
∏

i=1

(up(xqi
, xri

, xQi
, xRi

) + vp(xqi
, xri

, xQi
, xRi

) + wp(xqi
, xri

, xQi
, xRi

)) for

1 ≤ i ≤ D.

Using the bound for Hermite functions and the property of geometric series, we obtain the

following upper bounds

up(xqi
, xri

, xQi
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1
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∣

∣

∣

xRi
− xri√
2h2

∣

∣

∣

∣

nj
∣

∣

∣

∣

hni+nj

(

xQi
− xRi√
2h2

)∣

∣

∣

∣

∣

∣

∣

∣

xqi
− xQi√
2h2

∣

∣

∣

∣

ni

≤
p−1
∑

ni=0

p−1
∑

nj=0

(ni + nj)!

ni!nj!

∣

∣

∣

∣

xRi
− xri√
2h2

∣

∣

∣

∣

nj 1

(ni + nj)!

∣

∣

∣

∣

hni+nj

(

xQi
− xRi√
2h2

)∣

∣

∣

∣

∣

∣

∣

∣

xqi
− xQi√
2h2

∣

∣

∣

∣
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∑
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∑
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(
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2
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√
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(
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∞
∑

nj=p

(2r)ni(2r)nj =
1√
p!

(

1 − (2r)p

1 − 2r
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Therefore,
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∣

∣

∣

∣

e
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2
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D

k
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(

((2r)p)(2 − (2r)p)√
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∣

∣

∣

∣

∣

NR
∑

r=1

e
−||xq−xr||

2

2h2 −
∑

β<p

Cβ

(

xq − xQ√
2h2

)β
∣

∣

∣

∣

∣

≤ NR

(1 − 2r)2D

D−1
∑

k=0

(

D

k

)

((1 − (2r)p)2)k

(

((2r)p)(2 − (2r)p)√
p!

)D−k

We note that these error bounds place limits on the size of the query node and the reference

node. This is unfortunately due to the fast growth of Hermite functions (formed from taking partial

derivatives of the Gaussian kernel along some coordinate directions). The error bounds are derived

by expanding the multivariate Gaussian kernel as a product of one-dimensional Gaussians, and

requires the tails of infinite geometric sums to converge.

1.5.4 implies that evaluating a truncated multipole expansion for a single query point requires

each reference point that was used to form the expansion to be within h away from the representative

point XR. Similarly, 1.5.5 implies that evaluting a truncated Taylor expansion for a single query

point requires each query point to be within h away from the representative point XR.

1.5.6 has the strictest requirement of all, requiring the maximum side length of the query node

and the reference node to be less than h. This is exactly why [12] proposed using a grid structure.

It is highly likely that the error bounds derived here are quite loose, but this is the best we can do

without breaking any laws of mathematics.

1.5.2.5 Another Derivation of Error Bound on Translation Operators

[24] had an interesting idea of using Stirling’s formula to lift the node size constraint by truncating

the multipole/Taylor series after taking enough terms. Recall that Stirling’s formula implies for

any non-negative integer n:

(

n+ 1

e

)n

≤ n! (1.33)

This might be of a potential help to develop a full-fledged tree-based fast Gauss transform

method. Unfortunately, the error bounds developed in [24] were also wrong. I will provide the

necessary corrections for using three translation operators based on the techniques introduced in

[4].
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Lemma 1.5.7. Error Bound for Truncating a Hermite (Multipole) Expansion: Suppose we are

given a multipole expansion of a reference node about its centroid xR.

G(xq) =
∑

α≥0

Aαhα

(

xq − xR√
2h2

)

where Aα =
NR
∑

r=1

1
α!

(

xr−xR√
2h2

)α

.

For a fixed query point xq, the error due to truncating the series after the first pD term is

|εM(p)| ≤ NR

D−1
∑

k=0

(

D

k

)(

1 − rr
p

1 − rr

)k (
rrr

p

1 − rrr

)D−k

where each reference data point xr in the reference node satisfies ||xr − xR||∞ ≤ rrh and rrr =
rr

√
e√

p+1
< 1 for sufficiently high p.

Proof. We use the same notation as in 1.5.4.

up(xqi
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≤
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√

(

ni+1
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Then,
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(
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)
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p

1 − rr

)k (
rrr

p

1 − rrr

)D−k
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Lemma 1.5.8. Error Bound for Truncating a Taylor Expansion Converted from a Hermite Expan-

sion of Infinite Order: Suppose we are given the following Taylor expansion about the centroid xQ

of a query node

G(xq) =
∑

β≥0

Bβ

(

xq − xQ√
2h2

)β

where Bβ = (−1)|β|

β!

∑

α≥0

Aαhα+β

(

xQ−xR√
2h2

)

and Aα’s are the coefficients of the Hermite expansion

centered at the reference node centroid xR.

Truncating the series after pD terms satisfies the error bound

|εL(p)| ≤ NR

D−1
∑

k=0

(

D

k

)(

1 − rq
p

1 − rq

)k (
rqq

p

1 − rqq

)D−k

where ||xq − xQ||∞ ≤ rqh and rqq = rq
√

e√
p+1

< 1 for sufficiently high p.

Proof. If we use the same notations defined in 1.5.5 and the techniques in 1.5.7, we get

up(xqi
, xri

, xQi
) ≤

p−1
∑

ni=0

rq
ni ≤ 1 − rq

p

1 − rq

vp(xqi
, xri

, xQi
) ≤

∞
∑

ni=p

rq
ni

√

(

ni+1
e

)ni

≤ rqq
p

1 − rqq

The derivation of the error bounds follows as a result.

Lemma 1.5.9. Error Bound for Truncating a Taylor Expansion Converted from an Already Trun-

cated Hermite Expansion: A truncated Hermite expansion centered about the centroid xR of a

reference node

G(xq) =
∑

α<p

Aαhα

(

xq − xR√
2h2

)

has the following Taylor expansion about the centroid xQ of a query node:

G(xq) =
∑

β≥0

Cβ

(

xq − xQ√
2h2

)β
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where the coefficients Cβ are given by

Cβ =
(−1)|β|

β!

∑

α<p

Aαhα+β

(

xQ − xR√
2h2

)

Truncating the series after pD terms satisfies the error bound

|εL(p)| ≤ NR
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∑
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D
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)((
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+
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p
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))D−k

for a query node XQ for which ∀xq ∈ XQ, ||xq −xQ||∞ ≤ rqh, and a reference node XR for which

∀xr ∈ XR, ||xr − xR||∞ ≤ rrh, and rqq = 2rq
√

e√
p+1

< 1, rrr = 2rr
√

e√
p+1

< 1 for sufficiently high p.

Proof. We use the same notations used in 1.5.6.
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Therefore,
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1.5.2.6 The Original Fast Gauss Transform Algorithm

Finally, we present the description of the original algorithm using the mechanisms developed so far

[12] in a slightly different way. Note that the algorithm developed in [12] and described here does

not use all three of the translation operators I derived. In addition, we do not assume that all the

points are pre-scaled to fit in the unit hypercube [0, 1]D. We also note that it is not necessary for the

grid data structure to be discretized into hyper-cubes. Hyper-rectangles with bounded maximum

side length less than the bandwidth h would suffice here.
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Figure 1.16: Here, the grid box containing some reference points is marked black, and its 2-ring
neighboring grid boxes are included in its interaction list, for a total of 25 boxes.

The algorithm processes each “query” box XQ in the interaction list of a given “reference” box

XR. The number of boxes in the interaction list is constant dependent only on the precision ε. The

idea is that the far-away boxes can be eliminated from the interaction list as the Gaussian kernel

decays rapidly. Details are available in [12]. Thus, we only consider n-nearest ring neighbors of

each query box for a total of at most (2n+ 1)D boxes in the interaction list.

In the end, we want to compute the contributions of all reference points in XR to each of the

query points in XQ. There are four possible ways in which XR can influence XQ.

1. O(DNRNQ) algorithm: Run a naive quadratic algorithm on all pairs of query/reference

points.

2. O(pDNR) algorithm: Accumulate each xr ∈ XR as the Taylor series about the center xQ of

XQ using Equation 1.28.

3. O(pDNQ) algorithm: Evaluate each xq at the Hermite series centered about xR of XR using

Equation 1.26.

4. O(DpD+1) algorithm: Convert the Hermite series centered about xR of XR to the Taylor

series centered about xQ of XQ using 1.31.

Choosing an optimal strategy for a given pair of a query/reference box is determined by choosing

cutoff parameters NF = O(pD−1) and ML = O(pD−1). Intuitively, the Fast Gauss transform chooses
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the least amount of work to do at a given moment of time by analyzing the costs of each operation

in advance. We will show how we can use this idea in a tree-based algorithm.

There are four different cases and outcomes listed above depending on the number of reference

points NR and the number of query points NQ.

1. NR ≤ NF , NQ ≤ ML: Run the first algorithm.

2. NR ≤ NF , NQ > ML: Run the second algorithm.

3. NR > NF , NQ ≤ML: Run the third algorithm.

4. NR > NF , NQ > ML: Run the fourth algorithm.

The algorithm is divided into three clear steps as shown in Figures 1.18, 1.19, 1.20.

1.5.2.7 Free Parameters

• τ : The maximum deviation of the density estimate of each query point from the true esti-

mate computed by the naive algorithm. Note that τ 6= ε, which is the maximum percentage

deviation.

1.5.2.8 Runtime Cost

Time complexity is dominated by evaluating Taylor and multipole expansions and applying the

translation operators for switching between two representations, all of which are around O(pD).

The authors of [12, 13] consider all of these costs as a big constant in front of the number of query

points and the reference points, hence claiming the linear complexity. Theoretically, the algorithm

should perform poorly on uniformly distributed dataset (e.g. every reference point and query point

fall on a different grid box) and may degrade to quadratic running time.

1.5.2.9 Space Cost

Space complexity is dominated by the space needed for storing multipole and Taylor coefficients,

and the grid data structure for reference points and query points. Storing multipole and Taylor

coefficients of order p for a given box is of order O(pD). However, maintaining the grid structure

for highly structured/clustered dataset results in many empty grid boxes. The effects of curse of

dimensionality dominate here.
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Figure 1.17: The original fast Gauss transform chooses some cutoff parameters NF and ML depend-
ing on the costs of creating multipole and Taylor expansions of order p. The algorithm efficiently
chooses which of the four evaluation methods to use depending on the number of query points and
the number of reference points. In the top left box, the naive algorithm is used. In the top right box,
the Hermite expansion of the reference points is formed then evaluated at each query point. In the
lower left box, each reference point is directly accumulated as the Taylor series about the center XQ

in the query node and evaluated at each query point. In the lower right box, the Hermite expansion
of reference points is converted to the Taylor expansion in the query node, which is evaluated at
each query point.
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FGTPreprocess(XQ, XR)
vec mincoord = (∞, · · · ∞)
vec maxcoord = (−∞, · · · −∞)

for each point xq ∈ XQ

p̂(xq) = 0

for each point x ∈ XQ ∪ XR

for d = 0 to D − 1 step 1
if mincoord[d] > x[d]

mincoord[d] = x[d]

if maxcoord[d] < x[d]

maxcoord[d] = x[d]

Create a grid G with mincoord and maxcoord as the corner points.

Discretize G into boxes whose maximum side length is h.
Initialize storage for a Taylor series with pD terms with zeros.

Assign each point x ∈ XQ ∪ XR into boxes in G.
end

Figure 1.18: Each reference point and query point is assigned to a grid.
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FGTMidStep(NF , NL)
for each box B in G
NR = number of reference points in B
Form the interaction list BI of (2n + 1)D query boxes C within range of B.
if NR ≤ NF

for each box C in BI

NQ = number of query points in C
if NQ ≤ ML

for each xq ∈ C // Naive algorithm

for each xr ∈ B
p̂(xq) + = Kh(xq, xr)

else

Convert each xr ∈ B into a Taylor series about the center xQ of C and

add to Taylor series for C.
else

Form Hermite expansion about center of xR of B using xr ∈ B.
for each box C in BI

NQ = number of query points in C
if NQ ≤ ML

for each xq ∈ C // Evaluate Hermite expansion

p̂(xq) + = Hermite expansion of B evaluated at xq

else

Convert Hermite expansion into a Taylor series about the center xQ of C and add

to Taylor series for C.
end

Figure 1.19: The interaction list of each nonempty box is processed in a pair-wise manner by using
one of the four approximation methods
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FGTPostProcess(NF , NL)
for each box B in G
NQ = number of query point in B
if NQ > ML

for each point xq ∈ XQ

p̂(xq) + = Taylor expansion of B evaluated at xq

for each xq ∈ xQ

p̂(xq) / = (N · VDH)
end

Figure 1.20: For each box containing query points, the Taylor expansion is evaluated at each query
point and normalization factor is applied.

1.5.2.10 Error Control

[4] came up with corrections to the incorrect error bound derivations mentioned in [12, 13]. It relies

on the improved bound for Hermite functions [26], but I could not obtain the original literature

to verify its correctness. Nevertheless, the error bounds derived in [4] offers only an indirect error

control for our purpose.

1.5.3 Summary

In this section, we have discussed fast multipole methods and their potentials in tackling the N -

body problems in low dimensional settings. In particular, I have analyzed the original fast multipole

method using the Gaussian kernel [12, 13] in details. Due to the nature of the kernel function,

this algorithm has been limited to using a simple grid scheme. In addition to having to maintain

the number of Taylor and multipole constants of order O(pD), each grid box has to maintain an

exponentially large number of boxes in its interaction list.

So how do we overcome the curse of dimensionality in fast Gauss transform? Our idea here is

to advocate the usage of trees whenever possible. I have provided the necessary additional tools for

moving the original grid-based algorithm to a full-fledged tree-based one. In the next section, we

will take all of these tools and develop the first tree-based fast Gauss transform. We will see how

trees can be useful in developing fast N -body algorithms when combined with powerful analytical

tools provided by fast multipole methods.
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Figure 1.21: Recall that this is the canonical situation in which the query/reference node is consid-
ered.

1.6 Fast Gauss Transform using Dualtree Recursion

We are now ready to combine the techniques developed in Sections 1.5.2 and 1.4. Again, our goal

is to achieve fast speed and full error control on the density estimates, by combining the best of two

worlds: computational geometry (dual-tree) and approximation theory (fast multipole methods).

The development in this section will be relatively shorter than the previous ones, as we already

have the tools to construct our new method.

1.6.1 Data Structure

Hierarchial subdivions of the reference dataset and the query dataset are constructed using [18].

1.6.2 Algorithm

1.6.2.1 Data-adaptive Accuracy Control [11]

We can improve the accuracy of density estimates by replacing the finite-difference approximation

with multipole approximation. However, one important issue must be addressed before applying

the methodology of fast multipole methods in a tree-setting.

One drawback of fast-multipole methods (including fast Gauss transform) is that the algorithm

overestimates the work needed to achieve the user-specified precision by fixing p (the truncation

order of the multipole/Taylor expansions) in advance.

Here, we present how to choose p adaptively at each node-to-node comparison performed during

dual-tree recursion. Of course, doing this eliminates the need of one of the operators we developed

in the previous section (namely, the multipole-to-multipole operator) because multipole and Taylor

coefficients on a given pair of query/reference nodes are computed on the fly. Nevertheless, two

other operators are still useful in development of our algorithm.
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1.6.2.2 Cached Sufficient Statistics

Our approach here is to store the coefficients of different orders of p (for both multipole and Taylor

coefficients). For example, consider the node (which serves as both a query node and a reference

node) with the following sets of multipole coefficients mcoeffs and Taylor coefficients lcoeffs (in

the C array notation form) for a two-dimensional dataset:

pD = 0 mcoeffs[0] = NULL lcoeffs[0] = NULL

pD = 1 mcoeffs[1] = {4} lcoeffs[1] = {3}
pD = 4 mcoeffs[2] = {4, 3,−5, 6} lcoeffs[2] = NULL

pD = 9 mcoeffs[3] = NULL lcoeffs[3] =

{1,−0.03,−0.1552, 0,−0.0005,

−0.1, 2,−0.5,−0.00333}
pD = 16 mcoeffs[4] = {4, 3, 2, 3,−5, 6, · · · } lcoeffs[4] = NULL

Here we used 1 − indexed arrays to store the coefficients. Therefore, the multipole coefficients

and Taylor coefficients of order 0 are not defined. The arrays of multipole coefficients basically

represent different truncation orders of the multipole expansion using Equation 1.25 formed from

the reference points residing in the node. Notice that the mutipole coefficients of lower order plower

appear as a subset of the ones of higher order phigher because these multipole coefficients represent

the same information but with different accuracy.

The Taylor (local) coefficients of order p are formed from two ways: either by translating from

a multipole expansion of order p from another node, or by directly accumulating as a Taylor series.

In contrast with the multipole coefficients stored on this node, these Taylor coefficients of different

orders represent distinct information; each of them could account for contributions of different

reference nodes. Hence, their information should be combined later. On the final post-processing

staffs, all of the coefficients of different orders of p will be propagated downward to its children using

local-to-local translation operator. Once it reaches a leaf node, each query point will be evaluated

at all of the different orders of series that have accumulated above.

Most importantly, these coefficients serves as a form of cached sufficient statistics. For example,

suppose our cost-model determines that the cheapest operation for the given query/reference node

is translating the multipole coefficients of order p on the reference node to the Taylor coefficients

of order p on the query node. Our algorithm will appropriately check whether the slot for the

multipole coefficients of order p has been filled out already (by checking against NULL pointer). If
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no multipole coefficients of order p have been formed on the reference node, they will be computed

and stored, possibly serving as a “lookup-cache” for another query node and translated into Taylor

coefficients. If the multipole coefficients have already been computed, there is no problem. Of

course, whether we need to compute multipole coefficients or not is appropriately handled in the

cost model we develop in the next part.

In practice, we place a bound on the order of the coefficients plimit we store in each node so that

there is a bound on the space complexity. We used plimit = 8, above which we believe there is no

improvement for D ≥ 2.

1.6.2.3 Cost Model

Recall that node-to-node comparison in dualtree KDE is analogous to box-to-box comparison in

fast Gauss transform. Recall also that the original fast Gauss transform uses one of the four

evaluation strategies. We can develop the “cost-model” that simulates this on a tree-setting in a

straightforward way with combined lower/upper density estimate given by the original dual-tree

KDE.

Suppose that we are given a pair of a query node and a reference node. Recall that the error of

the approximation using NRK̄h with respect to any query point xq ∈ XQ:

eQR =
NR(Kh(δ

min
QR ) −Kh(δ

max
QR ))

2
(1.34)

Hence, we got the following local pruning criterion which ensures the global error tolerance ε:

|Kh(δ
min
QR ) −Kh(δ

max
QR )| ≤ 2ε

NR
φmin

Q (1.35)

If we want to replace the estimate NRK̄h with the multipole/Taylor approximation, the situation

changes slightly. Namely, the total error of the approximation using the new approximation strategy

is doubled.

eQR = NR(Kh(δ
min
QR ) −Kh(δ

max
QR )) (1.36)
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Then, we get the following local pruning criterion which ensures the global error tolerance ε for

multipole/Taylor approximations:

|Kh(δ
min
QR ) −Kh(δ

max
QR )| ≤ ε

NR
φmin

Q

NR|Kh(δ
min
QR ) −Kh(δ

max
QR )| ≤ εφmin

Q

(1.37)

In order to use the multipole/Taylor approximations, we simply choose enough p terms so that

it is less than left side of the second inequality in Equation 1.37. We could use any of the error

bounds developed in Section 1.5.2.4 or Section 1.5.2.5. Let us work with the ones in Section

1.5.2.4 for example, which places the size restriction on the query node and the reference node in

consideration. Here is a simple method to determine the number of terms needed for performing

a direct Hermite evaluation over all query points, doing a direct Taylor coefficient accumulation of

all reference points, or invoking the multipole-to-local translation operator.

1. Computing the number of terms pDM needed to perform a direct evaluation of Hermite series

for each query point (the third algorithm in Section 1.5.2.6):

• If the maximum side length of the reference node is at least 2h, return MAXINT (no

pruning possible)

• Otherwise, choose the smallest pDM ≥ 1 such that:

NR

(1−r)D

D−1
∑

k=0

(

D
k

)

(1 − rpDM )k
(

rpDM√
pDM !

)D−k

< NR|Kh(δ
min
QR ) −Kh(δ

max
QR )|

2. Computing the number of terms pDL needed to accumulate each reference point as Taylor

coefficients in the query node (the second algorithm in 1.5.2.6):

• If the maximum side length of the query node is at least 2h, return MAXINT (no pruning

possible)

• Otherwise, choose the smallest pDL ≥ 1 such that:

NR

(1−r)D

D−1
∑

k=0

(

D
k

)

(1 − rpDL)k
(

rpDL√
pDL!

)D−k

< NR|Kh(δ
min
QR ) −Kh(δ

max
QR )|

3. Computing the number of terms pM2L needed to translate from a multipole expansion to a

local expansion (the fourth algorithm in 1.5.2.6):

• If the maximum side length of the query node or the reference node is at least 2h, return

MAXINT (no pruning possible)
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• Otherwise, choose the smallest pM2L ≥ 1 such that:

NR

(1−2r)2D

D−1
∑

k=0

(

D
k

)

((1 − (2r)pM2L)2)k
(

((2r)pM2L )(2−(2r)pM2L )√
pM2L!

)D−k

< NR|Kh(δ
min
QR ) −Kh(δ

max
QR )|

We are now ready to describe our cost model for choosing the “best” evaluation method. A

high-level pseudocode is given in Figure 1.6.2.3. Basically, we compute the estimate cost for each

of the four evaluation methods using its asymptotic complexity (ignoring the constant in front).

Note that the multipole coefficient arrays on the reference node serve as a cache-lookup, and the

costs of performing certain operations are appropriately adjusted if these need to be computed on

the fly.

It is then straightforward to plug in this decision procedure into the original dual-tree KDE and

develop our new method:

1.6.2.4 Summary

In this section, we have developed the first algorithm using multipole/Taylor approximations using

dual-tree recursion. In the next chapter, we shall see how all of the methods we have discussed

compare in practice.
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procedure chooseEvaluationMethod(XQ , XR)

D := dimensionality of points

pDM := minimum number of terms needed for direct Hermite evaluation.

pDL := minimum number of terms needed for direct Taylor coefficient accumulation.

pM2L := minimum number of terms needed for multipole-to-local translation operator.

// The following four costs are minimum costs for performing

// Hermite evaluation, direct Taylor accumulation, M2L translation,

// and bruteforce evaluation.

costDM := pD
DM · NQ

costDL := pD
DL · NR

costM2L := D · pD + 1
M2L

costDirect := D · NQ · NR

If no multipole coefficient of order pDM has been formed on XR,

costDM := costDM + pD
DM · NR

If no multipole coefficient of order pM2L has been formed on XR,

costM2L := costM2L + pD
M2L · NR

If costDM is the minimum of all four,

report HermiteEvaluation

If costDL is the minimum of all four,

report DirectTaylorAccumulation

If costM2L is the minimum of all four,

report M2LTranslation

Otherwise,

report NaiveMethod

end procedure

Figure 1.22: Here is a simple cost model for determining which three of the four evaluation methods
to use for a given query node and a reference node.
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KDE(Q, R)
Do up/down mass propagation.

method := chooseEvaluationMethod(Q, R)

if method == HermiteEvaluation

Evaluate the Hermite expansion of order pDM

formed on R at each query point in Q.
return

else if method == DirectTaylorAccumulation

Accumulate each reference point in R as the Taylor

coefficient of order pDL on Q.
return

else if method == M2LTranslation

Translate the multipole expansion of order pM2L

on R to the Taylor expansion of the same order on Q.
return

if leaf(Q) and leaf(R)

Run a naive quadratic algorithm on every pair of points

in Q and R

else

KDE(Q.left, R.left)

KDE(Q.left, R.right)

KDE(Q.right, R.left)

KDE(Q.right, R.right)

Figure 1.23: Straightforward way of using the decision procedure chooseEvaluationMethod as a
subroutine in the original dual-tree pseudocode
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Chapter 2

Experimental Results for KDE Algorithms

In this section, we finally get to compare the KDE algorithms discussed so far in practical settings.

Recall that the density estimate error ε for a query point xq as the percentage deviation from

the density estimate computed by the trivial naive algorithm. That is,

err =
|p̂alg(xq) − p̂naive(xq)|

p̂naive(xq)
(2.1)

No matter how beautiful the theoretical derivation of an algorithm is, it is considered useless

if it offers no error control and performs poorly in practice. Our goal is to achieve fast speed and

improved accuracy.

2.1 Implementation Languages and Machines

All the codes that we have written and obtained are written in C and C++, and was compiled

under −O6 − funroll − loops flags on Linux kernel 2.4.26. The experiments were run on a dual-

processor AMD Opteron 242 machine with 1MB cache/CPU with 8GB of main memory. All of

the experiments were memory-based with no disk-access.

2.2 Datasets used

In our experiments, we have used real-world datasets ranging from astronomy and biology.

textbfDescriptions

1. bio5 : biology; measurements from high-throughput screening experiments.
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2. colors50k : astronomy; colors (differences of magnitudes in different bandwidths).

3. corel : images; the features are the outputs of texture filters.

4. covtype38d : remote sensing, forest cover type data.

5. edsgc-radec: astronomy, RA and DEC positions of galaxies from the EDGSC survey.

6. mockgalaxy 1M : cosmological simulation, positions of galaxies from simulated data.

7. sj2-50000-2 : astronomy, x and y positions of galaxies from the SDSS survey.

2.2.1 Statistics

The following table summarizes the statistics about the datasets we used. For kernel density

estimation algorithms, the optimal bandwidth h∗ for each dataset has been found for the Gaussian

kernel function by likelihood crossvalidation.
Dataset Number of data

points

Dimensionality h∗ Gaussian

bio5 103010 5 0.079055

colors50k 50000 2 0.164755

corel 37749 32 0.219494

covtype38d 150000 38 0.0432638

edsgc-radec 1495877 2 0.00193855

mockgalaxy D 1M 1000000 3 0.0038025

sj2-50000-2 50000 2 0.00317556

2.3 Implementation Details of Surveyed Algorithms

In summary, we have discussed the following algorithms for computing the kernel density estimate using the Gaussian

kernel.

2.3.1 Multidimensional Fast Fourier Transform

I have consulted [22, 23, 27] for using fast Fourier transform in a kernel density estimation setting. The multidi-

mensional fast Fourier transform and its inverse operation was adapted from [20, 10].

2.3.2 Dual-tree KDE

My thesis advisors have provided the code.
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2.3.3 Improved Fast Gauss Transform

The authors of [29] have provided their C++ implementations of their new algorithm.

2.3.4 Fast Gauss Transform

The author made his Fortran code available online at [25], which is hard-coded for two-dimensional datasets whose

points lie in the unit hypercube [0, 1]D. I have written my own efficient implementation with extension to higher

dimensions in C and made corrections to the error bound in the author’s original code.

2.3.5 Tree-based Fast Gauss Transform using Dual-tree Recursion

This is the algorithm I have developed for this thesis. I have developed several versions with weak error control and

full error control. This section contains the measurements for two of the implementations with full error control.

2.4 Abbreviations for Algorithms

The following abbreviations are defined for the following 7 algorithms surveyed in this chapter.

1. MFFT : KDE using multidimensional fast Fourier transform

2. IFGT : The improved fast Gauss transform developed in [29]

3. DTREE: The dualtree KDE algorithm developed in [11].

4. DFGT AP : tree-based fast Gauss transform algorithm using dual-recursion with auto-pruning capability.

The error bound used here is derived in 1.5.2.4

5. DFGT AP2: tree-based fast Gauss transform algorithm using dual-recursion with auto-pruning capability.

By using another of Strain’s idea in the error bound derivation 1.5.2.5, the node side constraint is lifted in

this algorithm by using enough terms.

6. FGT : My own implementation of Greengard and Strain’s original fast Gauss transform extended to handle

higher dimensions. Note that the error bound used in the original implementation was wrong and was replaced

with the correct derivation I have derived in 1.5.2.4.

7. NAIV E: A naive O(N2) algorithm. Note that the density estimates computed by this method has 0%

deviation.

2.5 Kernel Density Estimation on Optimal Bandwidth

In this section, we empircally evaluate all of the algorithms when computing KDE on the optimal bandwidth.

We have bound the maximum error at three different levels: ε = 50%, ε = 10%, and ε = 1%, and required at

least 95% of the data points to be within a given error level since the algorithms with weak or no error control had

hard time satisfying the maximum percentage deviation ε for all of the query points.
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2.5.1 Tweaking the Parameters

Ideally, any algorithms should be “intelligent” enough to choose the optimal bandwidths to do the required amount

of work in the least amount of time possible. Unfortunately, some of the algorithms that we surveyed were overridden

with “tweak parameters” that make this task impossible. This sections describes how I have devised the automated

procedure of finding the optimal parameters for each dataset. Of course, finding the optimal parameters involves

computing the true density estimates using the naive method and obtaining the maximum percentage deviation, but

this cost is not included.

2.5.1.1 Multidimensional Fast Fourier Transform

This algorithm has put in a “tuning-mode,” in which it runs until the desired precision is obtained. Both the search

time (the total running time) and the running time (the elapsed time for the final run) are recorded.

The number of grid points starts at 16 (which is between 10 and 25, two numbers used in [27] for experiments).

If 95% of the data points are within the desired ε, the algorithm terminates. Otherwise, it will double the number

of grid points and repeat; but I have limited the number of grid points to be less than 10,000, above which there is

no improvement in precision due to limited floating point precision.

The results on high dimension (dimension ≥ 5) are not available for IFGT and MultiFFT. There is an issue with

allocating a multidimensional array in C for MultiFFT that limits the number of grid points along each dimension.

2.5.1.2 Improved Fast Gauss Transform

It is much harder to control error on high dimensions for IFGT; the relevant paper states that the experiments have

been only done on uniformly distributed dataset.

The README file gives some hints to fixing the value of p, so I have used the following values of p for each

dataset

• sj2-50000-2: p = 8

• colors50k: p = 8

• bio5-nomissing: p = 5

• corel: p = 3

• covtype38d: p = 2

I have tried the following methods to put IFGT in the tuning mode:

• Cluster the data with K = 10
√

(n) clusters only once, which fixes ρx. Then, I started with ρy = 16 and keep

doubling until the first computation that met the error criterion, using the initial clusters.

• Cluster the data with K =
√

(n) clusters, and use ρx = ρy. If the error criterion is not met, double K and

re-cluster again until the error criteron is met.

Unfortunately, both of these did not work. The few of the results I have is produced by artifically high values of

K on sj2-50000-2 and colors50k. Therefore, the results listed below are just obtained by “trial-and-error” by human

inputs; the search time is not reported.
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2.5.1.3 Dual-tree KDE

These will run in two mode: “auto-mode” using τ = ε in which every data points will have error less than ε, and

“tuning-mode” in a slightly different way than one described above. Because the dual-tree algorithm guarantees max

error bound by using τ , this modification will try to come up with the maximum value of τ such that at least 95%

of the data points have error less than ε.

The algorithm will start with τ = ε and keep doubling τ while the error criterion is met. The search time is the

total elapsed time and the running time is the elapsed time for the last trial that satisfied the error criterion.

2.5.1.4 Fast Gauss Transform

Although this algorithm guarantees the absolute deviation of each density estimate (not percentage derivation) by

some upper bound τ (a tweak parameter), I have decided to use τ as an estimate of ε, hence used τ = ε.

2.5.2 Measurements

Each entry of the table has the total elapsed timing. For algorithms with weak or no error control, “searching times”

(enclosed in parentheses) and tweak parameters that worked for given epsilon are listed below the timings. For the

dual-tree tuning modes, some search times are reported in form of ≥’s because a possibly higher value of τ works for

the given error bound, but I had to terminate the experiments due to time constraints.
sj2 − 50000 − 2, D = 2, N = 50000, h∗ = 0.00317556

Algorithm ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01 ε = 0

(95%) (100%) (95%) (100%) (95%) (100%)

MF F T 3.054508 – – – – – –

(3.877533)

M = 512

IF GT 31.8816 – – – –

(70.061)

K = 14272

ρy = 2.5

DTREE 3.4396 3.4396 3.7191 3.7191 4.0817 4.0817 –

DTREE ≤ 2.9559 ≤ 2.9559 ≤ 3.2516 ≤ 3.2516 ≤ 3.6351 ≤ 3.6351 –

Tuning (≥ 14.606644) (≥ 14.606644) (≥ 15.965513) (≥ 15.965513) (≥ 17.844) (≥ 17.844)

τ ≥ 8 τ ≥ 8 τ ≥ 1.6 τ ≥ 1.6 τ ≥ 0.16 τ ≥ 0.16

NAIV E – – – – – – 301.696

colors50k, D = 2, N = 50000, h∗ = 0.164755

Algorithm ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01 ε = 0

(95%) (100%) (95%) (100%) (95%) (100%)

MF F T 0.091313 – 2.988081 – 65.6791 – –

(0.183268) (3.808575) (83.145188)

M = 128 M = 512 M = 2048

IF GT 4.502 – – – – – –

(8.156)

K = 3568

ρy = 2.5

DTREE 65.5077 65.5077 90.2097 90.2097 117.6247 117.6247 –

DTREE ≤ 12.5769 52.5751 ≤ 42.6866 90.2097 ≤ 83.6847 117.6247

Tuning (≥ 188.988619) (117.238195) (≥ 337.861552) τ = 0.1 (≥ 505.95) τ = 0.01

τ ≥ 8 τ = 1 τ ≥ 1.6 τ ≥ 0.16

NAIV E – – – – – – 329.72493
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bio5, D = 5, N = 150000, h∗ = 0.079055

Algorithm ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01 ε = 0

(95%) (100%) (95%) (100%) (95%) (100%)

MF F T – – – – – – –

IF GT – – – – – – –

DTREE 100.117 100.117 113.15 113.15 130.062 130.062 –

DTREE ≤ 73.588 87.3244 ≤ 89.1612 113.15 ≤ 109.066 130.066

Tuning (≥ 427.624991) (276.332975) (≥ 499.9740) τ = 0.1 (≥ 591.76) τ = 0.01

τ ≥ 8 τ = 2 τ ≥ 1.6 τ ≥ 0.16

NAIV E – – – – – – 1966.304

corel, D = 32, N = 37749, h∗ = 0.219494

Algorithm ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01 ε = 0

(95%) (100%) (95%) (100%) (95%) (100%)

MF F T – – – – – – –

IF GT – – – – – – –

DTREE 161.302 161.302 164.942 164.942 169.167 169.167 –

DTREE ≤ 157.526 ≤ 157.526 ≤ 160.335 164.943 169.165 ≤ 163.038 –

Tuning (≥ 634.011928) (≥ 634.011928) (≥ 801.193) τ = 0.1 τ = 0.01 (≥ 819.50)

τ ≥ 8 τ ≥ 8 τ ≥ 1.6 τ ≥ 0.16

NAIV E – – – – – – 710.224950

covtype38d, D = 38, N = 150000, h∗ = 0.0432638

Algorithm ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01 ε = 0

(95%) (100%) (95%) (100%) (95%) (100%)

MF F T – – – – – –

IF GT – – – – – –

DTREE 156.737 156.737 158.903 158.903 161.745 161.745 –

DTREE ≤ 153.149 ≤ 153.149 158.903 158.903 ≤ 157.597 161.741 –

Tuning (≥ 565.897478) (≥ 565.897478) τ = 0.1 τ = 0.1 (≥ 732.66) τ = 0.001

τ ≥ 8 τ ≥ 8 τ ≥ 0.16

NAIV E – – – – – – 13157.1

2.6 Effect of Bandwidths on Timings

I have experimented on how varying multiples of optimal bandwidth affect the time required for kernel density

estimation on low-dimensional dataset (D ≤ 3).

The following four methods have been tested for comparison in this section. Three of these methods guarantee

bounding the maximum percentage deviation by the user specified ε.

Each entry has four numbers associated in the following order: preprocessing time (s), total elapsed time (s),

true maximum per-datum error, true average per-datum error for ε = 0.01.

For fast Gauss transform, I used τ = 0.01, and recorded how many of the density estimates exceeded the user-

specified ε = 0.01 as one additional number; 0 means every query density estimate were at most 1% away from its

true density estimate. Note that some of the timing measurements for fast Gauss transform are missing since the

code crashed due to the explosive numbers of boxes in the grid and the interaction list for a small bandwidth h.

Readers should also note that the true maximum per-datum error and true avarage per-datum error for larger

datasets have not been computed, since the density estimates computed by the naive method could not been obtained

in time. Dual-tree derivative methods (DTREE, DFGT AP1, DFGT AP2) should satisfy these requirements for

a given user ε, but more verification of the density estimates computed by fast Gauss transform is needed at this

moment. On a minor note, I should measure the preprocessing time for fast Gauss transform in the near future.
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sj2 − 50000 − 2, D = 2, N = 50000, h∗ = 0.00317556

Algorithm\h∗ 0.001 0.01 0.1 1 10 100 1000

DTREE 0.575318 0.592949 0.291020 0.287356 0.293285 0.288630 0.290581

1.674842 2.088624 1.563841 4.094356 44.439172 133.956959 15.547222

0 0 0.488988 0.000108633 0.000573328 0.00134004 0.00237811

0 0 0.000780278 1.39063e-05 0.00018876 0.000454112 0.000527571

DF GT AP 0.306066 0.300515 0.299120 0.299436 0.296600 0.298661 0.307647

0.866876 1.049845 2.940228 48.459328 24.983645 3.553662 2.322058

0 2.37292e-16 4.67675e-16 7.16959e-15 3.07906e-06 8.93728e-05 0.000264482

0 4.74583e-21 2.39294e-17 7.12942e-16 7.78035e-08 5.99022e-06 4.91007e-05

DF GT AP2 0.308580 0.302881 0.305307 0.307005 0.298226 0.303194 0.301193

0.866867 1.066825 3.11714 51.247585 168.796198 3.597192 2.109576

0 2.37292e-16 4.67675e-16 7.16959e-15 1.12982e-05 0.000120159 0.000773699

0 4.74583e-21 2.39294e-17 7.12942e-16 1.70852e-07 8.18484e-06 0.000107175

F GT – – – – – – –

– – – 7.583130 5.825566 50.943135 164.021533

– – – 0.00048954 0.000137774 0.000179816 6.46716e-08

– – – 2.75839e-05 1.16575e-05 2.0979e-05 2.07801e-08

– – – 0 0 0 0

colors50k, D = 2, N = 50000, h∗ = 0.164755

Algorithm\h∗ 0.001 0.01 0.1 1 10 100 1000

DTREE 0.399409 0.394542 0.391424 0.388719 0.387904 0.399782 0.395366

1.255746 1.829179 6.551644 117.764408 363.783493 14.657439 0.618148

0 0 0.000132609 0.135383 0.00386445 0.00367039 0.0075942

0 0 8.60675e-05 0.000657529 2.62139e-05 0.00246688 0.00629269

DF GT AP 0.409544 0.412928 0.410145 0.411002 0.412522 0.407743 0.409358

1.282855 4.924589 143.136479 56.392096 8.180041 3.773496 3.234854

2.39652e-16 9.08779e-16 1.24088e-14 4.44545e-06 0.000134087 0.00196874 0.00780571

3.07215e-20 5.18636-e17 1.1124e-15 1.27604e-07 7.93838e-06 0.000132507 2.74952e-05

DF GT AP2 0.416339 0.413435 0.413226 0.416737 0.411788 0.422886 0.415152

1.321605 5.172735 152.775772 271.061628 20.973487 5.115325 3.290515

2.39652e-16 9.08779e-16 1.24088e-14 6.86244e-05 0.00573335 0.00594394 0.00780571

3.07215e-20 5.18636e-17 1.1124e-15 1.21315e-06 2.13845e-05 0.00016351 2.35232e-05

F GT – – – – – – –

– – – 10.761949 136.277286 293.987943 304.915158

– – – 1 0.459224 3.22875e-11 0

– – – 0.00140568 2.94442e-05 1.02516e-13 0

– – – 76 32 0 0

edsgc − radec, D = 2, N = 1495877, h∗ = 0.00193855

Algorithm\h∗ 0.001 0.01 0.1 1 10 100 1000

DTREE 9.561811 9.565492 9.658469 9.643481 9.682244 9.558405 9.651560

25.551161 31.566672 49.816636 173.392816 4163.09278 53467.267 31169.4011

– – – – – – –

– – – – – – –

DF GT AP 10.047415 9.998338 9.989018 9.996815 10.125650 10.040910 10.004285

26.11873 32.672224 108.212968 3669.8047 15725.1429 412.186907 132.204131

– – – – – – –

– – – – – – –

DF GT AP2 10.056729 10.101711 10.129689 10.082438 10.055522 10.161404 10.156005

26.187449 33.327844 113.654731 3904.6212 84913.20 1512.57751 108.309

– – – – – – –

– – – – – – –

F GT – – –

– – – 71.533981 304.865168 5506.949202 71095.405003

– – – – – – –

– – – – – – –

– – – – – – –
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mockgalaxy D 1M, D = 3, N = 1000000, h∗ = 0.0038025

Algorithm\h∗ 0.001 0.01 0.1 1 10 100 1000

DTREE 7.181983 7.191571 7.166260 7.163092 7.184758 7.209003 7.240229

29.363957 36.265959 77.572684 156.963 274.123 26303.422 39770.162

– – – – – – –

– – – – – – –

DF GT AP 7.545416 7.546534 7.553372 7.577777 7.550699 7.503927 7.338271

29.763887 37.176529 129.812306 255.702 44135.022 2433.41 206.793655

– – – – – – –

– – – – – – –

DF GT AP2 7.549349 7.607630 7.125942 7.221381 7.124708 7.297186 7.222901

29.994817 38.296554 138.694298 286.617567 42126.668949 2604.225 211.920986

– –

– –

F GT – – – – – – –

– – – – 213.776268 1336.137933 654.964563

– – – – – – –

– – – – – – –

– – – – – – –
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Chapter 3

Conclusion and Future Research Directions

In this thesis, we have developed new techniques to tackle two important N -body problems.

For kernel density estimation problem, we have successfully combined two powerful techniques from computational

geometry and approximation theory to achieve fast speed and direct error control.

3.1 Fast Gauss Transform Using Dual Recursion

3.1.1 Pruning Rule

Due to the nature of the Gaussian kernel, pruning of a query node and a reference node is possible only if the node(s)

in consideration meet certain size constraints or by using many terms of the series. We believe that by obtaining a

tighter upper bound on Hermite functions, we can formulate the pruning criterion using the well-separated-ness of

the query/reference node pair (as done with other kernel functions).

3.1.2 Handling Higher Dimensions

Although our new algorithms achieved success on low dimensions and a large number of data points, we have not had

a chance to improve our multipole-based tree algorithm on higher dimensions (D > 3). Our ultimate goal is to design

an algorithm that intelligently combines the multipole approximation with the simple finite-difference approach in

the original dual-tree KDE.

Advocating the O(Dp) expansion form developed in [29] might be the solution for overcoming the curse of

dimensionality and will be explored in details.

3.2 Extension to Other Kernel Functions

We believe it is very straightforward to extend the techniques developed in this thesis to other useful kernel functions.
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3.3 Kernel Independent Fast Multipole Methods

There are variants of fast multipole methods whose derivations do not depend on the kernel function. We hope to

investigate the usability of these algorithms by referring to relevant literature.

3.4 Potential Applications

Given enough time and collaboration from experts in relevant fields, we hope to investigate potentials of the newly

developed techniques in the following areas.

1. Computer graphics: photon mapping, surface reconstruction [8], radiosity [16]

2. Statistics: nonparametric density estimation.

3. Computer vision: mean-shift analysis.
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Appendix A

Pseudocodes for KDE Algorithms

A.1 KDE using Multidimensional Fast Fourier Transform

A.1.1 Multidimensional FFT Routines
define struct complex

double real

double imag

end define

// procedure for 1 dimensional fft on complex data

procedure fftc1 :=

input f // put the complex data to be transformed here. result is

// returned here.

input N // the number of points

input skip // each point is separated by ‘‘skip’’ in f.

input forward // 1 means forward fft, -1 means inverse fft.

pi2 := 4 * asin(1)

c := (complex *) f // cast f to a complex array.

for index1 := 1, index2 := 0; index1 < N, index1 := index1 + 1

for b := N / 2; index2 >= b; b := b / 2

index2 := index2 - b

index2 := index2 + b

if index2 > index1

temp1 := c[index2 * skip]

c[index2 * skip] := c[index1 * skip]

c[index1 * skip] := temp1

for trans_size := 2; trans_size <= N; trans_size := trans_size * 2

pi2n := forward * pi2 / trans_size

cospi2n := cos(pi2n)

sinpi2n := sin(pi2n)

wb.real := 1

wb.imag := 0

for b:= 0 to trans_size / 2 - 1

for trans := 0 to trans < N / trans_size - 1

index1 := (trans * trans_size + b) * skip

index2 := index1 + trans_size / 2 * skip

temp1 := c[index1]

temp2 := c[index2]

c[index1].real = temp1.real + wb.real * temp2.real -

wb.imag * temp2.imag

c[index1].imag = temp1.imag + wb.real * temp2.imag +

wb.imag * temp2.real
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c[index2].real = temp1.real - wb.real * temp2.real +

wb.imag * temp2.imag

c[index2].imag = temp1.imag - wb.real * temp2.imag -

wb.imag * temp2.real

temp1 := wb

wb.real := cospi2n * temp1.real - sinpi2n * temp1.imag

wb.imag := cospi2n * temp1.imag + sinpi2n * temp1.real

if forward < 0

for index1 := 0; index1 < skip * N; index1 := index1 + skip

c[index1].real := c[index1].real / N

c[index1].imag := c[index1].imag / N

end procedure

// procedure for multidimensional fft on complex data

procedure fftcn :=

input f // put the complex data in this array. result returned here.

input ndims // the dimensionality of the transform.

input size // size[i] tells the number of points in the i-th dimension

input forward // 1 means forward fft, -1 means inverse fft.

planesize := 1

skip := 1

totalsize := 1

for dim := 0 to ndims - 1

totalsize := totalsize * size[dim]

for dim := ndims - 1 to 0 step -1

planesize := planesize * size[dim]

for i := 0 to totalsize - 1 step planesize

for j := 0 to skip - 1

fftc1(f + 2 * (i + j), size[dim], skip, forward)

skip := skip * size[dim]

end procedure

procedure fftrn :=

input f // put the real data in this array

input fnyquist // nyquist frequencies are returned here.

input ndims // the dimensionality of the transform

input size // size[i] tells the number of points in the i-th dimension

input forward // 1 means forward fft, -1 means inverse fft.

indexneg := 0

N := size[ndims - 1]

pi2n := 4 * asin(1) / N

cospi2n := cos(pi2n)

sinpi2n := sin(pi2n)

// Cast f and fnyquist so that you can access those as arrays of complex

// numbers.

c := (struct complex *) f

cnyquist := (struct complex *) fnyquist

totalsize := 1

indices := MALLOC_ARRAY(ndims, int)

// Set the last dimension of the size in half because now we are using f as

// an array of complex numbers.

size[ndims - 1] := size[ndims - 1] / 2

for i := 0 to ndims - 1

totalsize := totalsize * size[i]

indices[i] := 0
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// If forward fft,

if forward == 1

fftcn(f, ndims, size, 1)

for i := 0 to (total_size / size[ndims - 1]) - 1

cnyquist[i] := c[i * size[ndims - 1]]

wb := undefined complex

for index := 0 to totalsize - 1 step size[ndims - 1]

wb.real := 1

wb.imag := 0

for b := 1 to N / 4 - 1

temp1 := wb

wb.real := cospi2n * temp1.real - sinpi2n * temp1.imag

wb.imag := cospi2n * temp1.imag + sinpi2n * temp1.real

temp1 := c[index + b]

temp2 := c[indexneg + N / 2 - b]

c[index+b].real = 0.5*(temp1.real + temp2.real +

forward * wb.real * (temp1.imag+temp2.imag) +

wb.imag * (temp1.real - temp2.real));

c[index+b].imag = 0.5*(temp1.imag - temp2.imag -

forward * wb.real * (temp1.real-temp2.real) +

wb.imag*(temp1.imag+temp2.imag));

c[indexneg+N/2-b].real = 0.5 * (temp1.real + temp2.real -

forward *wb.real *

(temp1.imag + temp2.imag) -

wb.imag * (temp1.real - temp2.real));

c[indexneg+N/2-b].imag = 0.5 * (-temp1.imag + temp2.imag -

forward * wb.real *

(temp1.real - temp2.real) +

wb.imag * (temp1.imag + temp2.imag));

temp1 := c[index]

temp2 := cnyquist[indexneg / size[ndims - 1]]

c[index].real = 0.5 * (temp1.real + temp2.real +

forward * (temp1.imag + temp2.imag))

c[index].imag = 0.5 * (temp1.imag - temp2.imag -

forward * (temp1.real - temp2.real))

cnyquist[indexneg / size[ndims-1]].real = 0.5 * (temp1.real + temp2.real -

forward * (temp1.imag + temp2.imag))

cnyquist[indexneg / size[ndims-1]].imag = 0.5 * (-temp1.imag + temp2.imag -

forward * (temp1.real - temp2.real))

stepsize=size[ndims-1]

for j := ndims - 2, while indices[j] == size[j] - 1 and j >= 0, step -1

indices[j] := 0

indexneg := indexneg - stepsize

stepsize := stepsize * size[j]

if(indices[j] == 0)

indexneg := indexneg + stepsize * (size[j] - 1)

else

indexneg := indexneg - stepsize

if(j >= 0)

indices[j] := indices[j] + 1

if forward == -1

fftcn(f, ndims, size, -1)

size[ndims - 1] := size[ndims -1] * 2

end procedure
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A.1.2 Multidimensional FFT KDE Subroutines
#define TAU 4.0 /* Wand (p435) */

int M; /* Wand (p441) */

#define PI 3.1415926535897932384626

procedure assignWeights :=

input datapt, gridsizes, mincoords, indices, enlarged_dims, discretized,

level, volume, pos skip

if(level == -1)

discretized[pos] := discretized[pos] + volume

else

/**

* Recurse in the right direction

*/

coord := datapt[level]

leftgridcoord := mincoords[level] + indices[level] * gridsizes[level];

rightgridcoord := leftgridcoord + gridsizes[level]

leftvolume := volume * (rightgridcoord - coord)

rightvolume := volume * (coord - leftgridcoord)

nextskip := enlarged_dims[level] * skip

nextleftpos := pos + skip * indices[level]

if(leftvolume > 0.0)

assignWeights(datapt, gridsizes, mincoords, indices,

enlarged_dims, discretized, level - 1, leftvolume,

nextleftpos, nextskip)

if(rightvolume > 0.0)

assignWeights(datapt, gridsizes, mincoords, indices,

enlarged_dims, discretized, level - 1, rightvolume,

nextleftpos + skip, nextskip)

end procedure

procedure retrieveWeights :=

input dataptnum, datapt, num_dims, gridsizes, discretized, size,

indices, mincoords, volume, densities, level, pos, skip, divfactor

if(level == -1)

densities[dataptnum] := densities[dataptnum] + discretized[pos] * volume

/ divfactor

else

/**

* Recurse in the right direction

*/

coord := datapt[level];

leftgridcoord := mincoords[level] + indices[level] * gridsizes[level]

rightgridcoord := leftgridcoord + gridsizes[level]

leftvolume := volume * (rightgridcoord - coord)

rightvolume := volume * (coord - leftgridcoord)

nextskip := size[level] * skip

nextleftpos := pos + skip * indices[level]

if(leftvolume > 0.0)

retrieveWeights(dataptnum, datapt, num_dims, gridsizes, discretized,

size, indices, mincoords, leftvolume, densities,

level - 1, nextleftpos, nextskip, divfactor)

if(rightvolume > 0.0)

retrieveWeights(dataptnum, datapt, num_dims, gridsizes, discretized,

size, indices, mincoords, rightvolume, densities,

level - 1, nextleftpos + skip, nextskip, divfactor)

67



end procedure

procedure retrieveDensities :=

input dataset, num_rows, dim, gridsizes, discretized, size, mincoords,

gridbinvolume, bandwidsqd

densities := (double *) malloc(num_rows * sizeof(double))

normc := pow((2.0 * PI * bandwidsqd),((double)dim) / 2.0) * num_rows

minindices := (int *) malloc(dim * sizeof(int))

for(r = 0; r < num_rows; r++)

densities[r] = 0.0

for(d = 0; d < dim; d++)

minindices[d] := floor((dataset[r * dim + d] - mincoords[d])/

gridsizes[d])

retrieveWeights(r, dataset + r * dim, dim, gridsizes, discretized,

size, minindices, mincoords, 1.0, densities, dim - 1,

0.0, 1, gridbinvolume * normc)

return densities;

end procedure

procedure discretize_dataset :=

input dataset, num_rows, dim, bandwidth, gridsizes, mincoords, maxcoords,

diffcoords, kernelweights_dims, enlarged_dims, numenlargedgridpts,

gridbinvolume

/**

* Temporary used to count the number of elements in the enlarged matrices

* for the kernel weights and bin counts. Also calculate the volume of each

* grid bin.

*/

numengridpts := 1

gvolume := 1.0

/**

* Temporary index array to locate the bin for each data point.

*/

minindices := (int *) malloc(dim * sizeof(int));

/**

* Find the min/max in each coordinate direction, and calculate the grid

* size in each dimension.

*/

for(d = 0; d < dim; d++)

min := MAXDOUBLE

max := MINDOUBLE

for(r = 0; r < num_rows; r++)

coord := dataset[r * dim + d]

if(coord > max)

max := coord

if(coord < min)

min := coord

/**

* Following Silverman’s advice here

*/

mincoords[d] := min

maxcoords[d] := max

diffcoords[d] := maxcoords[d] - mincoords[d]
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gridsizes[d] := diffcoords[d] / ((double) M - 1)

gvolume := gvolume * gridsizes[d]

/**

* Determine how many kernel weight calculation to do for this dimension.

*/

kernelweights_dims[d] := M - 1

possiblesample := floor(TAU * bandwidth / gridsizes[d])

if(kernelweights_dims[d] > possiblesample)

if(possiblesample == 0)

possiblesample := 1

kernelweights_dims[d] = possiblesample

/**

* Wand p440: Need to calculate the actual dimension of the matrix

* after the necessary 0 padding of the kernel weight matrix and the

* bin count matrix.

*/

enlarged_dims[d] := ceil(log(M + kernelweights_dims[d]) / log(2))

enlarged_dims[d] := 1 << enlarged_dims[d];

numengridpts := numengridpts * enlarged_dims[d]

/**

* Allocate the memory for discretized grid count matrix and initialize it.

*/

discretized := (double *) malloc(numengridpts * sizeof(double))

*numenlargedgridpts := numengridpts

*gridbinvolume := gvolume

gvolume := 1.0 / gvolume

for(d = 0; d < numengridpts; d++)

discretized[d] := 0.0;

/**

* Now loop over each data and calculate the weights at each grid point.

*/

for(r = 0; r < num_rows; r++)

/**

* First locate the bin the data point falls into and identify it by

* the lower grid coordinates.

*/

for(d = 0; d < dim; d++)

minindices[d] := floor((dataset[r * dim + d] - mincoords[d])/

gridsizes[d]);

/**

* Assign the weights around the neighboring grid points due to this

* data point. This results in 2^num_dims number of recursion per data

* point.

*/

assignWeights(dataset + r * dim, gridsizes, mincoords, minindices,

enlarged_dims, discretized, dim - 1, gvolume, 0, 1)

return discretized;

end procedure

procedure scale_data_by_meanstdev :=

input m, num_dims, n

int i, j;

for (i=0; i < num_dims; i++)
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s := 0.0

u := 0.0

for(j = 0; j < n; j++)

u := u + m[num_dims * j + i]

u /= n

for(j = 0; j < n; j++)

diff := m[num_dims * j + i] - u

s := s + diff * diff

s := s / (n - 1)

s := sqrt(s)

for(j = 0; j < n; j++)

m[num_dims * j + i] := m[num_dims * j + i] - u;

m[num_dims * j + i] := m[num_dims * j + i] / s;

end proecure

procedure gaussify :=

input gridsizes, enlarged_dims, kernelweights, kernelweights_dims, acc,

precalc, level, pos, skip

if(level == -1)

kernelweights[pos] := exp(precalc * acc)

else

half := kernelweights_dims[level]

for(g = 0; g <= half; g++)

addThis := g * gridsizes[level]

newacc := acc + addThis * addThis

newskip := skip * enlarged_dims[level]

gaussify(gridsizes, enlarged_dims, kernelweights, kernelweights_dims,

newacc, precalc, level - 1, pos + skip * g, newskip)

/**

* If this is not the 0th frequency, then do the mirror image thingie.

*/

if(g != 0)

gaussify(gridsizes, enlarged_dims, kernelweights, kernelweights_dims,

newacc, precalc, level - 1,

pos + skip * (enlarged_dims[level] - g), newskip)

end procedure

A.1.3 Multidimensional FFT KDE Main Routine
begin procedure FFTKDEMain :=

input argc, argv // Standard C style arguments

num_rows := atoi(argv[2])

num_cols := atoi(argv[3])

bandwidth := atof(argv[4])

M := atoi(argv[5])

epsilon := atof(argv[6])

bandwidthsqd := bandwidth * bandwidth

dataset := parseData(argv[1], num_rows, num_cols)

scale_data_by_meanstdev(dataset, num_cols, num_rows)

/**

* Store the number of points along each dimension in the zero padded

* matrix, min/max/diff for each dimension.

*/
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size := (int *) malloc(num_cols * sizeof(int))

mincoords := (double *) malloc(num_cols * sizeof(double))

maxcoords := (double *) malloc(num_cols * sizeof(double))

diffcoords := (double *) malloc(num_cols * sizeof(double))

gridsizes := (double *) malloc(num_cols * sizeof(double))

kernelweights_dims := (int *) malloc(num_cols * sizeof(int))

start_time := get_time()

discretized := discretize_dataset(dataset, num_rows, num_cols,

bandwidth, gridsizes, mincoords,

maxcoords, diffcoords, kernelweights_dims,

size, &numgridpts, &gridbinvolume)

nyquistnum := 2 * numgridpts / size[num_cols - 1]

d_fnyquist := (double *) malloc(nyquistnum * sizeof(double))

k_fnyquist := (double *) malloc(nyquistnum * sizeof(double))

kernelweights := (double *) malloc(numgridpts * sizeof(double))

precalc := -0.5 / bandwidthsqd;

for(d = 0; d < numgridpts; d++)

kernelweights[d] := 0.0

/**

* FFT the discretized bin count matrix.

*/

fftrn(discretized, d_fnyquist, num_cols, size, 1)

/**

* Calculate the required kernel weights at each grid point. This matrix

* will be convolved with fourier transformed data set.

*/

gaussify(gridsizes, size, kernelweights, kernelweights_dims, 0.0, precalc,

num_cols - 1, 0, 1)

/**

* FFT the kernel weight matrix.

*/

fftrn(kernelweights, k_fnyquist, num_cols, size, 1)

/**

* We need to invoke the convolution theorem for FFT here. Take each

* corresponding complex number in kernelweights and discretized and do

* an element-wise multiplication. Later, pass it to inverse fft function,

* and we have our answer!

*/

for(d = 0; d < numgridpts; d += 2)

real1 := discretized[d]

complex1 := discretized[d + 1]

real2 := kernelweights[d]

complex2 := kernelweights[d + 1]

discretized[d] = real1 * real2 - complex1 * complex2

discretized[d + 1] = real1 * complex2 + complex1 * real2

for(d = 0; d < nyquistnum; d += 2)

real1 := d_fnyquist[d]

complex1 := d_fnyquist[d + 1]

real2 := k_fnyquist[d]

complex2 := k_fnyquist[d + 1]

d_fnyquist[d] := real1 * real2 - complex1 * complex2

d_fnyquist[d + 1] := real1 * complex2 + complex1 * real2

/**

* Inverse FFT the elementwise multiplied matrix.

*/
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fftrn(discretized, d_fnyquist, num_cols, size, -1)

/**

* Retrieve the densities of each data point.

*/

densities := retrieveDensities(dataset, num_rows, num_cols, gridsizes,

discretized, size, mincoords, gridbinvolume,

bandwidthsqd)

stop_time := get_time()

end procedure
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